8. Genetic Diversity

Size: px
Start display at page:

Download "8. Genetic Diversity"

Transcription

1 8. Genetic Diversity Many ways to measure the diversity of a population: For any measure of diversity, we expect an estimate to be: when only one kind of object is present; low when >1 kind of objects are present, one of which is dominant in abundance; high when >1 kind of objects are present, in roughly equal abundance; maximum value when >1 kind of objects are present in equal numbers. For genetic diversity, the objects are alleles; expect that the greater the frequency of heterozygotes, the more genetically diverse the population; should get maximum diversity when all alleles are present in equal frequencies. So let s use the frequency of heterozygotes as a measure of genetic diversity; can use either the observed relative frequencies of heterozygotes, or that frequency expected under the HWC model. Q: At what frequency of p, q will the frequency of heterozygotes be the highest, under HWC conditions (random mating, genetic equilibrium)? can assign various values to p ( range 1) and find expected frequency of heterozygotes: - plot pq vs. p to estimate maximum; p q pq

2 8. Genetic diversity Exp freq of heterozygotes (pq) Allele frequency (p) some simple calculus: let V = pq (frequency of heterozygotes); - find derivative of function V with respect to p; - set to zero and solve for p to find arg(maximum); V = pq = p( 1 p) = p p V = 4 p = p 4p = p = 5. q = 5. Another derivation of genetic diversity, based on frequencies of alleles rather than genotypes: Distributions are described by descriptive statistics, including mean and variance: mean is center of density, = expected value; discrete distribution: calculate mean as weighted average of X, where weights are frequencies; For genotype distributions: X = number of alleles (,1 ); weights = relative frequencies, sum to 1:

3 8. Genetic diversity 3 X = w X i w i

4 8. Genetic diversity 4 Assuming HW conditions: Genotype Frequency (weight) X = number of A 1 s A 1 A 1 p A 1 A pq 1 A A q µ = E( x) = ( p ) + 1( pq) + ( q ) = p + pq = p( p + q) = p That is, the mean number of alleles = allele frequency. In general, the mean of a binomial distribution is np, where n = for diploid genotypes. [ ] σ = E ( x µ ) = E( x ) µ E( x ) = ( p ) + 1 ( pq) + ( q ) = 4p + pq = p( p + q) = p( 1+ p) σ = E( x ) µ = p( 1+ p) ( p) = p + p 4p = p( 1 p) = pq

5 8. Genetic diversity 5 Thus we can define geneotypic variance as the frequency of heterozygotes in population. but note that: the frequencies of all homozygote and heterozygote frequencies must sum to one, since we are expressing them as relative frequencies; for homozygote frequency of allele i is P i ; therefore, for more than alleles, we can more conviently calculate the total heterozygote frequeny as one minus the total frequency of homogygotes: H = 1 k P i i= 1 for k alleles. this measure is known as the heterozygosity of a sample, which is used directly as a measure of genetic diversity; in general, the variance of a binomial distribution is npq, where n = ; but the expression holds whether or not the population is in HWC equilibrium. One final note about allelic variance: it is common to expresses allelic variance in terms of the relative frequency of alleles per genotype, rather than the number of alleles per genotype (as derived above); in this case the actual numeric value of the allelic variance is H/4, where H is the heterozygosity measure above.

6 8. Genetic diversity 6 Summary: Measures of Genetic Variability Genotype HW Frequency Number of A alleles Frequency of A alleles A 1 A 1 p A 1 A pq 1 ½ A A q 1 1. Genotypic variance, = heterozygosity (H =σ A ) = variance in the number (absolute frequency) of alleles of a particular kind (e.g., A ) among genotypes, weighted by the genotype frequencies. = variance of the binomial distribution, =pq. useful because, under Hardy-Weinberg conditions, it is equal to the relative frequency of heterozygotes in the population.. Allelic variance (σ q ) = variance in the relative frequency of alleles of a particular kind (e.g., A ) among genotypes, weighted by the genotype frequencies. useful because it is based directly on allele frequencies and can be decomposed into withinpopulation and among-population components. Heterozygosity and allelic variance are linearly proportional to one another, indicating that they are equivalent measures of genetic variability. Both attain their maximum values when p = q =.5, in which case maximum heterozygosity =.5 and maximum allelic variance = Heterozygosity Allele frequency Variance in allele frequency Variance in allele frequency Allele frequency Heterozygosity

7 8. Genetic diversity 7 Importance of Mendel s laws and the Hardy-Weinberg-Castle principle as null models: 1) Mendel s model predicts: that genotypes will be randomly assorted across generations; i.e., that variation within populations will be re-expressed across time. ) the Hardy-Weinberg-Castle model predicts: that allele frequencies will remain constant across generations (time) unless some biological process ( force ) acts to change them; i.e., that populations at rest are in genetic equilibrium. When populations are in genetic equilibrium: 1) allele frequencies remain constant across time; ) genetic diversity remains constant across time. Thus evolution is the result of genetic disequilibrium. Biological processes that can change allele frequencies: mutation assortative mating gene flow genetic drift selection (differentiat reproduction by different genotypes)

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift:

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift: 9. Genetic Drift Genetic drift is the alteration of gene frequencies due to sampling variation from one generation to the next. It operates to some degree in all finite populations, but can be significant

More information

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation?

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation? October 12, 2009 Bioe 109 Fall 2009 Lecture 8 Microevolution 1 - selection The Hardy-Weinberg-Castle Equilibrium - consider a single locus with two alleles A 1 and A 2. - three genotypes are thus possible:

More information

LECTURE # How does one test whether a population is in the HW equilibrium? (i) try the following example: Genotype Observed AA 50 Aa 0 aa 50

LECTURE # How does one test whether a population is in the HW equilibrium? (i) try the following example: Genotype Observed AA 50 Aa 0 aa 50 LECTURE #10 A. The Hardy-Weinberg Equilibrium 1. From the definitions of p and q, and of p 2, 2pq, and q 2, an equilibrium is indicated (p + q) 2 = p 2 + 2pq + q 2 : if p and q remain constant, and if

More information

Genetics and Natural Selection

Genetics and Natural Selection Genetics and Natural Selection Darwin did not have an understanding of the mechanisms of inheritance and thus did not understand how natural selection would alter the patterns of inheritance in a population.

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution 36-149 The Tree of Life Christopher R. Genovese Department of Statistics 132H Baker Hall x8-7836 http://www.stat.cmu.edu/ ~ genovese/. Plan 1. Two More Generations 2. The Hardy-Weinberg

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

Problems for 3505 (2011)

Problems for 3505 (2011) Problems for 505 (2011) 1. In the simplex of genotype distributions x + y + z = 1, for two alleles, the Hardy- Weinberg distributions x = p 2, y = 2pq, z = q 2 (p + q = 1) are characterized by y 2 = 4xz.

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species Population Genetics and Speciation Table of Contents Section 1 Genetic Equilibrium Section 2 Disruption of Genetic Equilibrium Section 3 Formation of Species Section 1 Genetic Equilibrium Objectives Identify

More information

Lecture 1 Hardy-Weinberg equilibrium and key forces affecting gene frequency

Lecture 1 Hardy-Weinberg equilibrium and key forces affecting gene frequency Lecture 1 Hardy-Weinberg equilibrium and key forces affecting gene frequency Bruce Walsh lecture notes Introduction to Quantitative Genetics SISG, Seattle 16 18 July 2018 1 Outline Genetics of complex

More information

Population Genetics I. Bio

Population Genetics I. Bio Population Genetics I. Bio5488-2018 Don Conrad dconrad@genetics.wustl.edu Why study population genetics? Functional Inference Demographic inference: History of mankind is written in our DNA. We can learn

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

Population genetics snippets for genepop

Population genetics snippets for genepop Population genetics snippets for genepop Peter Beerli August 0, 205 Contents 0.Basics 0.2Exact test 2 0.Fixation indices 4 0.4Isolation by Distance 5 0.5Further Reading 8 0.6References 8 0.7Disclaimer

More information

Selection Page 1 sur 11. Atlas of Genetics and Cytogenetics in Oncology and Haematology SELECTION

Selection Page 1 sur 11. Atlas of Genetics and Cytogenetics in Oncology and Haematology SELECTION Selection Page 1 sur 11 Atlas of Genetics and Cytogenetics in Oncology and Haematology SELECTION * I- Introduction II- Modeling and selective values III- Basic model IV- Equation of the recurrence of allele

More information

AEC 550 Conservation Genetics Lecture #2 Probability, Random mating, HW Expectations, & Genetic Diversity,

AEC 550 Conservation Genetics Lecture #2 Probability, Random mating, HW Expectations, & Genetic Diversity, AEC 550 Conservation Genetics Lecture #2 Probability, Random mating, HW Expectations, & Genetic Diversity, Today: Review Probability in Populatin Genetics Review basic statistics Population Definition

More information

Population Genetics. with implications for Linkage Disequilibrium. Chiara Sabatti, Human Genetics 6357a Gonda

Population Genetics. with implications for Linkage Disequilibrium. Chiara Sabatti, Human Genetics 6357a Gonda 1 Population Genetics with implications for Linkage Disequilibrium Chiara Sabatti, Human Genetics 6357a Gonda csabatti@mednet.ucla.edu 2 Hardy-Weinberg Hypotheses: infinite populations; no inbreeding;

More information

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called.

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called. EVOLUTION UNIT Name Read Chapters 1.3, 20, 21, 22, 24.1 and 35.9 and complete the following. Chapter 1.3 Review from The Science of Biology 1. Discuss the influences, experiences and observations that

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 009 Population genetics Outline of lectures 3-6 1. We want to know what theory says about the reproduction of genotypes in a population. This results

More information

Evolution Module. 6.2 Selection (Revised) Bob Gardner and Lev Yampolski

Evolution Module. 6.2 Selection (Revised) Bob Gardner and Lev Yampolski Evolution Module 6.2 Selection (Revised) Bob Gardner and Lev Yampolski Integrative Biology and Statistics (BIOL 1810) Fall 2007 1 FITNESS VALUES Note. We start our quantitative exploration of selection

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 007 Population genetics Outline of lectures 3-6 1. We want to know what theory says about the reproduction of genotypes in a population. This results

More information

Introduction to Natural Selection. Ryan Hernandez Tim O Connor

Introduction to Natural Selection. Ryan Hernandez Tim O Connor Introduction to Natural Selection Ryan Hernandez Tim O Connor 1 Goals Learn about the population genetics of natural selection How to write a simple simulation with natural selection 2 Basic Biology genome

More information

1.3 Forward Kolmogorov equation

1.3 Forward Kolmogorov equation 1.3 Forward Kolmogorov equation Let us again start with the Master equation, for a system where the states can be ordered along a line, such as the previous examples with population size n = 0, 1, 2,.

More information

Big Idea #1: The process of evolution drives the diversity and unity of life

Big Idea #1: The process of evolution drives the diversity and unity of life BIG IDEA! Big Idea #1: The process of evolution drives the diversity and unity of life Key Terms for this section: emigration phenotype adaptation evolution phylogenetic tree adaptive radiation fertility

More information

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc. Enduring Understanding: Change in the genetic makeup of a population over time is evolution. Objective: You will be able to identify the key concepts of evolution theory Do Now: Read the enduring understanding

More information

STAT 536: Migration. Karin S. Dorman. October 3, Department of Statistics Iowa State University

STAT 536: Migration. Karin S. Dorman. October 3, Department of Statistics Iowa State University STAT 536: Migration Karin S. Dorman Department of Statistics Iowa State University October 3, 2006 Migration Introduction Migration is the movement of individuals between populations. Until now we have

More information

Neutral Theory of Molecular Evolution

Neutral Theory of Molecular Evolution Neutral Theory of Molecular Evolution Kimura Nature (968) 7:64-66 King and Jukes Science (969) 64:788-798 (Non-Darwinian Evolution) Neutral Theory of Molecular Evolution Describes the source of variation

More information

A. Correct! Genetically a female is XX, and has 22 pairs of autosomes.

A. Correct! Genetically a female is XX, and has 22 pairs of autosomes. MCAT Biology - Problem Drill 08: Meiosis and Genetic Variability Question No. 1 of 10 1. A human female has pairs of autosomes and her sex chromosomes are. Question #01 (A) 22, XX. (B) 23, X. (C) 23, XX.

More information

Heterozygosity is variance. How Drift Affects Heterozygosity. Decay of heterozygosity in Buri s two experiments

Heterozygosity is variance. How Drift Affects Heterozygosity. Decay of heterozygosity in Buri s two experiments eterozygosity is variance ow Drift Affects eterozygosity Alan R Rogers September 17, 2014 Assumptions Random mating Allele A has frequency p N diploid individuals Let X 0,1, or 2) be the number of copies

More information

Segregation versus mitotic recombination APPENDIX

Segregation versus mitotic recombination APPENDIX APPENDIX Waiting time until the first successful mutation The first time lag, T 1, is the waiting time until the first successful mutant appears, creating an Aa individual within a population composed

More information

Case Studies in Ecology and Evolution

Case Studies in Ecology and Evolution 3 Non-random mating, Inbreeding and Population Structure. Jewelweed, Impatiens capensis, is a common woodland flower in the Eastern US. You may have seen the swollen seed pods that explosively pop when

More information

Microevolution 2 mutation & migration

Microevolution 2 mutation & migration Microevolution 2 mutation & migration Assumptions of Hardy-Weinberg equilibrium 1. Mating is random 2. Population size is infinite (i.e., no genetic drift) 3. No migration 4. No mutation 5. No selection

More information

Statistical Genetics I: STAT/BIOST 550 Spring Quarter, 2014

Statistical Genetics I: STAT/BIOST 550 Spring Quarter, 2014 Overview - 1 Statistical Genetics I: STAT/BIOST 550 Spring Quarter, 2014 Elizabeth Thompson University of Washington Seattle, WA, USA MWF 8:30-9:20; THO 211 Web page: www.stat.washington.edu/ thompson/stat550/

More information

(Write your name on every page. One point will be deducted for every page without your name!)

(Write your name on every page. One point will be deducted for every page without your name!) POPULATION GENETICS AND MICROEVOLUTIONARY THEORY FINAL EXAMINATION (Write your name on every page. One point will be deducted for every page without your name!) 1. Briefly define (5 points each): a) Average

More information

A consideration of the chi-square test of Hardy-Weinberg equilibrium in a non-multinomial situation

A consideration of the chi-square test of Hardy-Weinberg equilibrium in a non-multinomial situation Ann. Hum. Genet., Lond. (1975), 39, 141 Printed in Great Britain 141 A consideration of the chi-square test of Hardy-Weinberg equilibrium in a non-multinomial situation BY CHARLES F. SING AND EDWARD D.

More information

POPULATIONS. p t+1 = p t (1-u) + q t (v) p t+1 = p t (1-u) + (1-p t ) (v) Phenotypic Evolution: Process HOW DOES MUTATION CHANGE ALLELE FREQUENCIES?

POPULATIONS. p t+1 = p t (1-u) + q t (v) p t+1 = p t (1-u) + (1-p t ) (v) Phenotypic Evolution: Process HOW DOES MUTATION CHANGE ALLELE FREQUENCIES? Phenotypic Evolution: Process MUTATION SELECTION + POPULATIONS +/ MIGRATION DRIFT HOW DOES MUTATION CHANGE ALLELE FREQUENCIES? Assume: a single autosomal locus with 2 alleles. Frequency (A) = p Frequency

More information

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM Life Cycles, Meiosis and Genetic Variability iclicker: 1. A chromosome just before mitosis contains two double stranded DNA molecules. 2. This replicated chromosome contains DNA from only one of your parents

More information

Darwinian Selection. Chapter 6 Natural Selection Basics 3/25/13. v evolution vs. natural selection? v evolution. v natural selection

Darwinian Selection. Chapter 6 Natural Selection Basics 3/25/13. v evolution vs. natural selection? v evolution. v natural selection Chapter 6 Natural Selection Basics Natural Selection Haploid Diploid, Sexual Results for a Diallelic Locus Fisher s Fundamental Theorem Darwinian Selection v evolution vs. natural selection? v evolution

More information

Study of similarities and differences in body plans of major groups Puzzling patterns:

Study of similarities and differences in body plans of major groups Puzzling patterns: Processes of Evolution Evolutionary Theories Widely used to interpret the past and present, and even to predict the future Reveal connections between the geological record, fossil record, and organismal

More information

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics Mechanisms of Evolution Microevolution Population Genetics Key Concepts 23.1: Population genetics provides a foundation for studying evolution 23.2: Mutation and sexual recombination produce the variation

More information

Lecture 2: Introduction to Quantitative Genetics

Lecture 2: Introduction to Quantitative Genetics Lecture 2: Introduction to Quantitative Genetics Bruce Walsh lecture notes Introduction to Quantitative Genetics SISG, Seattle 16 18 July 2018 1 Basic model of Quantitative Genetics Phenotypic value --

More information

Lecture 2. Basic Population and Quantitative Genetics

Lecture 2. Basic Population and Quantitative Genetics Lecture Basic Population and Quantitative Genetics Bruce Walsh. Aug 003. Nordic Summer Course Allele and Genotype Frequencies The frequency p i for allele A i is just the frequency of A i A i homozygotes

More information

EXERCISES FOR CHAPTER 3. Exercise 3.2. Why is the random mating theorem so important?

EXERCISES FOR CHAPTER 3. Exercise 3.2. Why is the random mating theorem so important? Statistical Genetics Agronomy 65 W. E. Nyquist March 004 EXERCISES FOR CHAPTER 3 Exercise 3.. a. Define random mating. b. Discuss what random mating as defined in (a) above means in a single infinite population

More information

Evolutionary Genetics Midterm 2008

Evolutionary Genetics Midterm 2008 Student # Signature The Rules: (1) Before you start, make sure you ve got all six pages of the exam, and write your name legibly on each page. P1: /10 P2: /10 P3: /12 P4: /18 P5: /23 P6: /12 TOT: /85 (2)

More information

Population Structure

Population Structure Ch 4: Population Subdivision Population Structure v most natural populations exist across a landscape (or seascape) that is more or less divided into areas of suitable habitat v to the extent that populations

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 013 Population genetics Outline of lectures 3-6 1. We ant to kno hat theory says about the reproduction of genotypes in a population. This results

More information

4. In light of evolution do individuals evolve or do populations evolve? Explain your answer.

4. In light of evolution do individuals evolve or do populations evolve? Explain your answer. Chapter 22-26 Homework Questions Chapter 22 - Descent with Modification: A Darwinian View of Life 1. Why was Darwin s theory so controversial? Also, what is the value of a theory in science? 2. List and

More information

Notes on Population Genetics

Notes on Population Genetics Notes on Population Genetics Graham Coop 1 1 Department of Evolution and Ecology & Center for Population Biology, University of California, Davis. To whom correspondence should be addressed: gmcoop@ucdavis.edu

More information

1.A- Natural Selection

1.A- Natural Selection 1.A- Natural Selection Big Idea 1: The process of evolution drives the diversity and unity of life. EU 1.A- Evolution is change in the genetic makeup of a population over time. EU 1.B- Organisms are linked

More information

Evolution of Populations

Evolution of Populations Evolution of Populations Gene Pools 1. All of the genes in a population - Contains 2 or more alleles (forms of a gene) for each trait 2. Relative frequencies - # of times an allele occurs in a gene pool

More information

1 Errors in mitosis and meiosis can result in chromosomal abnormalities.

1 Errors in mitosis and meiosis can result in chromosomal abnormalities. Slide 1 / 21 1 Errors in mitosis and meiosis can result in chromosomal abnormalities. a. Identify and describe a common chromosomal mutation. Slide 2 / 21 Errors in mitosis and meiosis can result in chromosomal

More information

Genetical theory of natural selection

Genetical theory of natural selection Reminders Genetical theory of natural selection Chapter 12 Natural selection evolution Natural selection evolution by natural selection Natural selection can have no effect unless phenotypes differ in

More information

The theory of evolution continues to be refined as scientists learn new information.

The theory of evolution continues to be refined as scientists learn new information. Section 3: The theory of evolution continues to be refined as scientists learn new information. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the conditions of the

More information

Population Genetics 7: Genetic Drift

Population Genetics 7: Genetic Drift Population Genetics 7: Genetic Drift Sampling error Assume a fair coin with p = ½: If you sample many times the most likely single outcome = ½ heads. The overall most likely outcome ½ heads n P = 2 k (

More information

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 CP: CHAPTER 6, Sections 1-6; CHAPTER 7, Sections 1-4; HN: CHAPTER 11, Section 1-5 Standard B-4: The student will demonstrate an understanding of the molecular

More information

NOTES CH 17 Evolution of. Populations

NOTES CH 17 Evolution of. Populations NOTES CH 17 Evolution of Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Populations 17.1 Genes & Variation Darwin

More information

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics:

Homework Assignment, Evolutionary Systems Biology, Spring Homework Part I: Phylogenetics: Homework Assignment, Evolutionary Systems Biology, Spring 2009. Homework Part I: Phylogenetics: Introduction. The objective of this assignment is to understand the basics of phylogenetic relationships

More information

OPTIMALITY AND STABILITY OF SYMMETRIC EVOLUTIONARY GAMES WITH APPLICATIONS IN GENETIC SELECTION. (Communicated by Yang Kuang)

OPTIMALITY AND STABILITY OF SYMMETRIC EVOLUTIONARY GAMES WITH APPLICATIONS IN GENETIC SELECTION. (Communicated by Yang Kuang) MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2015.12.503 AND ENGINEERING Volume 12, Number 3, June 2015 pp. 503 523 OPTIMALITY AND STABILITY OF SYMMETRIC EVOLUTIONARY GAMES WITH APPLICATIONS IN GENETIC SELECTION

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

opulation genetics undamentals for SNP datasets

opulation genetics undamentals for SNP datasets opulation genetics undamentals for SNP datasets with crocodiles) Sam Banks Charles Darwin University sam.banks@cdu.edu.au I ve got a SNP genotype dataset, now what? Do my data meet the requirements of

More information

The neutral theory of molecular evolution

The neutral theory of molecular evolution The neutral theory of molecular evolution Introduction I didn t make a big deal of it in what we just went over, but in deriving the Jukes-Cantor equation I used the phrase substitution rate instead of

More information

Breeding Values and Inbreeding. Breeding Values and Inbreeding

Breeding Values and Inbreeding. Breeding Values and Inbreeding Breeding Values and Inbreeding Genotypic Values For the bi-allelic single locus case, we previously defined the mean genotypic (or equivalently the mean phenotypic values) to be a if genotype is A 2 A

More information

Introduction to population genetics & evolution

Introduction to population genetics & evolution Introduction to population genetics & evolution Course Organization Exam dates: Feb 19 March 1st Has everybody registered? Did you get the email with the exam schedule Summer seminar: Hot topics in Bioinformatics

More information

URN MODELS: the Ewens Sampling Lemma

URN MODELS: the Ewens Sampling Lemma Department of Computer Science Brown University, Providence sorin@cs.brown.edu October 3, 2014 1 2 3 4 Mutation Mutation: typical values for parameters Equilibrium Probability of fixation 5 6 Ewens Sampling

More information

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation Evolution Evolution Chapters 22-25 Changes in populations, species, or groups of species. Variances of the frequency of heritable traits that appear from one generation to the next. 2 Areas of Evolutionary

More information

List the five conditions that can disturb genetic equilibrium in a population.(10)

List the five conditions that can disturb genetic equilibrium in a population.(10) List the five conditions that can disturb genetic equilibrium in a population.(10) The five conditions are non-random mating, small population size, immigration or emigration, mutations, and natural selection.

More information

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur?

1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur? 1. T/F: Genetic variation leads to evolution. 2. What is genetic equilibrium? 3. What is speciation? How does it occur? Warm UP Notes on Environmental Factor Concept Map Brief 6 questions and Concept Map

More information

Lecture 19. Long Term Selection: Topics Selection limits. Avoidance of inbreeding New Mutations

Lecture 19. Long Term Selection: Topics Selection limits. Avoidance of inbreeding New Mutations Lecture 19 Long Term Selection: Topics Selection limits Avoidance of inbreeding New Mutations 1 Roberson (1960) Limits of Selection For a single gene selective advantage s, the chance of fixation is a

More information

Natural Selection results in increase in one (or more) genotypes relative to other genotypes.

Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Fitness - The fitness of a genotype is the average per capita lifetime contribution of individuals of that

More information

Functional divergence 1: FFTNS and Shifting balance theory

Functional divergence 1: FFTNS and Shifting balance theory Functional divergence 1: FFTNS and Shifting balance theory There is no conflict between neutralists and selectionists on the role of natural selection: Natural selection is the only explanation for adaptation

More information

Educational Items Section

Educational Items Section Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Educational Items Section Hardy-Weinberg model Robert Kalmes, Jean-Loup Huret Institut de Recherche sur

More information

Population Genetics & Evolution

Population Genetics & Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

Ecology 302: Lecture II. Evolution.

Ecology 302: Lecture II. Evolution. Ecology 302: Lecture II. Evolution. (Readings: Ricklefs, Ch.6,13. Gould & Lewontin, "Spandrels"; Johnston, Importance of Darwin) Synthetic theory of evolution. Mutation is the source of heritable variation.

More information

D. Incorrect! That is what a phylogenetic tree intends to depict.

D. Incorrect! That is what a phylogenetic tree intends to depict. Genetics - Problem Drill 24: Evolutionary Genetics No. 1 of 10 1. A phylogenetic tree gives all of the following information except for. (A) DNA sequence homology among species. (B) Protein sequence similarity

More information

Package popgen. R topics documented: February 25, Version 0.2. Date Title Population genetic simulations & numerical analysis

Package popgen. R topics documented: February 25, Version 0.2. Date Title Population genetic simulations & numerical analysis Package popgen February 25, 2013 Version 0.2 Date 2013-2-25 Title Population genetic simulations & numerical analysis Author Liam J. Revell Maintainer Liam J. Revell Depends R (>=

More information

Bayesian analysis of the Hardy-Weinberg equilibrium model

Bayesian analysis of the Hardy-Weinberg equilibrium model Bayesian analysis of the Hardy-Weinberg equilibrium model Eduardo Gutiérrez Peña Department of Probability and Statistics IIMAS, UNAM 6 April, 2010 Outline Statistical Inference 1 Statistical Inference

More information

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids.

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids. Name: Date: Theory of Evolution Evolution: Change in a over a period of time Explains the great of organisms Major points of Origin of Species Descent with Modification o All organisms are related through

More information

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population)

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population) POPULATION GENETICS NOTES Gene Pool The combined genetic material for all the members of a population. (all the genes in a population) Allele Frequency The number of times a specific allele occurs in a

More information

STUDY GUIDE SECTION 16-1 Genetic Equilibrium

STUDY GUIDE SECTION 16-1 Genetic Equilibrium STUDY GUIDE SECTION 16-1 Genetic Equilibrium Name Period Date Multiple Choice-Write the correct letter in the blank. 1. The smallest unit in which evolution occurs is a. an individual organism. c. a species

More information

Derivation of Itô SDE and Relationship to ODE and CTMC Models

Derivation of Itô SDE and Relationship to ODE and CTMC Models Derivation of Itô SDE and Relationship to ODE and CTMC Models Biomathematics II April 23, 2015 Linda J. S. Allen Texas Tech University TTU 1 Euler-Maruyama Method for Numerical Solution of an Itô SDE dx(t)

More information

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont

Evolution and the Genetics of Structured populations. Charles Goodnight Department of Biology University of Vermont Evolution and the Genetics of Structured populations Charles Goodnight Department of Biology University of Vermont Outline What is Evolution Evolution and the Reductionist Approach Fisher/Wright Controversy

More information

Equilibrium and Extinction In a Trisexual Diploid Mating System

Equilibrium and Extinction In a Trisexual Diploid Mating System Equilibrium and Extinction In a Trisexual Diploid Mating System Erik Buehler 1, Sanjoy Das 1, Jack F. Cully 2 1 Electrical and Computer Engineering Kansas State University Manhattan, KS 6656 2 Division

More information

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological Mechanisms of Evolution Honors Biology 2012 1 Adaptations Behavioral Structural Biochemical Physiological 2 Old Ideas about Evolution Aristotle (viewed species perfect and unchanging) Lamarck suggested

More information

Chapter 6 Linkage Disequilibrium & Gene Mapping (Recombination)

Chapter 6 Linkage Disequilibrium & Gene Mapping (Recombination) 12/5/14 Chapter 6 Linkage Disequilibrium & Gene Mapping (Recombination) Linkage Disequilibrium Genealogical Interpretation of LD Association Mapping 1 Linkage and Recombination v linkage equilibrium ²

More information

Tutorial on Theoretical Population Genetics

Tutorial on Theoretical Population Genetics Tutorial on Theoretical Population Genetics Joe Felsenstein Department of Genome Sciences and Department of Biology University of Washington, Seattle Tutorial on Theoretical Population Genetics p.1/40

More information

6.6 Meiosis and Genetic Variation. KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity.

6.6 Meiosis and Genetic Variation. KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity. 6.6 Meiosis and Genetic Variation KEY CONCEPT Independent assortment and crossing over during meiosis result in genetic diversity. 6.6 Meiosis and Genetic Variation! Sexual reproduction creates unique

More information

Introduction to Wright-Fisher Simulations. Ryan Hernandez

Introduction to Wright-Fisher Simulations. Ryan Hernandez Introduction to Wright-Fisher Simulations Ryan Hernandez 1 Goals Simulate the standard neutral model, demographic effects, and natural selection Start with single sites, and build in multiple sites 2 Hardy-Weinberg

More information

STAT 536: Genetic Statistics

STAT 536: Genetic Statistics STAT 536: Genetic Statistics Frequency Estimation Karin S. Dorman Department of Statistics Iowa State University August 28, 2006 Fundamental rules of genetics Law of Segregation a diploid parent is equally

More information

2. the variants differ with respect to their expected abilities to survive and reproduce in the present environment (S 0), then

2. the variants differ with respect to their expected abilities to survive and reproduce in the present environment (S 0), then Key ideas from lecture 1. Evolution by Natural Selection as a syllogism* (Endler 1986) 1. If there is heritable variation (h 2 >0), and 2. the variants differ with respect to their expected abilities to

More information

Lecture 4: Allelic Effects and Genetic Variances. Bruce Walsh lecture notes Tucson Winter Institute 7-9 Jan 2013

Lecture 4: Allelic Effects and Genetic Variances. Bruce Walsh lecture notes Tucson Winter Institute 7-9 Jan 2013 Lecture 4: Allelic Effects and Genetic Variances Bruce Walsh lecture notes Tucson Winter Institute 7-9 Jan 2013 1 Basic model of Quantitative Genetics Phenotypic value -- we will occasionally also use

More information

NEUTRAL EVOLUTION IN ONE- AND TWO-LOCUS SYSTEMS

NEUTRAL EVOLUTION IN ONE- AND TWO-LOCUS SYSTEMS æ 2 NEUTRAL EVOLUTION IN ONE- AND TWO-LOCUS SYSTEMS 19 May 2014 Variations neither useful nor injurious would not be affected by natural selection, and would be left either a fluctuating element, as perhaps

More information

Biology 20 Evolution

Biology 20 Evolution Biology 20 Evolution Evolution: Modern synthesis: Individuals: Lamarck: Use and disuse: Inheritance of Acquired Traits: Darwin: Travelled: Galapagos Islands: What was the name of Darwin s book, which he

More information

4. Populationsgenetik

4. Populationsgenetik 4. Populationsgenetik Populations are never uniform, but individuals differ genetically and phenotypically. Population genetics is concerned with the study of the genetic composition of populations and

More information

THEORETICAL EVOLUTIONARY GENETICS JOSEPH FELSENSTEIN

THEORETICAL EVOLUTIONARY GENETICS JOSEPH FELSENSTEIN THEORETICAL EVOLUTIONARY GENETICS JOSEPH FELSENSTEIN Theoretical Evolutionary Genetics GENOME 562 Joseph Felsenstein Department of Genome Sciences University of Washington Box 357730 Seattle, Washington

More information

Processes of Evolution

Processes of Evolution Processes of Evolution Microevolution Processes of Microevolution How Species Arise Macroevolution Microevolution Population: localized group of individuals belonging to the same species with the potential

More information

The genome encodes biology as patterns or motifs. We search the genome for biologically important patterns.

The genome encodes biology as patterns or motifs. We search the genome for biologically important patterns. Curriculum, fourth lecture: Niels Richard Hansen November 30, 2011 NRH: Handout pages 1-8 (NRH: Sections 2.1-2.5) Keywords: binomial distribution, dice games, discrete probability distributions, geometric

More information

Microevolution (Ch 16) Test Bank

Microevolution (Ch 16) Test Bank Microevolution (Ch 16) Test Bank Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements describes what all members

More information

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2.

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2. NCEA Level 2 Biology (91157) 2018 page 1 of 6 Assessment Schedule 2018 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Q Expected Coverage Achievement Merit Excellence

More information

Evolution PCB4674 Midterm exam2 Mar

Evolution PCB4674 Midterm exam2 Mar Evolution PCB4674 Midterm exam2 Mar 22 2005 Name: ID: For each multiple choice question select the single est answer. Answer questions 1 to 20 on your scantron sheet. Answer the remaining questions in

More information

AP Biology Concepts and Connections. Reading Guide. Your Name: ! Chapter 13 How Populations Evolve. Key Terms

AP Biology Concepts and Connections. Reading Guide. Your Name: ! Chapter 13 How Populations Evolve. Key Terms AP Biology Concepts and Connections Chapter 13 How Populations Evolve Reading Guide Key Terms adaptation fossils microevolution artificial selection founder effect molecular biology balancing selection

More information