Probing Holographic Superfluids with Solitons

Size: px
Start display at page:

Download "Probing Holographic Superfluids with Solitons"

Transcription

1 Probing Holographic Superfluids with Solitons Sean Nowling Nordita GGI Workshop on AdS4/CFT3 and the Holographic States of Matter work in collaboration with: V. Keränen, E. Keski-Vakkuri, and K.P. Yogendran

2 AdS / CM There has been much recent effort to construct strongly coupled phases of matter using the AdS/CFT correspondence superfluidity superconductivity Really want to push on these systems and say how like/unlike known systems probe calculations might be telling you about the probe, not the ground state Want an observable which is more intrinsic to the superfluid use solitons 2

3 Outline Holographic Superfluids Holographic Solitons construct dark solitons and vortices Lessons From Real World Solitons suggests how organize our exploration of holographic solutions Outlook 3

4 Holographic Superfluids Many recent attempts to use gauge/gravity duality to study 2+1 dim. condensed matter system Focus on spontaneous breaking of an Abelian symmetry AdS4 Einstein-Maxwell-Higgs gl g (R 12Λ)/2 κ2 4 F 2 q 2 /4+ DΨ 2 + m 2 Ψ 2 Hartnoll, et. al. [ and ] probe limit: κ 4 q 0 ds 2 = L 2 fdt2 z 2 (Schw-AdS b.h.) + dz2 fz 2 + dx2 z 2,f(z) =1 z 3 4

5 Begin with m 2 = 2/L 2, gauge fixed e.o.m. fr + f R zr + 2 xr + A2 t f R =0 fa t + 2 xa t R 2 A t =0 use rescaled fields R 2 Ψ z asymptotic solution: R R (1) (x)+zr (2) (x)+... A t A (0) t (x)+za (1) t (x)+... for this bulk mass we may use Neumann or Dirichlet boundary conditions: R (1) O 1, R (2) =0 A (0) t µ, A (1) t ρ tot or R (1) =0, R (2) O 2 A (0) t µ, A (1) t ρ tot 5

6 both boundary conditions display spontaneous symmetry breaking (at fixed temperature) for µ µ c charged operator has an expectation value as all charged external sources are removed can study how the order parameter behaves near μc µ O i 1 µ µc µ c can use linear response to study sound modes, probe fermions,... Can we find an observable outside linear response theory which know about the some of the short distance physics? a soliton s cores carry information about the short distance physics even at the mean field level 6

7 Holographic Dark Solitons Try to find dark soliton solutions to gravity equations fr + f R zr + 2 xr + A2 t f R =0 fa t + 2 xa t R 2 A t =0 want kink scalar field profiles external to black hole cannot be stable we will disallow any dependence on the coordinate along the soliton can add this dependence later and study the soliton s decay justified because real world kink solitons can be long lived 7

8 Aside on Numerical Methods Outside the horizon, the equations of motion are elliptic like Poisson equation 2 φ 0 = ρ Relaxation : extend to a diffusion equation with new variable t [0, ) ( t 2 )φ(t) =ρ now have a simple initial value problem: there is a flow to solution of Poisson equation the error decreases monotonically in time E(t) φ 0 φ(t) e tk2 the relaxation scheme may be implemented on a lattice topological information is contained in flow s initial conditions 8

9 Holographic Dark Solitons R A µ(1 z) <O 1 > condensate Soliton for lower dimension scalar has a greater core depletion of the charge density The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description 9

10 Holographic Dark Solitons R A µ(1 z) <O 2 > condensate Soliton for lower dimension scalar has a greater core depletion of the charge density The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description 9

11 Holographic Dark Solitons <O 1,2 > < ρ> z A R Ρ X X 1.2 A tanh(x/ξ) A + B sech 2 (x/ξ q ) Soliton for lower dimension scalar has a greater core depletion of the charge density The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description 9

12 Holographic Dark Solitons Ρ Ρ max <O 2 > x Ρ Ρ max Depletion Fraction <O 1 > 0.6 <O 1 > <O 2 > T T c Soliton for lower dimension scalar has a greater core depletion of the charge density The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description 9

13 Holographic Dark Solitons Ρ Ρ max <O 2 > x Ρ Ρ max Depletion Fraction <O 1 > 0.6 <O 1 > <O 2 > T T c Soliton for lower dimension scalar has a greater core depletion of the charge density The fact that the depletion is not going to zero means that one cannot simply use a simple Landau-Ginzberg description 9

14 Holographic Vortices Seek vortex solutions which carry nontrivial winding z 0 must include angular component of gauge field A θ, ( 0) dual to the superfluid current density j s now have 3 coupled nonlinear PDE s 0 = f 2 zr + z f z R zr + 1 ρ ρ(ρ ρ R) R( 1 f A2 t + (A θ n) 2 ρ 2 ) 0 = f 2 za t + 1 ρ ρ(ρ ρ A t ) R 2 A t 0 = z (f z A θ )+ρ ρ ( 1 ρ ρa θ ) R 2 (A θ n) 10

15 Holographic Vortices R(ρ,z) R A t (ρ,z) µ(1 z) A µ(1 z) A θ (ρ,z) <O 1 > condensate Same pattern of charge depletion fractions 11

16 Holographic Vortices R(ρ,z) R A t (ρ,z) µ(1 z) A µ(1 z) A θ (ρ,z) <O 2 > condensate Same pattern of charge depletion fractions 11

17 Holographic Vortices j s Same pattern of charge depletion fractions 11

18 Holographic Vortices Density depletion suggests that <O 1 > and that <O 2 > is BCS-like. is BEC-like Same pattern of charge depletion fractions 11

19 Holographic Vortices Density depletion suggests that <O 1 > and that <O 2 > is BCS-like. is BEC-like Same pattern of charge depletion fractions 11

20 Lessons From (non-rel.) Fermionic Superfluids (from Nishida and Son [ ]) modeled with a non-relativistic 4-Fermi interaction may study in ε expansion without keeping the dimensionful scale ( akf ) in this expansion we are tuning the scaling dimensions of fields solitons in these systems remember the microscopic structure even at the mean field level 12

21 Solitons in the Crossover Non-Relativistic BCS - BEC crossover Dark Solitons Soliton solution to gap equation display dark soliton solutions unstable -- but observable variable depletion fraction, bos. superfluid is near 100%, ferm. superfluid is much smaller has oscillations which know about kf on the BCS side Dark soliton: BEC (dot-dashed), unitarity (cont.), and BCS (dashed) (from Antezza, et. al. [ ]) 13

22 Solitons in the Crossover Non-Relativistic BCS - BEC crossover Vortices display dark soliton solutions display vortex solutions variable depletion fraction same core and tail scales in BEC, different for BCS also knows about kf on BCS side Vortex Profiles: BEC ( 1 ) and BCS ( -1 ) (from Sensarma, et. al. [cond-mat/ ]) 14

23 Solitons in the Crossover Non-Relativistic BCS - BEC crossover Vortices display dark soliton solutions display vortex solutions variable depletion fraction same core and tail scales in BEC, different for BCS also knows about kf on BCS side Vortex Profiles: BEC ( 1 ) and BCS ( -1 ) (from Sensarma, et. al. [cond-mat/ ]) 14

24 Things To Look For Suggests that we should study solitons as a function of the scaling dimension Number of independent lengthscales Friedel oscillations 15

25 Comparing Holographic Solitons Vary scaling dimension monotonic dependence in charge density depletion on Multiple lengthscales in condensate (vortex) temp. dependence ratio of lengthscales changes with Kink Dep. Frac. at T T c Friedel oscillations would give a measure of kf without using a fermion probe but... not visible (at least for T/Tc ~.5) 16

26 Comparing Holographic Solitons Vary scaling dimension monotonic dependence in charge density depletion on Multiple lengthscales in condensate (vortex) temp. dependence ratio of lengthscales changes with Friedel oscillations would give a measure of kf without using a fermion probe Ratio of core to tail length scales: <O 1 > in blue and <O 2 > in Red. but... not visible (at least for T/Tc ~.5) 16

27 Comparing Holographic Solitons Vary scaling dimension monotonic dependence in charge density depletion on Multiple lengthscales in condensate (vortex) temp. dependence ratio of lengthscales changes with Friedel oscillations would give a measure of kf without using a fermion probe Ratio of core to tail length scales: <O 1 > in blue and <O 2 > in Red. but... not visible (at least for T/Tc ~.5) 16

28 Comparing Holographic Solitons Vary scaling dimension monotonic dependence in charge density depletion on Multiple lengthscales in condensate (vortex) temp. dependence ratio of lengthscales changes with Friedel oscillations would give a measure of kf without using a fermion probe Ratio of core to tail length scales: <O 1 > in blue and <O 2 > in Red. but... not visible (at least for T/Tc ~.5) 16

29 Comparing Holographic Solitons Vary scaling dimension monotonic dependence in charge density depletion on Multiple lengthscales in condensate (vortex) temp. dependence ratio of lengthscales changes with Friedel oscillations would give a measure of kf without using a fermion probe Ratio of core to tail length scales: <O 1 > in blue and <O 2 > in Red. but... not visible (at least for T/Tc ~.5) 16

30 Comparing Holographic Solitons Vary scaling dimension monotonic dependence in charge density depletion on Multiple lengthscales in condensate (vortex) temp. dependence ratio of lengthscales changes with Friedel oscillations would give a measure of kf without using a fermion probe Ratio of core to tail length scales: <O 1 > in blue and <O 2 > in Red. but... not visible (at least for T/Tc ~.5) 16

31 Comparing Holographic Solitons Vary scaling dimension monotonic dependence in charge density depletion on Multiple lengthscales in condensate (vortex) temp. dependence ratio of lengthscales changes with Friedel oscillations would give a measure of kf without using a fermion probe Ratio of core to tail length scales: <O 1 > in blue and <O 2 > in Red. but... not visible (at least for T/Tc ~.5) 16

32 Summary and Outlook Presented dark soliton and vortex solutions in holographic superfluid the core charge density depletion is a strong function of m 2 Holographic solitons are have features which are reminiscent solitons in the BCS-BEC crossover suggests that we might vary the condensate type by changing the value of m 2 what is the analog of the crossover s unitarity regime? but no evidence of Friedel oscillations yet Follow-up: try to see any fermionic characteristics cooling to lower temperatures or may need to use external probes gravitational backreaction, transport properties, instabilities, nonrelativistic symmetries... 17

Inhomogeneous Structures in Holographic Superfluids I. Keränen, Ville.

Inhomogeneous Structures in Holographic Superfluids I. Keränen, Ville. https://helda.helsinki.fi Inhomogeneous Structures in Holographic Superfluids I Keränen, Ville 2010 Keränen, V, Keski-Vakkuri, E, Nowling, S & P. Yogendran, K 2010, ' Inhomogeneous Structures in Holographic

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Floquet Superconductor in Holography

Floquet Superconductor in Holography Floquet Superconductor in Holography Takaaki Ishii (Utrecht) arxiv:1804.06785 [hep-th] w/ Keiju Murata 11 June 2018, Nonperturbative QCD Paris Motivations Holography in time dependent systems To understand

More information

Holographic vortex pair annihilation in superfluid turbulence

Holographic vortex pair annihilation in superfluid turbulence Holographic vortex pair annihilation in superfluid turbulence Vrije Universiteit Brussel and International Solvay Institutes Based mainly on arxiv:1412.8417 with: Yiqiang Du and Yu Tian(UCAS,CAS) Chao

More information

arxiv: v1 [hep-th] 29 Mar 2019

arxiv: v1 [hep-th] 29 Mar 2019 This line only printed with preprint option Black and gray solitons in holographic superfluids at zero temperature Meng Gao School of Physical Sciences, University of Chinese Academy of Sciences, Beijing

More information

Non-Abelian holographic superfluids at finite isospin density. Johanna Erdmenger

Non-Abelian holographic superfluids at finite isospin density. Johanna Erdmenger .. Non-Abelian holographic superfluids at finite isospin density Johanna Erdmenger Max Planck-Institut für Physik, München work in collaboration with M. Ammon, V. Graß, M. Kaminski, P. Kerner, A. O Bannon

More information

Holographic superconductors

Holographic superconductors Holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

!onformali Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009 !onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K arxiv:0905.4752 Phys.Rev.D80:125005,2009 Motivation: QCD at LARGE N c and N f Colors Flavors Motivation: QCD at LARGE N c and N f Colors Flavors

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

QUANTUM QUENCH, CRITICAL POINTS AND HOLOGRAPHY. Sumit R. Das

QUANTUM QUENCH, CRITICAL POINTS AND HOLOGRAPHY. Sumit R. Das QUANTUM QUENCH, CRITICAL POINTS AND HOLOGRAPHY Sumit R. Das QUANTUM QUENCH Consider a quantum theory with a Hamiltonian with a time dependent coupling e.g. Suppose we start, at early times, in the ground

More information

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT

QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT QUANTUM QUENCH ACROSS A HOLOGRAPHIC CRITICAL POINT Sumit R Das (w/ Pallab Basu) (arxiv:1109.3909, to appear in JHEP) Quantum Quench Suppose we have a quantum field theory, whose parameters (like couplings

More information

dynamics of broken symmetry

dynamics of broken symmetry dynamics of broken symmetry Julian Sonner, MIT Simons Symposium - Quantum Entanglement Caneel Bay, USVI a physics connection in paradise 1957: J. R. Oppenheimer purchases small plot of land in Hawksnest

More information

The stability of the wall is due to the potential and the gradient balancing each other (Derrick s Theorem). Simple argument: = E grad

The stability of the wall is due to the potential and the gradient balancing each other (Derrick s Theorem). Simple argument: = E grad The stability of the wall is due to the potential and the gradient balancing each other (Derrick s Theorem). Simple argument: E grad ~ ( "# ) ~ $ & E pot ~ V (") ~ #$ 4 % ( ) * ~ $ Derrick s Theorem says

More information

Quantum matter & black hole ringing

Quantum matter & black hole ringing Quantum matter & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef and Subir

More information

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

How to get a superconductor out of a black hole

How to get a superconductor out of a black hole How to get a superconductor out of a black hole Christopher Herzog Princeton October 2009 Quantum Phase Transition: a phase transition between different quantum phases (phases of matter at T = 0). Quantum

More information

Dynamics of heavy quarks in charged N = 4 SYM plasma

Dynamics of heavy quarks in charged N = 4 SYM plasma Dynamics of heavy quarks in charged N = 4 SYM plasma Aleksi Vuorinen University of Washington, Seattle & Technical University of Vienna C. Herzog and AV, arxiv:0708:0609 [hep-th] Outline N = 4 SYM and

More information

Quantum bosons for holographic superconductors

Quantum bosons for holographic superconductors Quantum bosons for holographic superconductors Sean Hartnoll Harvard University Work in collaboration with Chris Herzog and Gary Horowitz : 0801.1693, 0810.1563. Frederik Denef : 0901.1160. Frederik Denef

More information

Holographic Metals. Valentina Giangreco Marotta Puletti Chalmers Institute of Technology. XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012

Holographic Metals. Valentina Giangreco Marotta Puletti Chalmers Institute of Technology. XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012 Holographic Metals Valentina Giangreco Marotta Puletti Chalmers Institute of Technology XIII Marcel Grossmann Meeting Stockholm, July 5th, 2012 in collaboration with S. Nowling, L. Thorlacius, and T. Zingg

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Holographic transport with random-field disorder. Andrew Lucas

Holographic transport with random-field disorder. Andrew Lucas Holographic transport with random-field disorder Andrew Lucas Harvard Physics Quantum Field Theory, String Theory and Condensed Matter Physics: Orthodox Academy of Crete September 1, 2014 Collaborators

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

New Compressible Phases From Gravity And Their Entanglement. Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013

New Compressible Phases From Gravity And Their Entanglement. Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013 New Compressible Phases From Gravity And Their Entanglement Sandip Trivedi, TIFR, Mumbai Simons Workshop, Feb 2013 Collaborators: Kevin Goldstein, Nori Iizuka, Shamit Kachru, Nilay Kundu, Prithvi Nayaran,

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

Superconductivity, Superfluidity and holography

Superconductivity, Superfluidity and holography Outline Department of Theoretical Physics and Institute of Theoretical Physics, Autònoma University of Madrid, Spain and Scuola Normale Superiore di Pisa, Italy 12 November 2012, Laboratori Nazionali del

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

A Holographic Realization of Ferromagnets

A Holographic Realization of Ferromagnets A Holographic Realization of Ferromagnets Masafumi Ishihara ( AIMR, Tohoku University) Collaborators: Koji Sato ( AIMR, Tohoku University) Naoto Yokoi Eiji Saitoh ( IMR, Tohoku University) ( AIMR, IMR,

More information

Exact holography and entanglement entropy from one-point functions

Exact holography and entanglement entropy from one-point functions Exact holography and entanglement entropy from one-point functions O-Kab Kwon (Sungkyunkwan University) In collaboration with Dongmin Jang, Yoonbai Kim, Driba Tolla arxiv:1612.05066, 1610.01490 1605.00849

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

Probing Universality in AdS/CFT

Probing Universality in AdS/CFT 1 / 24 Probing Universality in AdS/CFT Adam Ritz University of Victoria with P. Kovtun [0801.2785, 0806.0110] and J. Ward [0811.4195] Shifmania workshop Minneapolis May 2009 2 / 24 Happy Birthday Misha!

More information

FFLO States in Holographic Superconductors

FFLO States in Holographic Superconductors FFLO States in Holographic Superconductors Lefteris Papantonopoulos Work in progress with J. Alsup and S. Siopsis, first results in [arxiv:1208.4582 [hep-th]] Dedicated to the memory of Petros Skamagoulis

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

Building a holographic liquid crystal

Building a holographic liquid crystal Building a holographic liquid crystal Piotr Surówka Vrije Universiteit Brussel Ongoing work with R. Rahman and G. Compère Gauge/Gravity Duality, Munich, 01.08.2013 Motivation Hydrodynamics is an effective

More information

Condensed Matter Physics and the Nature of Spacetime

Condensed Matter Physics and the Nature of Spacetime Condensed Matter Physics and the Nature of Spacetime Jonathan Bain Polytechnic University Prospects for modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. 1. EFTs

More information

Yun Soo Myung Inje University

Yun Soo Myung Inje University On the Lifshitz black holes Yun Soo Myung Inje University in collaboration with T. Moon Contents 1. Introduction. Transition between Lifshitz black holes and other configurations 3. Quasinormal modes and

More information

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012

dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 dynamics of broken symmetry Julian Sonner Non-Equilibrium and String Theory workshop Ann Arbor, 20 Oct 2012 1207.4194, 12xx.xxxx in collaboration with Jerome Gauntlett & Toby Wiseman Benjamin Simons Miraculous

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München .. Gauge/Gravity Duality: An introduction Johanna Erdmenger Max Planck Institut für Physik, München 1 Outline I. Foundations 1. String theory 2. Dualities between quantum field theories and gravity theories

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity

Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Scale invariant fluid dynamics for the dilute Fermi gas at unitarity Thomas Schaefer North Carolina State University Fluids: Gases, Liquids, Plasmas,... Hydrodynamics: Long-wavelength, low-frequency dynamics

More information

arxiv: v2 [hep-th] 16 Jun 2011 Pallab Basu a,b, Fernando Nogueira a, Moshe Rozali a, Jared B. Stang a, Mark Van Raamsdonk a 1

arxiv: v2 [hep-th] 16 Jun 2011 Pallab Basu a,b, Fernando Nogueira a, Moshe Rozali a, Jared B. Stang a, Mark Van Raamsdonk a 1 Towards A Holographic Model of Color Superconductivity arxiv:1101.4042v2 [hep-th] 16 Jun 2011 Pallab Basu a,b, Fernando Nogueira a, Moshe Rozali a, Jared B. Stang a, Mark Van Raamsdonk a 1 a Department

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara

Using general relativity to study condensed matter. Gary Horowitz UC Santa Barbara Using general relativity to study condensed matter Gary Horowitz UC Santa Barbara Outline A. Review general relativity and black holes B. Gauge/gravity duality C. Using general relativity to study superconductivity

More information

Thermalization in a confining gauge theory

Thermalization in a confining gauge theory 15th workshop on non-perturbative QD Paris, 13 June 2018 Thermalization in a confining gauge theory CCTP/ITCP University of Crete APC, Paris 1- Bibliography T. Ishii (Crete), E. Kiritsis (APC+Crete), C.

More information

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas Vortex dynamics in finite temperature two-dimensional superfluid turbulence Andrew Lucas Harvard Physics King s College London, Condensed Matter Theory Special Seminar August 15, 2014 Collaborators 2 Paul

More information

My talk Two different points of view:

My talk Two different points of view: Shin Nakamura (Dept. Phys. Kyoto Univ.) Reference: S.N., Hirosi Ooguri, Chang-Soon Park, arxiv:09.0679[hep-th] (to appear in Phys. Rev. D) ( k B = h= c=) My talk Two different points of view: rom the viewpoint

More information

Holographic hydrodynamics of systems with broken rotational symmetry. Johanna Erdmenger. Max-Planck-Institut für Physik, München

Holographic hydrodynamics of systems with broken rotational symmetry. Johanna Erdmenger. Max-Planck-Institut für Physik, München Holographic hydrodynamics of systems with broken rotational symmetry Johanna Erdmenger Max-Planck-Institut für Physik, München Based on joint work with M. Ammon, V. Grass, M. Kaminski, P. Kerner, H.T.

More information

Holographic Anyonic Superfluids

Holographic Anyonic Superfluids Holographic Anyonic Superfluids Matt Lippert (Amsterdam) with Niko Jokela (USC) and Gilad Lifschytz (Haifa) Plan Anyons, SL(2,Z), and Quantum Hall Effect Superfluids and Anyon Superfliuds A Holographic

More information

Entanglement, holography, and strange metals

Entanglement, holography, and strange metals Entanglement, holography, and strange metals PCTS, Princeton, October 26, 2012 Subir Sachdev Talk online at sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Complex entangled

More information

Autocorrelators in models with Lifshitz scaling

Autocorrelators in models with Lifshitz scaling Autocorrelators in models with Lifshitz scaling Lárus Thorlacius based on V. Keränen & L.T.: Class. Quantum Grav. 29 (202) 94009 arxiv:50.nnnn (to appear...) International workshop on holography and condensed

More information

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions Durham University Work in collaboration with Matthew Elliot-Ripley June 26, 2015 Introduction to baby Skyrmions in flat space and AdS 3 Discuss

More information

Holography and Unitarity in Gravitational Physics

Holography and Unitarity in Gravitational Physics Holography and Unitarity in Gravitational Physics Don Marolf 01/13/09 UCSB ILQG Seminar arxiv: 0808.2842 & 0808.2845 This talk is about: Diffeomorphism Invariance and observables in quantum gravity The

More information

Asymptotic Symmetries and Holography

Asymptotic Symmetries and Holography Asymptotic Symmetries and Holography Rashmish K. Mishra Based on: Asymptotic Symmetries, Holography and Topological Hair (RKM and R. Sundrum, 1706.09080) Unification of diverse topics IR structure of QFTs,

More information

Stability of black holes and solitons in AdS. Sitter space-time

Stability of black holes and solitons in AdS. Sitter space-time Stability of black holes and solitons in Anti-de Sitter space-time UFES Vitória, Brasil & Jacobs University Bremen, Germany 24 Janeiro 2014 Funding and Collaborations Research Training Group Graduiertenkolleg

More information

First, we need a rapid look at the fundamental structure of superfluid 3 He. and then see how similar it is to the structure of the Universe.

First, we need a rapid look at the fundamental structure of superfluid 3 He. and then see how similar it is to the structure of the Universe. Outline of my talk: First, we need a rapid look at the fundamental structure of superfluid 3 He and then see how similar it is to the structure of the Universe. Then we will look at our latest ideas on

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Spin Models and Gravity

Spin Models and Gravity Spin Models and Gravity Umut Gürsoy (CERN) 6th Regional Meeting in String Theory, Milos June 25, 2011 Spin Models and Gravity p.1 Spin systems Spin Models and Gravity p.2 Spin systems Many condensed matter

More information

arxiv: v2 [hep-th] 12 Mar 2010

arxiv: v2 [hep-th] 12 Mar 2010 On Holographic p-wave Superfluids with Back-reaction Martin Ammon a, Johanna Erdmenger a, Viviane Grass a,, Patrick Kerner a, Andy O Bannon a a Max-Planck-Institut für Physik Werner-Heisenberg-Institut)

More information

arxiv: v2 [hep-th] 17 Oct 2016

arxiv: v2 [hep-th] 17 Oct 2016 Prepared for submission to JHEP Condensate flow in holographic models in the presence of dark matter arxiv:1608.00343v2 [hep-th] 17 Oct 2016 Marek Rogatko 1 Karol I. Wysokinski 2 Institute of Physics Maria

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Effective field theory, holography, and non-equilibrium physics. Hong Liu

Effective field theory, holography, and non-equilibrium physics. Hong Liu Effective field theory, holography, and non-equilibrium physics Hong Liu Equilibrium systems Microscopic description low energy effective field theory: Macroscopic phenomena Renormalization group, universality

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

AdS/CFT and holographic superconductors

AdS/CFT and holographic superconductors AdS/CFT and holographic superconductors Toby Wiseman (Imperial) In collaboration with Jerome Gauntlett and Julian Sonner [ arxiv:0907.3796 (PRL 103:151601, 2009), arxiv:0912.0512 ] and work in progress

More information

Holographic Q-Lattices and Metal-Insulator Transitions

Holographic Q-Lattices and Metal-Insulator Transitions Holographic Q-Lattices and Metal-Insulator Transitions Jerome Gauntlett Aristomenis Donos Holographic tools provide a powerful framework for investigating strongly coupled systems using weakly coupled

More information

AdS/QCD. K. Kajantie. Helsinki Institute of Physics Helsinki, October 2010

AdS/QCD. K. Kajantie. Helsinki Institute of Physics   Helsinki, October 2010 AdS/QCD Actually mainly AdS/CFT K. Kajantie Helsinki Institute of Physics http://www.helsinki.fi/~kajantie/ Helsinki, 28-29 October 2010 Literature: Go to arxiv th or phen. Find Gubser, Son, Starinets,

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

Vacuum Alignment in Holographic Graphene

Vacuum Alignment in Holographic Graphene Vacuum Alignment in Holographic Graphene Nick Evans University of Southampton Keun-Young Kim Peter Jones Perugia, Septemberer 2015 (A) Motivation - Graphene Graphene is a 2+1d surface embedded in a 3+1d

More information

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41 Contents Preface 1. The structure of the space of the physical states 1 1.1 Introduction......................... 1 1.2 The space of the states of physical particles........ 2 1.3 The Weyl Heisenberg algebra

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

Black-hole & white-hole horizons for capillary-gravity waves in superfluids

Black-hole & white-hole horizons for capillary-gravity waves in superfluids Black-hole & white-hole horizons for capillary-gravity waves in superfluids G. Volovik Helsinki University of Technology & Landau Institute Cosmology COSLAB Particle Particle physics Condensed matter Warwick

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Holographic Superfluids and Solitons

Holographic Superfluids and Solitons HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES HIP-2011-04 Holographic Superfluids and Solitons Ville Keränen Helsinki Institute of Physics University of Helsinki Finland ACADEMIC DISSERTATION To

More information

Cosmological constant is a conserved charge

Cosmological constant is a conserved charge Cosmological constant is a conserved Kamal Hajian Institute for Research in Fundamental Sciences (IPM) In collaboration with Dmitry Chernyavsky (Tomsk Polytechnic U.) arxiv:1710.07904, to appear in Classical

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance

Signatures of Superfluidity in Dilute Fermi Gases near a Feshbach Resonance Signatures of Superfluidity in Dilute ermi Gases near a eshbach Resonance A. Bulgac (Seattle), Y. Yu (Seattle Lund) P.. Bedaque (Berkeley), G.. Bertsch (Seattle), R.A. Broglia (Milan), A.C. onseca (Lisbon)

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Black Holes, Fluids, and their Instabilities. Roberto Emparan ICREA & U. Barcelona

Black Holes, Fluids, and their Instabilities. Roberto Emparan ICREA & U. Barcelona Black Holes, Fluids, and their Instabilities Roberto Emparan ICREA & U. Barcelona Black Holes are like Fluids Black Holes are like Fluids What does this mean? What is it good for? Black Holes are like

More information

Physics 8.861: Advanced Topics in Superfluidity

Physics 8.861: Advanced Topics in Superfluidity Physics 8.861: Advanced Topics in Superfluidity My plan for this course is quite different from the published course description. I will be focusing on a very particular circle of ideas around the concepts:

More information

Expanding plasmas from Anti de Sitter black holes

Expanding plasmas from Anti de Sitter black holes Expanding plasmas from Anti de Sitter black holes (based on 1609.07116 [hep-th]) Giancarlo Camilo University of São Paulo Giancarlo Camilo (IFUSP) Expanding plasmas from AdS black holes 1 / 15 Objective

More information

HUGS Dualities and QCD. Josh Erlich LECTURE 5

HUGS Dualities and QCD. Josh Erlich LECTURE 5 HUGS 2012 Dualities and QCD Josh Erlich LECTURE 5 Outline The meaning of duality in physics (Example: The Ising model) Quark-Hadron duality (experimental and theoretical evidence) Electric-Magnetic Duality

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

Holographic Mean-Field Theory for Baryon Many-Body Systems

Holographic Mean-Field Theory for Baryon Many-Body Systems Holographic Mean-Field Theory for Baryon Many-Body Systems Masayasu Harada (Nagoya University) @ SCGT12 (December 7, 2012, Nagoya, Japan) based on MH, S. Nakamura and S. Takemoto, Phys. Rev. D 84, 036010

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

arxiv: v1 [cond-mat.supr-con] 25 Jul 2017

arxiv: v1 [cond-mat.supr-con] 25 Jul 2017 Non-local equation for the superconducting gap parameter S. Simonucci and G. Calvanese Strinati Division of Physics, School of Science and Technology Università di Camerino, 63 Camerino (MC), Italy and

More information

Holographic Second Laws of Black Hole Thermodynamics

Holographic Second Laws of Black Hole Thermodynamics Holographic Second Laws of Black Hole Thermodynamics Federico Galli Gauge/Gravity Duality 018, Würzburg, 31 July 018 Based on arxiv: 1803.03633 with A. Bernamonti, R. Myers and J. Oppenheim Second Law

More information

Holographic entanglement entropy

Holographic entanglement entropy Holographic entanglement entropy Mohsen Alishahiha School of physics, Institute for Research in Fundamental Sciences (IPM) 21th Spring Physics Conference, 1393 1 Plan of the talk Entanglement entropy Holography

More information

TASI lectures: Holography for strongly coupled media

TASI lectures: Holography for strongly coupled media TASI lectures: Holography for strongly coupled media Dam T. Son Below is only the skeleton of the lectures, containing the most important formulas. I. INTRODUCTION One of the main themes of this school

More information

Non-relativistic AdS/CFT

Non-relativistic AdS/CFT Non-relativistic AdS/CFT Christopher Herzog Princeton October 2008 References D. T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78,

More information

Holographic Model of Cosmic (P)reheating

Holographic Model of Cosmic (P)reheating Holographic Model of Cosmic (P)reheating Yi-Fu Cai 蔡一夫 University of Science & Technology of China New perspectives on Cosmology, APCTP, Feb 13 th 2017 In collaboration with S. Lin, J. Liu & J. Sun, Based

More information

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam)

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam) The holographic approach to critical points Johannes Oberreuter (University of Amsterdam) Scale invariance power spectrum of CMB P s (k) / k n s 1 Lambda archive WMAP We need to understand critical points!

More information

A SOLITON MENAGERIE IN ADS Mukund Rangamani Durham University

A SOLITON MENAGERIE IN ADS Mukund Rangamani Durham University A SOLITON MENAGERIE IN ADS Mukund Rangamani Durham University Holography at finite density APC, Paris Nov 17, 011 Simon Gentle, Benjamin Withers, MR Surprises in AdS Gravity in AdS shows some interesting

More information