Matematická analýza II.

Size: px
Start display at page:

Download "Matematická analýza II."

Transcription

1 V. Diferenciálny počet (prezentácia k prednáške MANb/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 8 6. marca 2018

2 It has apparently not yet been observed, that... continuity at any single point... is not the continuity... which can be called uniform continuity, because it extends uniformly to all points and in all directions. Heine: Ueber trigonometrische Reihen (1870), p. 361 Definícia rovnomerná spojitost funkcie na množine Funkciu f nazývame rovnomerne spojitá na množine M D f, akk ( ε > 0) ( δ > 0) ( x, y M, x y < δ) f (x) f (y) < ε. Budeme písat f C u (M). Príklady: Vyšetrite rovnomernú spojitost funkcie f na množine M, ak f (x) = sin x, kde M = R; f (x) = 1 x na M = 1, + ); f (x) = 1 x na M = (0, + );

3 It has apparently not yet been observed, that... continuity at any single point... is not the continuity... which can be called uniform continuity, because it extends uniformly to all points and in all directions. Heine: Ueber trigonometrische Reihen (1870), p. 361 Definícia rovnomerná spojitost funkcie na množine Funkciu f nazývame rovnomerne spojitá na množine M D f, akk ( ε > 0) ( δ > 0) ( x, y M, x y < δ) f (x) f (y) < ε. Budeme písat f C u (M). Príklady: Vyšetrite rovnomernú spojitost funkcie f na množine M, ak f (x) = sin x, kde M = R; f (x) = 1 x na M = 1, + ); f (x) = 1 x na M = (0, + );

4 It has apparently not yet been observed, that... continuity at any single point... is not the continuity... which can be called uniform continuity, because it extends uniformly to all points and in all directions. Heine: Ueber trigonometrische Reihen (1870), p. 361 Definícia rovnomerná spojitost funkcie na množine Funkciu f nazývame rovnomerne spojitá na množine M D f, akk ( ε > 0) ( δ > 0) ( x, y M, x y < δ) f (x) f (y) < ε. Budeme písat f C u (M). Príklady: Vyšetrite rovnomernú spojitost funkcie f na množine M, ak f (x) = sin x, kde M = R; f (x) = 1 x na M = 1, + ); f (x) = 1 x na M = (0, + );

5 It has apparently not yet been observed, that... continuity at any single point... is not the continuity... which can be called uniform continuity, because it extends uniformly to all points and in all directions. Heine: Ueber trigonometrische Reihen (1870), p. 361 Definícia rovnomerná spojitost funkcie na množine Funkciu f nazývame rovnomerne spojitá na množine M D f, akk ( ε > 0) ( δ > 0) ( x, y M, x y < δ) f (x) f (y) < ε. Budeme písat f C u (M). Príklady: Vyšetrite rovnomernú spojitost funkcie f na množine M, ak f (x) = sin x, kde M = R; f (x) = 1 x na M = 1, + ); f (x) = 1 x na M = (0, + );

6 It has apparently not yet been observed, that... continuity at any single point... is not the continuity... which can be called uniform continuity, because it extends uniformly to all points and in all directions. Heine: Ueber trigonometrische Reihen (1870), p. 361 Definícia rovnomerná spojitost funkcie na množine Funkciu f nazývame rovnomerne spojitá na množine M D f, akk ( ε > 0) ( δ > 0) ( x, y M, x y < δ) f (x) f (y) < ε. Budeme písat f C u (M). Pozorovanie: f C u(m) ( x n, y n M) lim x n n y n = 0 pohrajte sa interaktívne: Veta V.10 C u (M) C (M) lim f (x n n) f (y n) = 0

7 It has apparently not yet been observed, that... continuity at any single point... is not the continuity... which can be called uniform continuity, because it extends uniformly to all points and in all directions. Heine: Ueber trigonometrische Reihen (1870), p. 361 Definícia rovnomerná spojitost funkcie na množine Funkciu f nazývame rovnomerne spojitá na množine M D f, akk ( ε > 0) ( δ > 0) ( x, y M, x y < δ) f (x) f (y) < ε. Budeme písat f C u (M). Pozorovanie: f C u(m) ( x n, y n M) lim x n n y n = 0 pohrajte sa interaktívne: Veta V.10 C u (M) C (M) lim f (x n n) f (y n) = 0

8 It has apparently not yet been observed, that... continuity at any single point... is not the continuity... which can be called uniform continuity, because it extends uniformly to all points and in all directions. Heine: Ueber trigonometrische Reihen (1870), p. 361 Definícia rovnomerná spojitost funkcie na množine Funkciu f nazývame rovnomerne spojitá na množine M D f, akk ( ε > 0) ( δ > 0) ( x, y M, x y < δ) f (x) f (y) < ε. Budeme písat f C u (M). Pozorovanie: f C u(m) ( x n, y n M) lim x n n y n = 0 pohrajte sa interaktívne: Veta V.10 C u (M) C (M) lim f (x n n) f (y n) = 0

9 The general ideas of the proof of several theorems in 3 according to the principles of Mr. Weierstrass are known to me by oral communications from himself, from Mr. Schwarz and Mr. Cantor, so that... Heine: Die Elemente der Funktionenlehre (1872), p. 182 Veta (Heineho-Cantorova, 1872) C u a, b = C a, b EDUARD HEINE ( ) GEORG CANTOR ( )

10 The general ideas of the proof of several theorems in 3 according to the principles of Mr. Weierstrass are known to me by oral communications from himself, from Mr. Schwarz and Mr. Cantor, so that... Heine: Die Elemente der Funktionenlehre (1872), p. 182 Veta (Heineho-Cantorova, 1872) C u a, b = C a, b Poznámky: Heineho-Cantorova veta neplatí na otvorenom intervale, napr. f (x) = cos 1 x na M = (0, 1 je spojitá, ale nie rovnomerne! Čo vieme povedat o natiahnutí spojitosti do krajných bodov intervalu? Tvrdenie: bod nespojitosti rovnomerne spojitej funkcie na otvorenom intervale je odstránitel ný Nech f C (a, b), kde a, b R. Potom f sa dá spojite rozšírit na a, b (t.j. existujú vlastné jednostranné limity v krajných bodoch) práve vtedy, ked f C u(a, b). Náčrt dôkazu: zrejmé, lebo ak sa dá spojite rozšírit na a, b, tak podl a Heineho-Cantorovej vety je f C u a, b, teda aj f C u(a, b) Ked že f C u(a, b), tak ( ε > 0)( δ > 0)( x, y (a, b)) ( x y < δ f (x) f (y) < ε), a teda to platí aj pre intervaly (a, a + δ) a (b δ, b), čiže podl a Dirichletovej vety existujú vlastné jednostranné limity v krajných bodoch. Predchádzajúci výsledok neplatí na neohraničenom intervale, napr. f (x) = sin x je rovnomerne spojitá na R, ale neexistujú jej limity v ±!

11 The general ideas of the proof of several theorems in 3 according to the principles of Mr. Weierstrass are known to me by oral communications from himself, from Mr. Schwarz and Mr. Cantor, so that... Heine: Die Elemente der Funktionenlehre (1872), p. 182 Veta (Heineho-Cantorova, 1872) C u a, b = C a, b Poznámky: Heineho-Cantorova veta neplatí na otvorenom intervale, napr. f (x) = cos 1 x na M = (0, 1 je spojitá, ale nie rovnomerne! Čo vieme povedat o natiahnutí spojitosti do krajných bodov intervalu? Tvrdenie: bod nespojitosti rovnomerne spojitej funkcie na otvorenom intervale je odstránitel ný Nech f C (a, b), kde a, b R. Potom f sa dá spojite rozšírit na a, b (t.j. existujú vlastné jednostranné limity v krajných bodoch) práve vtedy, ked f C u(a, b). Náčrt dôkazu: zrejmé, lebo ak sa dá spojite rozšírit na a, b, tak podl a Heineho-Cantorovej vety je f C u a, b, teda aj f C u(a, b) Ked že f C u(a, b), tak ( ε > 0)( δ > 0)( x, y (a, b)) ( x y < δ f (x) f (y) < ε), a teda to platí aj pre intervaly (a, a + δ) a (b δ, b), čiže podl a Dirichletovej vety existujú vlastné jednostranné limity v krajných bodoch. Predchádzajúci výsledok neplatí na neohraničenom intervale, napr. f (x) = sin x je rovnomerne spojitá na R, ale neexistujú jej limity v ±!

12 The general ideas of the proof of several theorems in 3 according to the principles of Mr. Weierstrass are known to me by oral communications from himself, from Mr. Schwarz and Mr. Cantor, so that... Heine: Die Elemente der Funktionenlehre (1872), p. 182 Veta (Heineho-Cantorova, 1872) C u a, b = C a, b Poznámky: Heineho-Cantorova veta neplatí na otvorenom intervale, napr. f (x) = cos 1 x na M = (0, 1 je spojitá, ale nie rovnomerne! Čo vieme povedat o natiahnutí spojitosti do krajných bodov intervalu? Tvrdenie: bod nespojitosti rovnomerne spojitej funkcie na otvorenom intervale je odstránitel ný Nech f C (a, b), kde a, b R. Potom f sa dá spojite rozšírit na a, b (t.j. existujú vlastné jednostranné limity v krajných bodoch) práve vtedy, ked f C u(a, b). Náčrt dôkazu: zrejmé, lebo ak sa dá spojite rozšírit na a, b, tak podl a Heineho-Cantorovej vety je f C u a, b, teda aj f C u(a, b) Ked že f C u(a, b), tak ( ε > 0)( δ > 0)( x, y (a, b)) ( x y < δ f (x) f (y) < ε), a teda to platí aj pre intervaly (a, a + δ) a (b δ, b), čiže podl a Dirichletovej vety existujú vlastné jednostranné limity v krajných bodoch. Predchádzajúci výsledok neplatí na neohraničenom intervale, napr. f (x) = sin x je rovnomerne spojitá na R, ale neexistujú jej limity v ±!

13 The general ideas of the proof of several theorems in 3 according to the principles of Mr. Weierstrass are known to me by oral communications from himself, from Mr. Schwarz and Mr. Cantor, so that... Heine: Die Elemente der Funktionenlehre (1872), p. 182 Veta (Heineho-Cantorova, 1872) C u a, b = C a, b Poznámky: Heineho-Cantorova veta neplatí na otvorenom intervale, napr. f (x) = cos 1 x na M = (0, 1 je spojitá, ale nie rovnomerne! Čo vieme povedat o natiahnutí spojitosti do krajných bodov intervalu? Tvrdenie: bod nespojitosti rovnomerne spojitej funkcie na otvorenom intervale je odstránitel ný Nech f C (a, b), kde a, b R. Potom f sa dá spojite rozšírit na a, b (t.j. existujú vlastné jednostranné limity v krajných bodoch) práve vtedy, ked f C u(a, b). Náčrt dôkazu: zrejmé, lebo ak sa dá spojite rozšírit na a, b, tak podl a Heineho-Cantorovej vety je f C u a, b, teda aj f C u(a, b) Ked že f C u(a, b), tak ( ε > 0)( δ > 0)( x, y (a, b)) ( x y < δ f (x) f (y) < ε), a teda to platí aj pre intervaly (a, a + δ) a (b δ, b), čiže podl a Dirichletovej vety existujú vlastné jednostranné limity v krajných bodoch. Predchádzajúci výsledok neplatí na neohraničenom intervale, napr. f (x) = sin x je rovnomerne spojitá na R, ale neexistujú jej limity v ±!

14 The general ideas of the proof of several theorems in 3 according to the principles of Mr. Weierstrass are known to me by oral communications from himself, from Mr. Schwarz and Mr. Cantor, so that... Heine: Die Elemente der Funktionenlehre (1872), p. 182 Veta (Heineho-Cantorova, 1872) C u a, b = C a, b Poznámky: Heineho-Cantorova veta neplatí na otvorenom intervale, napr. f (x) = cos 1 x na M = (0, 1 je spojitá, ale nie rovnomerne! Čo vieme povedat o natiahnutí spojitosti do krajných bodov intervalu? Tvrdenie: bod nespojitosti rovnomerne spojitej funkcie na otvorenom intervale je odstránitel ný Nech f C (a, b), kde a, b R. Potom f sa dá spojite rozšírit na a, b (t.j. existujú vlastné jednostranné limity v krajných bodoch) práve vtedy, ked f C u(a, b). Náčrt dôkazu: zrejmé, lebo ak sa dá spojite rozšírit na a, b, tak podl a Heineho-Cantorovej vety je f C u a, b, teda aj f C u(a, b) Ked že f C u(a, b), tak ( ε > 0)( δ > 0)( x, y (a, b)) ( x y < δ f (x) f (y) < ε), a teda to platí aj pre intervaly (a, a + δ) a (b δ, b), čiže podl a Dirichletovej vety existujú vlastné jednostranné limity v krajných bodoch. Predchádzajúci výsledok neplatí na neohraničenom intervale, napr. f (x) = sin x je rovnomerne spojitá na R, ale neexistujú jej limity v ±!

15 Spojitost a d alšie vlastnosti funkcií Zopakovanie Veta II.4 Ak f je rýdzomonotónna na M D f, tak f je injektívna na M. y x Čo je potrebné pridat k injektívnosti, aby sme dostali rýdzomonotónnost??? Veta V.11 Ak f je injektívna na M D f a f C (M), tak f je rýdzomonotónna na M.

16 Spojitost a d alšie vlastnosti funkcií Zopakovanie Veta II.4 Ak f je rýdzomonotónna na M D f, tak f je injektívna na M. y x Čo je potrebné pridat k injektívnosti, aby sme dostali rýdzomonotónnost??? Veta V.11 Ak f je injektívna na M D f a f C (M), tak f je rýdzomonotónna na M.

17 Spojitost a d alšie vlastnosti funkcií Zopakovanie Veta II.4 Ak f je rýdzomonotónna na M D f, tak f je injektívna na M. y x Čo je potrebné pridat k injektívnosti, aby sme dostali rýdzomonotónnost??? Veta V.11 Ak f je injektívna na M D f a f C (M), tak f je rýdzomonotónna na M.

18 Dôsledok = Veta II.4 + Veta V.11 Nech f C (M). Potom f je injektívna na M práve vtedy, ked f je rýdzomonotónna na M. Zopakovanie Dôsledok Darbouxovej vety Nech f C (M), kde M je interval. Potom N = {y = f (x); x M} je jednoprvková množina alebo interval. JEAN GASTON DARBOUX ( ) Za akých okolností sa dá tento výsledok obrátit?

19 Dôsledok = Veta II.4 + Veta V.11 Nech f C (M). Potom f je injektívna na M práve vtedy, ked f je rýdzomonotónna na M. Zopakovanie Dôsledok Darbouxovej vety Nech f C (M), kde M je interval. Potom N = {y = f (x); x M} je jednoprvková množina alebo interval. JEAN GASTON DARBOUX ( ) Za akých okolností sa dá tento výsledok obrátit?

20 Dôsledok = Veta II.4 + Veta V.11 Nech f C (M). Potom f je injektívna na M práve vtedy, ked f je rýdzomonotónna na M. Veta V.12 Nech f je monotónna na intervale M D f a N = {y = f (x); x M} je jednoprvková množina alebo interval. Potom f C (M). Veta (o spojitosti inverznej funkcie) Nech f C (M) je injektívna na intervale M D f a N = {y = f (x); x M}. Potom f C (N) je rýdzomonotónna. Veta V.9 Všetky základné elementárne funkcie sú spojité v každom bode svojho definičného oboru. všeobecná mocninná funkcia, logaritmická funkcia, cyklometrické a hyperbolometrické funkcie

21 Dôsledok = Veta II.4 + Veta V.11 Nech f C (M). Potom f je injektívna na M práve vtedy, ked f je rýdzomonotónna na M. Veta V.12 Nech f je monotónna na intervale M D f a N = {y = f (x); x M} je jednoprvková množina alebo interval. Potom f C (M). Veta (o spojitosti inverznej funkcie) Nech f C (M) je injektívna na intervale M D f a N = {y = f (x); x M}. Potom f C (N) je rýdzomonotónna. Veta V.9 Všetky základné elementárne funkcie sú spojité v každom bode svojho definičného oboru. všeobecná mocninná funkcia, logaritmická funkcia, cyklometrické a hyperbolometrické funkcie

22 Dôsledok = Veta II.4 + Veta V.11 Nech f C (M). Potom f je injektívna na M práve vtedy, ked f je rýdzomonotónna na M. Veta V.12 Nech f je monotónna na intervale M D f a N = {y = f (x); x M} je jednoprvková množina alebo interval. Potom f C (M). Veta (o spojitosti inverznej funkcie) Nech f C (M) je injektívna na intervale M D f a N = {y = f (x); x M}. Potom f C (N) je rýdzomonotónna. Veta V.9 Všetky základné elementárne funkcie sú spojité v každom bode svojho definičného oboru. všeobecná mocninná funkcia, logaritmická funkcia, cyklometrické a hyperbolometrické funkcie

23 The extent of this calculus is immense: it applies to curves both mechanical and geometrical; radical signs cause it no difficulty, and even are often convenient; it extends to as many variables as one wishes; the comparison of infinitely small quantities of all sorts is easy. And it gives rise to an infinity of surprising discoveries concerning curved or straight tangents, questions De maximis & minimis, inflexion points and cusps of curves, envelopes, caustics from reflexion or refraction, &c. as we shall see in this work. Marquis de L Hospital: Analyse des infiniment petits (1696)

24 Infinitezimálny počet motivácia And I dare say that this is not only the most useful and most general problem in geometry that I know, but even that I ever desired to know. Descartes: La Geometrie, Appendix to the Discours de la methode (1637) What contempt for the non-english! We have found these methods, without any help from the English. Joh. Bernoulli: Opera, vol. IV (1735), p. 70 Isaac Newton was not a pleasant man. His relations with other academics were notorious, with most of his later life spent embroiled in heated disputes... A serious dispute arose with the German philosopher Gottfried Leibniz. Both Leibniz and Newton had independently developed a branch of mathematics called calculus, which underlies most of modern physics... Hawking: A Brief History of Time (1988) Problém: Nech y = f (x) je daná krivka. V každom bode x chceme poznat sklon krivky, dotyčnicu ku krivke a normálu ku krivke. Motivácie: výpočet uhla, pod ktorým sa dve krivky pretínajú (Descartes); konštrukcia d alekohl adov (Galilei) a hodín (Huygens 1673); nájdenie maxima a minima funkcie (Fermat 1638); rýchlost a zrýchlenie pohybu (Galilei 1638, Newton 1686); astronómia, overenie gravitačného zákona (Kepler, Newton).

25 Infinitezimálny počet okolnosti vzniku a historické súvislosti NEWTON (1671, publikované až v roku 1736): Uvažuje premenné v, x, y, z ako as gradually and indefinitely increasing,... And the velocities by which every Fluent is increased by its general motion, (which I may call Fluxions) I shall represent by the same Letters pointed thus v, ẋ, ẏ, ż. Hodnoty dostal spôsobom rejecting the Terms... as being equal to nothing.

26 Infinitezimálny počet okolnosti vzniku a historické súvislosti LEIBNIZ (1684): Nech y = x 2. Ak x narastie o x, tak y narastie na y + y = (x + x) 2 = x 2 + 2x x + ( x) 2 y = 2x x + ( x) 2. Podl a Leibniza x a y predstavujú nekonečne malé veličiny, ktoré označil dx a dy. Zanedbaním výrazu (dx) 2, ktorý je nekonečne menší ako 2xdx dostal dy = 2xdx alebo dy dx = 2x.

27 Infinitezimálny počet okolnosti vzniku a historické súvislosti JACOB A JOHANN BERNOULLI: tretie znovuobjavenie diferenciálneho kalkulu na základe Leibnizovho článku z roku Johann dáva v roku 1691/92 súkromné hodiny nového kalkulu markízovi de L Hospitalovi, pričom nekonečne malé veličiny chápal ako veličiny, ktoré sa môžu pripočítat ku konečným veličinám bez zmeny ich hodnôt kritika tejto novej matematiky od B. NIEVENTIJTA z roku 1694

28 Infinitezimálny počet okolnosti vzniku a historické súvislosti GUILLAUME DE L HOSPITAL (1696): vydal knihu Analyse des infiniment petits, ktorá sa stala prvou učebnicou diferenciálneho počtu a znamenala prelom v používaní nového kalkulu dokonca aj vo Francúzsku, kde veda bola ovplyvnená dlhé desat ročia karteziánmi (abbé Catelan, Papin, Rolle, atd.)

29 Derivácia rodiaca sa: derivácia umožňuje popis fyzikálnych dejov a geometrické správanie sa funkcií ISAAC NEWTON ( ) GOTTFRIED WILHELM LEIBNIZ ( )

30 Derivácia uháňajúca: derivácia udáva rýchlost zmien fyzikálnych veličín derivácia umožňuje merat rýchlost dejov najrôznejšieho druhu

31 Derivácia tvarujúca: derivácia funkcie v bode je smernica jej dotyčnice v danom bode, t.j. udáva ako rýchlo funkcia rastie alebo klesá druhá derivácia udává mieru konvexnosti či konkávnosti derivácia je vhodný nástroj pre popis kriviek najrôznejšieho druhu

32 Derivácia zjednodušujúca: derivácia slúži na aproximáciu funkcie, ak ju nahradíme jej dotyčnicou namiesto všeobecne komplikovaných závislostí medzi veličinami pracujeme s lineárnymi funkciami a rovnicami

33 Derivácia všeobklopujúca: ked že väčšina fyzikálnych dejov prebieha tak, že zmena jednej veličiny vyvoláva zmenu či prítomnost inej veličiny, je derivácia ideálnym prostriedkom pre formulovanie fyzikálnych zákonov popisuje všetko, čo nás obklopuje

34 ... tangentem invenire, esse rectam ducere, quæ duo curvæ puncta distantiam infinite parvam habentia, jungat,... Leibniz: Nova methodus pro maximis et minimis... (1684) Definícia derivácia funkcie v bode Nech x 0 D f je hromadný bod D f. Deriváciou funkcie f v bode x 0 nazývame f (x) f (x 0 ) vlastnú limitu lim a označujeme ju f (x 0 ). x x0 x x 0

35 ... tangentem invenire, esse rectam ducere, quæ duo curvæ puncta distantiam infinite parvam habentia, jungat,... Leibniz: Nova methodus pro maximis et minimis... (1684) Definícia derivácia funkcie v bode Nech x 0 D f je hromadný bod D f. Deriváciou funkcie f v bode x 0 nazývame f (x) f (x 0 ) vlastnú limitu lim a označujeme ju f (x 0 ). x x0 x x 0

36 f f (x) f (x 0 ) f (x 0 + h) f (x 0 ) (x 0 ) = lim = lim x x0 x x 0 h 0 h Príklady: Nájdite deriváciu funkcie f v l ubovol nom bode x 0 R, ak f (x) = c, kde c R; f (x) = x n pre n N; f (x) = a x pre a > 0, a 1;

37 f f (x) f (x 0 ) f (x 0 + h) f (x 0 ) (x 0 ) = lim = lim x x0 x x 0 h 0 h Príklady: Nájdite deriváciu funkcie f v l ubovol nom bode x 0 R, ak f (x) = c, kde c R; f (x) = x n pre n N; f (x) = a x pre a > 0, a 1;

38 f f (x) f (x 0 ) f (x 0 + h) f (x 0 ) (x 0 ) = lim = lim x x0 x x 0 h 0 h Príklady: Nájdite deriváciu funkcie f v l ubovol nom bode x 0 R, ak f (x) = c, kde c R; f (x) = x n pre n N; f (x) = a x pre a > 0, a 1;

Matematická analýza II.

Matematická analýza II. V. Diferenciálny počet (prezentácia k prednáške MANb/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prezentácie k prednáškam čast II 21. februára 2018 The extent of this calculus

More information

Historical notes on calculus

Historical notes on calculus Historical notes on calculus Dr. Vladimir Dotsenko Dr. Vladimir Dotsenko Historical notes on calculus 1 / 9 Descartes: Describing geometric figures by algebraic formulas 1637: René Descartes publishes

More information

Beyond Newton and Leibniz: The Making of Modern Calculus. Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida

Beyond Newton and Leibniz: The Making of Modern Calculus. Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida Beyond Newton and Leibniz: The Making of Modern Calculus Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida Calculus Before Newton & Leibniz Four Major Scientific Problems

More information

O1 History of Mathematics Lecture VI Successes of and difficulties with the calculus: the 18th-century beginnings of rigour

O1 History of Mathematics Lecture VI Successes of and difficulties with the calculus: the 18th-century beginnings of rigour O1 History of Mathematics Lecture VI Successes of and difficulties with the calculus: the 18th-century beginnings of rigour Monday 22nd October 2018 (Week 3) Summary Publication and acceptance of the calculus

More information

Teória grafov. RNDr. Milan Stacho, PhD.

Teória grafov. RNDr. Milan Stacho, PhD. Teória grafov RNDr. Milan Stacho, PhD. Literatúra Plesník: Grafové algoritmy, Veda Bratislava 1983 Sedláček: Úvod do teórie grafů, Academia Praha 1981 Bosák: Grafy a ich aplikácie, Alfa Bratislava 1980

More information

Leibniz and the Discovery of Calculus. The introduction of calculus to the world in the seventeenth century is often associated

Leibniz and the Discovery of Calculus. The introduction of calculus to the world in the seventeenth century is often associated Leibniz and the Discovery of Calculus The introduction of calculus to the world in the seventeenth century is often associated with Isaac Newton, however on the main continent of Europe calculus would

More information

In today s world, people with basic calculus knowledge take the subject for granted. As

In today s world, people with basic calculus knowledge take the subject for granted. As Ziya Chen Math 4388 Shanyu Ji Calculus In today s world, people with basic calculus knowledge take the subject for granted. As long as they plug in numbers into the right formula and do the calculation

More information

Historical Reflections On Teaching Calculus/Analysis David Bressoud Macalester College St. Paul, MN

Historical Reflections On Teaching Calculus/Analysis David Bressoud Macalester College St. Paul, MN Historical Reflections On Teaching Calculus/Analysis David Bressoud Macalester College St. Paul, MN University of Utrecht The Netherlands April 23, 2010 PowerPoint available at www.macalester.edu/~bressoud/talks

More information

Calculus Trivia: Historic Calculus Texts

Calculus Trivia: Historic Calculus Texts Calculus Trivia: Historic Calculus Texts Archimedes of Syracuse (c. 287 BC - c. 212 BC) - On the Measurement of a Circle : Archimedes shows that the value of pi (π) is greater than 223/71 and less than

More information

Slopes, Derivatives, and Tangents. Matt Riley, Kyle Mitchell, Jacob Shaw, Patrick Lane

Slopes, Derivatives, and Tangents. Matt Riley, Kyle Mitchell, Jacob Shaw, Patrick Lane Slopes, Derivatives, and Tangents Matt Riley, Kyle Mitchell, Jacob Shaw, Patrick Lane S Introduction Definition of a tangent line: The tangent line at a point on a curve is a straight line that just touches

More information

Math 4388 Amber Pham 1. The Birth of Calculus. for counting. There are two major interrelated topics in calculus known as differential and

Math 4388 Amber Pham 1. The Birth of Calculus. for counting. There are two major interrelated topics in calculus known as differential and Math 4388 Amber Pham 1 The Birth of Calculus The literal meaning of calculus originated from Latin, which means a small stone used for counting. There are two major interrelated topics in calculus known

More information

Reflections on the Fundamental Theorem Of Integral Calculus

Reflections on the Fundamental Theorem Of Integral Calculus Reflections on the Fundamental Theorem Of Integral Calculus David Bressoud St. Paul, MN MAA Wisconsin Sec,on Ripon College, Ripon, WI April 25, 2015 Mathematical Association of America PowerPoint available

More information

A history of Topology

A history of Topology A history of Topology Version for printing Geometry and topology index History Topics Index Topological ideas are present in almost all areas of today's mathematics. The subject of topology itself consists

More information

Mathematical Misnomers: Hey, who really discovered that theorem!

Mathematical Misnomers: Hey, who really discovered that theorem! Mathematical Misnomers: Hey, who really discovered that theorem! Mike Raugh mikeraugh.org LACC Math Contest 24th March 2007 Who was buried in Grant s tomb? Ulysss S. Grant, of course! These are true too:

More information

Zentrum für Technomathematik Fachbereich 3 Mathematik und Informatik. R, dx and ε. Derivatives and Infinitesimal Numbers

Zentrum für Technomathematik Fachbereich 3 Mathematik und Informatik. R, dx and ε. Derivatives and Infinitesimal Numbers R, dx and ε Derivatives and Infinitesimal Numbers 1 We use derivatives all day Looking for extrema: f (x) = 0 Expressing conntection between quantities: y = f(y, x) Calculating norms or constaints: f =

More information

Kapitola S5. Skrutkovica na rotačnej ploche

Kapitola S5. Skrutkovica na rotačnej ploche Kapitola S5 Skrutkovica na rotačnej ploche Nech je rotačná plocha určená osou rotácie o a meridiánom m. Skrutkový pohyb je pohyb zložený z rovnomerného rotačného pohybu okolo osi o a z rovnomerného translačného

More information

The Leibniz Catenary Construction: Geometry vs Analysis in the 17 th Century

The Leibniz Catenary Construction: Geometry vs Analysis in the 17 th Century The Leibniz Catenary Construction: Geometry vs Analysis in the 17 th Century Mike Raugh www.mikeraugh.org JMM: Joint Mathematics Meetings, Atlanta January 4, 2017 Copyright 2017 Mike Raugh Catenary: Derived

More information

Chapter 1 INTRODUCTION TO CALCULUS

Chapter 1 INTRODUCTION TO CALCULUS Chapter 1 INTRODUCTION TO CALCULUS In the English language, the rules of grammar are used to speak and write effectively. Asking for a cookie at the age of ten was much easier than when you were first

More information

MATH1014 Calculus II. A historical review on Calculus

MATH1014 Calculus II. A historical review on Calculus MATH1014 Calculus II A historical review on Calculus Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology September 4, 2015 Instantaneous Velocities Newton s paradox

More information

These slides will be available at

These slides will be available at David Bressoud Macalester College St. Paul, MN Moravian College February 20, 2009 These slides will be available at www.macalester.edu/~bressoud/talks The task of the educator is to make the child s spirit

More information

Concepts in Engineering Mathematics: Lecture 39

Concepts in Engineering Mathematics: Lecture 39 Concepts in Engineering Mathematics: Lecture 39 Part IV: Vector Calculus Lecture 39 Version: 0.94 Dec7.15 Jont B. Allen; UIUC Urbana IL, USA December 9, 2015 Jont B. Allen; UIUC Urbana IL, USA Concepts

More information

The integral test and estimates of sums

The integral test and estimates of sums The integral test Suppose f is a continuous, positive, decreasing function on [, ) and let a n = f (n). Then the series n= a n is convergent if and only if the improper integral f (x)dx is convergent.

More information

O1 History of Mathematics Lecture IV The beginnings of calculus, part 2: quadrature. Monday 17th October 2016 (Week 2)

O1 History of Mathematics Lecture IV The beginnings of calculus, part 2: quadrature. Monday 17th October 2016 (Week 2) O1 History of Mathematics Lecture IV The beginnings of calculus, part 2: quadrature Monday 17th October 2016 (Week 2) Summary Quadrature (finding areas) The method of indivisibles Infinitesimals Newton

More information

1230, notes 16. Karl Theodor Wilhelm Weierstrass, November 18, / 18

1230, notes 16. Karl Theodor Wilhelm Weierstrass, November 18, / 18 1230, notes 16 Karl Theodor Wilhelm Weierstrass, 1815-1897 November 18, 2014 1 / 18 1230, notes 16 Karl Theodor Wilhelm Weierstrass, 1815-1897 Left university without a degree (ignored what he was supposed

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UIVERZITA KOMESKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A IFORMATIKY VÝPOČET FOURIEROVÝCH RADOV POMOCOU DISKRÉTEJ FOURIEROVEJ TRASFORMÁCIE BAKALÁRSKA PRÁCA 2013 Andrej ZUBAL UIVERZITA KOMESKÉHO V BRATISLAVE

More information

ADM a logika. 4. prednáška. Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť

ADM a logika. 4. prednáška. Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť ADM a logika 4. prednáška Výroková logika II, logický a sémantický dôsledok, teória a model, korektnosť a úplnosť 1 Odvodzovanie formúl výrokovej logiky, logický dôsledok, syntaktický prístup Logický dôsledok

More information

Module 3 : Differentiation and Mean Value Theorems. Lecture 7 : Differentiation. Objectives. In this section you will learn the following :

Module 3 : Differentiation and Mean Value Theorems. Lecture 7 : Differentiation. Objectives. In this section you will learn the following : Module 3 : Differentiation and Mean Value Theorems Lecture 7 : Differentiation Objectives In this section you will learn the following : The concept of derivative Various interpretations of the derivatives

More information

Celebrating Torricelli

Celebrating Torricelli On the Occasion of His 400th Birthday Chuck, Ph.D. Department of Mathematics Rockdale Magnet School for Science and Technology October 16, 2008 / Georgia Mathematics Conference Outline 1 Torricelli s Life

More information

The Brachistochrone Curve

The Brachistochrone Curve The Brachistochrone Curve Paige R MacDonald May 16, 2014 Paige R MacDonald The Brachistochrone Curve May 16, 2014 1 / 1 The Problem In 1696, Johann Bernoulli posed the following problem to the scientific

More information

Introduction to Calculus

Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

Stories from the Development of Real Analysis

Stories from the Development of Real Analysis Stories from the Development of Real Analysis David Bressoud Macalester College St. Paul, MN PowerPoint available at www.macalester.edu/~bressoud/talks Texas Sec)on University of Texas Tyler Tyler, TX

More information

2.8 Linear Approximations and Differentials

2.8 Linear Approximations and Differentials Arkansas Tech University MATH 294: Calculus I Dr. Marcel B. Finan 2.8 Linear Approximations and Differentials In this section we approximate graphs by tangent lines which we refer to as tangent line approximations.

More information

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral

More information

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2

THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2 THE RISE OF MODERN SCIENCE CHAPTER 20, SECTION 2 ORIGINS OF THE SCIENTIFIC REVOLUTION 335 BCE-1687 CE A New View of the Universe Scientists of the 1500s asked same questions as Greeks: What is the universe

More information

Johann Bernoulli ( )he established the principle of the so-called virtual work for static systems.

Johann Bernoulli ( )he established the principle of the so-called virtual work for static systems. HISTORICAL SURVEY Wilhelm von Leibniz (1646-1716): Leibniz s approach to mechanics was based on the use of mathematical operations with the scalar quantities of energy, as opposed to the vector quantities

More information

2.5 Exponential Functions and Trigonometric Functions

2.5 Exponential Functions and Trigonometric Functions 5 CHAPTER. COMPLEX-VALUED FUNCTIONS.5 Exponential Functions and Trigonometric Functions Exponential Function and Its Properties By the theory of power series, we can define e z := which is called the exponential

More information

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives 4.3 Riemann Sums and Definite Integrals Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits & Riemann Sums. Evaluate a definite integral using geometric formulas

More information

How Euler Did It. by Ed Sandifer. Foundations of Calculus. September 2006

How Euler Did It. by Ed Sandifer. Foundations of Calculus. September 2006 How Euler Did It Foundations of Calculus September 2006 by Ed Sandifer As we begin a new academic year, many of us are introducing another generation of students to the magic of calculus. As always, those

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus Objectives Evaluate a definite integral using the Fundamental Theorem of Calculus. Understand and use the Mean Value Theorem for Integrals. Find the average value of

More information

Calculus. Central role in much of modern science Physics, especially kinematics and electrodynamics Economics, engineering, medicine, chemistry, etc.

Calculus. Central role in much of modern science Physics, especially kinematics and electrodynamics Economics, engineering, medicine, chemistry, etc. Calculus Calculus - the study of change, as related to functions Formally co-developed around the 1660 s by Newton and Leibniz Two main branches - differential and integral Central role in much of modern

More information

An Introduction to a Rigorous Definition of Derivative

An Introduction to a Rigorous Definition of Derivative Ursinus College Digital Commons @ Ursinus College Analysis Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) 017 An Introduction to a Rigorous Definition of

More information

MthEd/Math 300 Williams Fall 2011 Midterm Exam 3

MthEd/Math 300 Williams Fall 2011 Midterm Exam 3 Name: MthEd/Math 300 Williams Fall 2011 Midterm Exam 3 Closed Book / Closed Note. Answer all problems. You may use a calculator for numerical computations. Section 1: For each event listed in the first

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MOCNINOVÉ RADY A ICH VYUšITIE BAKALÁRSKA PRÁCA 04 Sára MINÁROVÁ UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY

More information

A l g o r i t m i c k y n e r i e š i t e ľ n é p r o b l é m y

A l g o r i t m i c k y n e r i e š i t e ľ n é p r o b l é m y A l g o r i t m i c k y n e r i e š i t e ľ n é p r o b l é m y Lev Bukovský Ústav matematických vied, Prírodovedecká fakulta UPJŠ Košice, 20. apríla 2004 Obsah 1 Úvod 2 2 Čiastočne rekurzívne funkcie

More information

Introduction to ODE's (0A) Young Won Lim 3/9/15

Introduction to ODE's (0A) Young Won Lim 3/9/15 Introduction to ODE's (0A) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY HADAMARDOVE MATICE A ICH APLIKÁCIE V OPTIMÁLNOM DIZAJNE BAKALÁRSKA PRÁCA 2012 Samuel ROSA UNIVERZITA KOMENSKÉHO V BRATISLAVE

More information

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam This outcomes list summarizes what skills and knowledge you should have reviewed and/or acquired during this entire quarter in Math 121, and what

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

f(x)dx = lim f n (x)dx.

f(x)dx = lim f n (x)dx. Chapter 3 Lebesgue Integration 3.1 Introduction The concept of integration as a technique that both acts as an inverse to the operation of differentiation and also computes areas under curves goes back

More information

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask:

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask: Integral Integration is an important concept in mathematics, specifically in the field of calculus and, more broadly, mathematical analysis. Given a function ƒ of a real variable x and an interval [a,

More information

2.1 How Do We Measure Speed? Student Notes HH6ed. Time (sec) Position (m)

2.1 How Do We Measure Speed? Student Notes HH6ed. Time (sec) Position (m) 2.1 How Do We Measure Speed? Student Notes HH6ed Part I: Using a table of values for a position function The table below represents the position of an object as a function of time. Use the table to answer

More information

History of the Derivative

History of the Derivative Parabola Volume 46, Issue 1(2010) History of the Derivative Milan Pahor 1 Measure what is measurable, and make measurable what is not so. Galileo Galilei The 17th century was a revolutionary period in

More information

Chapter 10. Definition of the Derivative Velocity and Tangents

Chapter 10. Definition of the Derivative Velocity and Tangents Chapter 10 Definition of the Derivative 10.1 Velocity and Tangents 10.1 Notation. If E 1 (x, y) and E 2 (x, y) denote equations or inequalities in x and y, we will use the notation {E 1 (x, y)} = {(x,

More information

Integration. Copyright Cengage Learning. All rights reserved.

Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2 Objectives Understand the definition of a Riemann

More information

ODE Background: Differential (1A) Young Won Lim 12/29/15

ODE Background: Differential (1A) Young Won Lim 12/29/15 ODE Background: Differential (1A Copyright (c 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

More information

A Preview Of Calculus & 2.1 Rates of Change

A Preview Of Calculus & 2.1 Rates of Change Math 180 www.timetodare.com A Preview Of Calculus &.1 Rates of Change Calculus is one of the greatest achievements of the human intellect. Inspired by problems in astronomy, Newton and Leibniz developed

More information

MATH1013 Calculus I. Limits (part I) 1

MATH1013 Calculus I. Limits (part I) 1 MATH1013 Calculus I Limits (part I) 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology March 5, 2014 2013 1 Based on Briggs, Cochran and Gillett: Calculus for

More information

Kapitola P2. Rozvinuteľné priamkové plochy

Kapitola P2. Rozvinuteľné priamkové plochy Kapitola P2 Rozvinuteľné priamkové plochy 1 Priamková plocha je rozvinuteľná, ak na nej ležia iba torzálne priamky. Rozvinuteľné priamkové plochy rozdeľujeme na: rovinu, valcové plochy, kužeľové plochy,

More information

YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM

YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM YET ANOTHER ELEMENTARY SOLUTION OF THE BRACHISTOCHRONE PROBLEM GARY BROOKFIELD In 1696 Johann Bernoulli issued a famous challenge to his fellow mathematicians: Given two points A and B in a vertical plane,

More information

1. Introduction. 2. Outlines

1. Introduction. 2. Outlines 1. Introduction Graphs are beneficial because they summarize and display information in a manner that is easy for most people to comprehend. Graphs are used in many academic disciplines, including math,

More information

Samuel Flimmel. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Katedra pravděpodobnosti a matematické statistiky

Samuel Flimmel. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Samuel Flimmel Log-optimální investování Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: doc. RNDr.

More information

Exam 3 MATH Calculus I

Exam 3 MATH Calculus I Trinity College December 03, 2015 MATH 131-01 Calculus I By signing below, you attest that you have neither given nor received help of any kind on this exam. Signature: Printed Name: Instructions: Show

More information

Inventors and Scientists: Sir Isaac Newton

Inventors and Scientists: Sir Isaac Newton Inventors and Scientists: Sir Isaac Newton By Cynthia Stokes Brown, Big History Project on 07.30.16 Word Count 909 Portrait of Sir Isaac Newton circa 1715-1720 Bonhams Synopsis: Sir Isaac Newton developed

More information

GRAFICKÉ ZOBRAZENIE MATEMATICKÝCH FUNKCIÍ DRAWING OF MATHEMATICS FUNCTIONS GRAPHS

GRAFICKÉ ZOBRAZENIE MATEMATICKÝCH FUNKCIÍ DRAWING OF MATHEMATICS FUNCTIONS GRAPHS GRAFICKÉ ZOBRAZENIE MATEMATICKÝCH FUNKCIÍ DRAWING OF MATHEMATICS FUNCTIONS GRAPHS Dana ORSZÁGHOVÁ (SR) ABSTRACT Graphs of functions are the topic that is the part of mathematics study. The graphics software

More information

AP Calculus BC Syllabus Course Overview

AP Calculus BC Syllabus Course Overview AP Calculus BC Syllabus Course Overview Textbook Anton, Bivens, and Davis. Calculus: Early Transcendentals, Combined version with Wiley PLUS. 9 th edition. Hoboken, NJ: John Wiley & Sons, Inc. 2009. Course

More information

Computation of Information Value for Credit Scoring Models

Computation of Information Value for Credit Scoring Models Jedovnice 20 Computation of Information Value for Credit Scoring Models Martin Řezáč, Jan Koláček Dept. of Mathematics and Statistics, Faculty of Science, Masaryk University Information value The special

More information

LOOKING AT GRAPHS THROUGH INFINITESIMAL MICROSCOPES WINDOWS AND TELESCOPES

LOOKING AT GRAPHS THROUGH INFINITESIMAL MICROSCOPES WINDOWS AND TELESCOPES LOOKING AT GRAPHS THROUGH INFINITESIMAL MICROSCOPES WINDOWS AND TELESCOPES An Introduction to Calculus using Infinitesimals David Tall Mathematics Education Research Centre University of Warwick CV4 7AL

More information

VÝUČBA DIFFERENCIÁLNEHO POČTU FUNKCIE VIAC PREMENNÝCH POMOCOU PG. SYST. MATHEMATICA

VÝUČBA DIFFERENCIÁLNEHO POČTU FUNKCIE VIAC PREMENNÝCH POMOCOU PG. SYST. MATHEMATICA VÝUČBA DIFFERENCIÁLNEHO POČTU FUNKCIE VIAC PREMENNÝCH POMOCOU PG. SYST. MATHEMATICA Monika Kováčová Katedra Matematiky SjF STU Bratislava kovacova_v@dekan.sjf.stuba.sk Abstrakt. V článku popisujeme možnosti

More information

Ing. Tomasz Kanik. doc. RNDr. Štefan Peško, CSc.

Ing. Tomasz Kanik. doc. RNDr. Štefan Peško, CSc. Ing. Tomasz Kanik Školiteľ: doc. RNDr. Štefan Peško, CSc. Pracovisko: Študijný program: KMMOA, FRI, ŽU 9.2.9 Aplikovaná informatika 1 identifikácia problémovej skupiny pacientov, zlepšenie kvality rozhodovacích

More information

Segmentace textury. Jan Kybic

Segmentace textury. Jan Kybic Segmentace textury Případová studie Jan Kybic Zadání Mikroskopický obrázek segmentujte do tříd: Příčná vlákna Podélná vlákna Matrice Trhliny Zvolená metoda Deskriptorový popis Učení s učitelem ML klasifikátor

More information

INTRO TO LIMITS & CALCULUS MR. VELAZQUEZ AP CALCULUS

INTRO TO LIMITS & CALCULUS MR. VELAZQUEZ AP CALCULUS INTRO TO LIMITS & CALCULUS MR. VELAZQUEZ AP CALCULUS WHAT IS CALCULUS? Simply put, Calculus is the mathematics of change. Since all things change often and in many ways, we can expect to understand a wide

More information

1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws.

1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws. 2 INTRODUCTION Learning Objectives 1). To introduce and define the subject of mechanics. 2). To introduce Newton's Laws, and to understand the significance of these laws. 3). The review modeling, dimensional

More information

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '(

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '( Rules for Differentiation Finding the Derivative of a Product of Two Functions Rewrite the function f( = ( )( + 1) as a cubic function. Then, find f '(. What does this equation of f '( represent, again?

More information

Matematika 17. a 18. storočia

Matematika 17. a 18. storočia Matematika 17. a 18. storočia René Descartes Narodený : 31 Marec 1596 v La Haye (teraz Descartes),Touraine, France Zomrel : 11 Feb 1650 v Stockholm, Sweden Riešenie kvadratických rovníc podľa Descarta

More information

Types of Curves. From `A Short Account of the History of Mathematics' (4th edition, 1908) by W. W. Rouse Ball.

Types of Curves. From `A Short Account of the History of Mathematics' (4th edition, 1908) by W. W. Rouse Ball. Calculus CURVES Types of Curves In the second book Descartes divides curves into two classes, namely, geometrical and mechanical curves. He defines geometrical curves as those which can be generated by

More information

The Limit of Humanly Knowable Mathematical Truth

The Limit of Humanly Knowable Mathematical Truth The Limit of Humanly Knowable Mathematical Truth Gödel s Incompleteness Theorems, and Artificial Intelligence Santa Rosa Junior College December 12, 2015 Another title for this talk could be... An Argument

More information

Periodic Solutions Averaging Methods in Nonlinear Ordinary Differential Equations

Periodic Solutions Averaging Methods in Nonlinear Ordinary Differential Equations Volume: 4 Issue: 7 23 3 Periodic Solutions Averaging Methods in Nonlinear Ordinary Differential Equations Dr. V. Ramadoss, M.Sc., M.Phil., Ph.D.,* & D.Sinduja** *Professor, Department of Mathematics, PRIST

More information

1 Úvod Úvod Sylaby a literatúra Označenia a pomocné tvrdenia... 4

1 Úvod Úvod Sylaby a literatúra Označenia a pomocné tvrdenia... 4 Obsah 1 Úvod 3 1.1 Úvod......................................... 3 1. Sylaby a literatúra................................. 3 1.3 Označenia a omocné tvrdenia.......................... 4 Prvočísla 6.1 Deliteľnosť......................................

More information

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY. Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY. Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Kritéria nezápornosti Fourierových radov BAKALÁRSKA PRÁCA Bratislava 2014 Andrej Iring UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA

More information

9.2 Taylor Polynomials

9.2 Taylor Polynomials 9.2 Taylor Polynomials Taylor Polynomials and Approimations Polynomial functions can be used to approimate other elementary functions such as sin, Eample 1: f at 0 Find the equation of the tangent line

More information

Principles of Spherical Trigonometry Drawn from the Method of the Maxima and Minima

Principles of Spherical Trigonometry Drawn from the Method of the Maxima and Minima TRANSLATOR S NOTE In preparing this translation my assumption has been that the interested audience likely consists of both mathematicians and historians of mathematics. To satisfy the latter I have attempted

More information

Invariant Lagrangian Systems on Lie Groups

Invariant Lagrangian Systems on Lie Groups Invariant Lagrangian Systems on Lie Groups Dennis Barrett Geometry and Geometric Control (GGC) Research Group Department of Mathematics (Pure and Applied) Rhodes University, Grahamstown 6140 Eastern Cape

More information

From Newton s Fluxions to Virtual Microscopes

From Newton s Fluxions to Virtual Microscopes From Newton s Fluxions to Virtual Microscopes Jacques Bair and Valerie Henry J.Bair@ulg.ac.be V.Henry@ulg.ac.be Key words : Fluxions ; tangent lines ; hyperreal numbers ; dual numbers ; virtual microscopes

More information

Calculus with the TI-89. Sample Activity: Exploration 6. Brendan Kelly

Calculus with the TI-89. Sample Activity: Exploration 6. Brendan Kelly Calculus with the TI-89 Saple Activity: Exploration 6 Brendan Kelly EXPLORATION 6 The Derivative as a Liit THE BETTMANN ARCHIVE Isaac Newton, Karl Gauss, and Archiedes are rated by historians of atheatics

More information

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky a fysiky Časopis pro pěstování matematiky a fysiky Felix Adalbert Behrend On sequences of integers containing no arithmetic progression Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. 4, 235--239

More information

Appendix III 1. Chr. Huygens Pages T. XIV [1665]

Appendix III 1. Chr. Huygens Pages T. XIV [1665] Appendix III 1 Chr. Huygens Pages 102-107 T. XIV [1665] J[an] has 2 white tokens and 1 black, but 1 white and 2 black. And each in his turn chooses blindly one of his tokens. The one who obtains a black

More information

8 Differential Calculus 1 Introduction

8 Differential Calculus 1 Introduction 8 Differential Calculus Introduction The ideas that are the basis for calculus have been with us for a ver long time. Between 5 BC and 5 BC, Greek mathematicians were working on problems that would find

More information

Math Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want?

Math Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want? Math 2280 - Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want? Dylan Zwick Fall 2013 Newton s fundamental discovery, the one which he considered necessary

More information

Two dimensional oscillator and central forces

Two dimensional oscillator and central forces Two dimensional oscillator and central forces September 4, 04 Hooke s law in two dimensions Consider a radial Hooke s law force in -dimensions, F = kr where the force is along the radial unit vector and

More information

THE CALCULUS OF VARIATIONS*

THE CALCULUS OF VARIATIONS* 1925.] THE CALCULUS OF VARIATIONS 163 THE CALCULUS OF VARIATIONS* BY LEONIDA TONELLI 1. The Purpose of this Note. It is proposed to explain briefly here the method followed in my Fondamenti di Calcolo

More information

Development of Thought continued. The dispute between rationalism and empiricism concerns the extent to which we

Development of Thought continued. The dispute between rationalism and empiricism concerns the extent to which we Development of Thought continued The dispute between rationalism and empiricism concerns the extent to which we are dependent upon sense experience in our effort to gain knowledge. Rationalists claim that

More information

VII. Table of Contents

VII. Table of Contents TABLE OF CONTENTS LEIBNIZ AND THE INVENTION OF MATHEMATICAL TRANSCENDENCE. THE ADVENTURES OF AN IMPOSSIBLE INVENTORY... XIII The discovery of the transcendence... XIII Transcendence and Symbolism... XIII

More information

1.1 Introduction to Limits

1.1 Introduction to Limits Chapter 1 LIMITS 1.1 Introduction to Limits Why Limit? Suppose that an object steadily moves forward, with s(t) denotes the position at time t. The average speed over the interval [1,2] is The average

More information

PSEUDOINVERZNÁ MATICA

PSEUDOINVERZNÁ MATICA PSEUDOINVERZNÁ MATICA Jozef Fecenko, Michal Páleš Abstrakt Cieľom príspevku je podať základnú informácie o pseudoinverznej matici k danej matici. Ukázať, že bázický rozklad matice na súčin matíc je skeletným

More information

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th )

UNIVERSITY OF REGINA Department of Mathematics and Statistics. Calculus I Mathematics 110. Final Exam, Winter 2013 (April 25 th ) UNIVERSITY OF REGINA Department of Mathematics and Statistics Calculus I Mathematics 110 Final Exam, Winter 2013 (April 25 th ) Time: 3 hours Pages: 11 Full Name: Student Number: Instructor: (check one)

More information

Infinity. Newton, Leibniz & the Calculus

Infinity. Newton, Leibniz & the Calculus Infinity Newton, Leibniz & the Calculus Aristotle: Past time can t be infinite because there can t be an endless chain of causes (movements) preceding the present. Descartes: Space as extension; the res

More information

mass vs. weight. 392 dependent variable, 2 derivative(s) of a power series. 459 Descartes, René, 201 Devil s curve, 126 Difference Law of limits, 36 D

mass vs. weight. 392 dependent variable, 2 derivative(s) of a power series. 459 Descartes, René, 201 Devil s curve, 126 Difference Law of limits, 36 D # #, # definition of a limit, 31,64 A absolute maximum and minimum, 199 absolute maximum and minimum values, 199 absolute value function, 5 absolutely convergent series, 446 acceleration, 282 Airy function,

More information

Section 3.2 The Derivative as a Function Graphing the Derivative

Section 3.2 The Derivative as a Function Graphing the Derivative Math 80 www.timetodare.com Derivatives Section 3. The Derivative as a Function Graphing the Derivative ( ) In the previous section we defined the slope of the tangent to a curve with equation y= f ( )

More information

Visualizing Differentials in Integration to Picture the Fundamental Theorem of Calculus

Visualizing Differentials in Integration to Picture the Fundamental Theorem of Calculus Visualizing Differentials in Integration to Picture the Fundamental Theorem of Calculus David Tall Introduction Mathematics Education Research Centre University of Warwick COVENTRY CV4 7AL What is a differential?

More information

Isaac Newton. Translated into English by

Isaac Newton. Translated into English by THE MATHEMATICAL PRINCIPLES OF NATURAL PHILOSOPHY (BOOK 2, LEMMA 2) By Isaac Newton Translated into English by Andrew Motte Edited by David R. Wilkins 2002 NOTE ON THE TEXT Lemma II in Book II of Isaac

More information