Long-Short Term Memory

Size: px
Start display at page:

Download "Long-Short Term Memory"

Transcription

1 Long-Short Term Memory Sepp Hochreiter, Jürgen Schmidhuber Presented by Derek Jones

2 Table of Contents 1. Introduction 2. Previous Work 3. Issues in Learning Long-Term Dependencies 4. Constant Error Flow 5. Long-Short Term Memory 6. Experiments 1

3 Motivation The Problem: Algorithms such as Back-propagation through time (BPTT) and Real-time recurrent learning (RTRL) suffer from vanishing or exploding gradients as the gradients are passed backwards through time Vanishing gradient signals can make the learning of long time dependencies infeasible, requiring prohibitively large amounts of computation time to train the network Exploding gradient signals may cause the network to experience oscillating weight updates and therefore preventing the optimization procedure from making substantial progress 2

4 Motivation The Solution: A novel memory cell architecture, Long short-term memory (LSTM) LSTM is designed to overcome the issues of vanishing and or exploding gradients that are backpropagated upon differentiating the error signal w.r.t. network parameters, through time LSTM networks are able to bridge arbitrarily large time lags, even in the presence of noisy inputs 3

5 Table of Contents 1. Introduction 2. Previous Work 3. Issues in Learning Long-Term Dependencies 4. Constant Error Flow 5. Long-Short Term Memory 6. Experiments 4

6 Previous Work Second order nets: Use multiplicative units to prevent error flow from unwanted perturbations. Does not solve long time lag problems, update cost of O(W 2 ). Simple Weight Guessing: Solves many simplistic problems. Becomes infeasible for realistic problems that may involve large numbers of parameters or high weight precision. Adaptive sequence chunkers: have the capacity to bridge arbitrarily long time lags given local predictability across time lag inducing subsequences. Deteriorating performance in presence of input noise. 5

7 Table of Contents 1. Introduction 2. Previous Work 3. Issues in Learning Long-Term Dependencies 4. Constant Error Flow 5. Long-Short Term Memory 6. Experiments 6

8 Issues in Learning Long-Term Dependencies Basic Problem: gradients backpropagated over many stages tend to either vanish or explode 7

9 Issues in Learning Long-Term Dependencies Consider a simple RNN with no input layer x or activation h (t) = W T h (t 1) h (t) = (W t ) T h (0) h (t) = QΛQh (0) with W t = (V diag(λ)v 1 ) t = V diag(λ) t V 1 8

10 Issues in Learning Long-Term Dependencies Any eigenvalues λ i Λ with λ i > 1 will explode Any eigenvalues λ i Λ with λ i < 1 will vanish Thus, the product w t will either vanish or explode depending on the magnitude of w 9

11 Issues in Learning Long-Term Dependencies Solution: Carefully choosing the weights can help to alleviate the vanishing & exploding gradient problems Solution: Restrict the network to specific regions of parameter space Both may work to prevent the network from learning memories that are invariant to small perturbations 10

12 Issues in Learning Long-Term Dependencies Exponentially smaller weights given to long-term interactions compared to short-term interactions This prevents the standard RNN from learning long-term dependencies = limiting the usefulness of such architectures for practical problems How to address this problem of vanishing & exploding gradients? 11

13 Table of Contents 1. Introduction 2. Previous Work 3. Issues in Learning Long-Term Dependencies 4. Constant Error Flow 5. Long-Short Term Memory 6. Experiments 12

14 Constant Error Flow How to Avoid Vanishing or Exploding Error Signals? Hint: require the following: f j(net j (t))w jj = 1.0 this means f j has to be linear, unit j s activation has to remain constant: y j (t + 1) = f j (net j (t + 1)) = f j (w jj y j (t)) = y j (t) 13

15 Constant Error Flow: Constant Error Carousel There are several issues with simply requiring this condition: Input Weight Conflict: same incoming weight has to be used for both storing certain inputs and for ignoring others The weights often receive conflicting updates. This lack of context makes learning difficult. Need more context sensitive mechanism for write operations through input weights 14

16 Constant Error Flow Output Weight Conflict: assume that some output unit j is switched on and stores a previous input w kj will attract conflicting wight update signals While stable in early training, j may suddenly start to cause avoidable errors by attempting to participate in reducing more difficult long time lag errors Need more context-sensitive mechanism for controlling read operations through output weights 15

17 Constant Error Flow Output/input weight conflicts may occur for short as well as long time lags As time lag increases, stored information must be protected form unwanted perturbation for longer and longer periods More and more already correct outputs require protection against unwanted perturbation 16

18 Table of Contents 1. Introduction 2. Previous Work 3. Issues in Learning Long-Term Dependencies 4. Constant Error Flow 5. Long-Short Term Memory 6. Experiments 17

19 Long-Short Term Memory Figure 1: A simple repeating RNN cell 18

20 Long-Short Term Memory Figure 2: An example repeating LSTM Cell 19

21 Long-Short Term Memory: How does it work? Instead of having a single layer, LSTM has 4. Input and output gates allow the LSTM to add/remove information to the cell state The gates themselves are composed of a single layer with sigmoid activation where resulting output is between 0 (let nothing through) and 1 (let everything through). 20

22 Long-Short Term Memory: The Forget Layer Figure 3: The Forget Layer 21

23 Long-Short Term Memory: The Forget Layer The current input x t and previous hidden state h t 1 are concatenated and pushed through a sigmoid activation values of 0 mean to forget everything, values of 1 mean to remember everything from the input set of information Then the result is component-wise multiplied with the previous cell state c t 1 22

24 Long-Short Term Memory: Storing New Information 23

25 Long-Short Term Memory: Updating the Old Cell State 24

26 Long-Short Term Memory: Computing the Output 25

27 Table of Contents 1. Introduction 2. Previous Work 3. Issues in Learning Long-Term Dependencies 4. Constant Error Flow 5. Long-Short Term Memory 6. Experiments 26

28 Experiment 1: Embedded Reber Grammar Task: read strings one symbol at a time and predict the next symbol at each time step t. Training/Testing: 512 total strings, divided into training/testing partitions using a split Goal(s): Provides a common benchmark where RTRL and BPTT do not fail completely, and shows usefulness of gates 27

29 Experiment 1: Embedded Reber Grammar Figure 4: Experiment 1 Results 28

30 Experiment 6a: Temporal Order Problem Task: classify sequences into 1 of 4 categories that depend on the temporal ordering of chosen symbols from the set {a, b, c, d} Each string begins with an E symbol and ends with a B. All but two intermediate symbols randomly chosen that contain no informative class information. Two positions are randomly chosen to place the symbols that contain class information 29

31 Experiment 6b: Temporal Order Problem Task: classify sequences into 1 of 8 categories that depend on the temporal ordering of chosen symbols from the set {a, b, c, d} Each string begins with an E symbol and ends with a B. All but three intermediate symbols randomly chosen that contain no informative class information. Three positions are randomly chosen to place the symbols that contain class information 30

32 Experiment 6 (a&b): Temporal Order Problem Figure 5: Experiment 6 Results 31

33 Questions? 31

LONG SHORT-TERM MEMORY. Technical Report FKI , Version 3.0. Abstract

LONG SHORT-TERM MEMORY. Technical Report FKI , Version 3.0. Abstract LONG SHORT-TERM MEMORY Technical Report FKI-207-95, Version 3.0 Sepp Hochreiter Fakultat fur Informatik Technische Universitat Munchen 80290 Munchen, Germany hochreit@informatik.tu-muenchen.de http://www7.informatik.tu-muenchen.de/~hochreit

More information

Deep Learning. Recurrent Neural Network (RNNs) Ali Ghodsi. October 23, Slides are partially based on Book in preparation, Deep Learning

Deep Learning. Recurrent Neural Network (RNNs) Ali Ghodsi. October 23, Slides are partially based on Book in preparation, Deep Learning Recurrent Neural Network (RNNs) University of Waterloo October 23, 2015 Slides are partially based on Book in preparation, by Bengio, Goodfellow, and Aaron Courville, 2015 Sequential data Recurrent neural

More information

On the use of Long-Short Term Memory neural networks for time series prediction

On the use of Long-Short Term Memory neural networks for time series prediction On the use of Long-Short Term Memory neural networks for time series prediction Pilar Gómez-Gil National Institute of Astrophysics, Optics and Electronics ccc.inaoep.mx/~pgomez In collaboration with: J.

More information

Recurrent Neural Net Learning and Vanishing Gradient. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(2):107{116, 1998

Recurrent Neural Net Learning and Vanishing Gradient. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(2):107{116, 1998 Recurrent Neural Net Learning and Vanishing Gradient International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(2):107{116, 1998 Sepp Hochreiter Institut fur Informatik Technische Universitat

More information

LSTM CAN SOLVE HARD. Jurgen Schmidhuber Lugano, Switzerland. Abstract. guessing than by the proposed algorithms.

LSTM CAN SOLVE HARD. Jurgen Schmidhuber Lugano, Switzerland. Abstract. guessing than by the proposed algorithms. LSTM CAN SOLVE HARD LONG TIME LAG PROBLEMS Sepp Hochreiter Fakultat fur Informatik Technische Universitat Munchen 80290 Munchen, Germany Jurgen Schmidhuber IDSIA Corso Elvezia 36 6900 Lugano, Switzerland

More information

arxiv: v3 [cs.lg] 14 Jan 2018

arxiv: v3 [cs.lg] 14 Jan 2018 A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation Gang Chen Department of Computer Science and Engineering, SUNY at Buffalo arxiv:1610.02583v3 [cs.lg] 14 Jan 2018 1 abstract We describe

More information

Long Short- Term Memory (LSTM) M1 Yuichiro Sawai Computa;onal Linguis;cs Lab. January 15, Deep Lunch

Long Short- Term Memory (LSTM) M1 Yuichiro Sawai Computa;onal Linguis;cs Lab. January 15, Deep Lunch Long Short- Term Memory (LSTM) M1 Yuichiro Sawai Computa;onal Linguis;cs Lab. January 15, 2015 @ Deep Lunch 1 Why LSTM? OJen used in many recent RNN- based systems Machine transla;on Program execu;on Can

More information

y c y out h y out g y in net w c net c =1.0 for Std. LSTM output gating out out ouput gate output squashing memorizing and forgetting forget gate

y c y out h y out g y in net w c net c =1.0 for Std. LSTM output gating out out ouput gate output squashing memorizing and forgetting forget gate Learning to Forget: Continual rediction with LSM Felix A. Gers Jurgen Schmidhuber Fred Cummins felix@idsia.ch uergen@idsia.ch fred@idsia.ch IDSIA, Corso Elvezia 36 6900 Lugano, Switzerland http://www.idsia.ch/

More information

Introduction to RNNs!

Introduction to RNNs! Introduction to RNNs Arun Mallya Best viewed with Computer Modern fonts installed Outline Why Recurrent Neural Networks (RNNs)? The Vanilla RNN unit The RNN forward pass Backpropagation refresher The RNN

More information

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook

Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recurrent Neural Networks (Part - 2) Sumit Chopra Facebook Recap Standard RNNs Training: Backpropagation Through Time (BPTT) Application to sequence modeling Language modeling Applications: Automatic speech

More information

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017

Modelling Time Series with Neural Networks. Volker Tresp Summer 2017 Modelling Time Series with Neural Networks Volker Tresp Summer 2017 1 Modelling of Time Series The next figure shows a time series (DAX) Other interesting time-series: energy prize, energy consumption,

More information

Long-Short Term Memory and Other Gated RNNs

Long-Short Term Memory and Other Gated RNNs Long-Short Term Memory and Other Gated RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Sequence Modeling

More information

Slide credit from Hung-Yi Lee & Richard Socher

Slide credit from Hung-Yi Lee & Richard Socher Slide credit from Hung-Yi Lee & Richard Socher 1 Review Recurrent Neural Network 2 Recurrent Neural Network Idea: condition the neural network on all previous words and tie the weights at each time step

More information

Recurrent Neural Networks 2. CS 287 (Based on Yoav Goldberg s notes)

Recurrent Neural Networks 2. CS 287 (Based on Yoav Goldberg s notes) Recurrent Neural Networks 2 CS 287 (Based on Yoav Goldberg s notes) Review: Representation of Sequence Many tasks in NLP involve sequences w 1,..., w n Representations as matrix dense vectors X (Following

More information

Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials

Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials Learning Recurrent Neural Networks with Hessian-Free Optimization: Supplementary Materials Contents 1 Pseudo-code for the damped Gauss-Newton vector product 2 2 Details of the pathological synthetic problems

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Recurrent Neural Network Training with Preconditioned Stochastic Gradient Descent

Recurrent Neural Network Training with Preconditioned Stochastic Gradient Descent Recurrent Neural Network Training with Preconditioned Stochastic Gradient Descent 1 Xi-Lin Li, lixilinx@gmail.com arxiv:1606.04449v2 [stat.ml] 8 Dec 2016 Abstract This paper studies the performance of

More information

Lecture 11 Recurrent Neural Networks I

Lecture 11 Recurrent Neural Networks I Lecture 11 Recurrent Neural Networks I CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago May 01, 2017 Introduction Sequence Learning with Neural Networks Some Sequence Tasks

More information

Recurrent Neural Networks. Jian Tang

Recurrent Neural Networks. Jian Tang Recurrent Neural Networks Jian Tang tangjianpku@gmail.com 1 RNN: Recurrent neural networks Neural networks for sequence modeling Summarize a sequence with fix-sized vector through recursively updating

More information

Recurrent neural networks

Recurrent neural networks 12-1: Recurrent neural networks Prof. J.C. Kao, UCLA Recurrent neural networks Motivation Network unrollwing Backpropagation through time Vanishing and exploding gradients LSTMs GRUs 12-2: Recurrent neural

More information

Generating Sequences with Recurrent Neural Networks

Generating Sequences with Recurrent Neural Networks Generating Sequences with Recurrent Neural Networks Alex Graves University of Toronto & Google DeepMind Presented by Zhe Gan, Duke University May 15, 2015 1 / 23 Outline Deep recurrent neural network based

More information

Lecture 11 Recurrent Neural Networks I

Lecture 11 Recurrent Neural Networks I Lecture 11 Recurrent Neural Networks I CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor niversity of Chicago May 01, 2017 Introduction Sequence Learning with Neural Networks Some Sequence Tasks

More information

Recurrent Neural Networks Deep Learning Lecture 5. Efstratios Gavves

Recurrent Neural Networks Deep Learning Lecture 5. Efstratios Gavves Recurrent Neural Networks Deep Learning Lecture 5 Efstratios Gavves Sequential Data So far, all tasks assumed stationary data Neither all data, nor all tasks are stationary though Sequential Data: Text

More information

Recurrent Neural Networks

Recurrent Neural Networks Recurrent Neural Networks Datamining Seminar Kaspar Märtens Karl-Oskar Masing Today's Topics Modeling sequences: a brief overview Training RNNs with back propagation A toy example of training an RNN Why

More information

RECURRENT NETWORKS I. Philipp Krähenbühl

RECURRENT NETWORKS I. Philipp Krähenbühl RECURRENT NETWORKS I Philipp Krähenbühl RECAP: CLASSIFICATION conv 1 conv 2 conv 3 conv 4 1 2 tu RECAP: SEGMENTATION conv 1 conv 2 conv 3 conv 4 RECAP: DETECTION conv 1 conv 2 conv 3 conv 4 RECAP: GENERATION

More information

CSC321 Lecture 15: Exploding and Vanishing Gradients

CSC321 Lecture 15: Exploding and Vanishing Gradients CSC321 Lecture 15: Exploding and Vanishing Gradients Roger Grosse Roger Grosse CSC321 Lecture 15: Exploding and Vanishing Gradients 1 / 23 Overview Yesterday, we saw how to compute the gradient descent

More information

CSCI 315: Artificial Intelligence through Deep Learning

CSCI 315: Artificial Intelligence through Deep Learning CSCI 315: Artificial Intelligence through Deep Learning W&L Winter Term 2017 Prof. Levy Recurrent Neural Networks (Chapter 7) Recall our first-week discussion... How do we know stuff? (MIT Press 1996)

More information

Sequence Modeling with Neural Networks

Sequence Modeling with Neural Networks Sequence Modeling with Neural Networks Harini Suresh y 0 y 1 y 2 s 0 s 1 s 2... x 0 x 1 x 2 hat is a sequence? This morning I took the dog for a walk. sentence medical signals speech waveform Successes

More information

COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE-

COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE- Workshop track - ICLR COMPARING FIXED AND ADAPTIVE COMPUTATION TIME FOR RE- CURRENT NEURAL NETWORKS Daniel Fojo, Víctor Campos, Xavier Giró-i-Nieto Universitat Politècnica de Catalunya, Barcelona Supercomputing

More information

Stephen Scott.

Stephen Scott. 1 / 35 (Adapted from Vinod Variyam and Ian Goodfellow) sscott@cse.unl.edu 2 / 35 All our architectures so far work on fixed-sized inputs neural networks work on sequences of inputs E.g., text, biological

More information

Deep Learning Recurrent Networks 2/28/2018

Deep Learning Recurrent Networks 2/28/2018 Deep Learning Recurrent Networks /8/8 Recap: Recurrent networks can be incredibly effective Story so far Y(t+) Stock vector X(t) X(t+) X(t+) X(t+) X(t+) X(t+5) X(t+) X(t+7) Iterated structures are good

More information

Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory Danilo López, Nelson Vera, Luis Pedraza International Science Index, Mathematical and Computational Sciences waset.org/publication/10006216

More information

High Order LSTM/GRU. Wenjie Luo. January 19, 2016

High Order LSTM/GRU. Wenjie Luo. January 19, 2016 High Order LSTM/GRU Wenjie Luo January 19, 2016 1 Introduction RNN is a powerful model for sequence data but suffers from gradient vanishing and explosion, thus difficult to be trained to capture long

More information

Learning Long-Term Dependencies with Gradient Descent is Difficult

Learning Long-Term Dependencies with Gradient Descent is Difficult Learning Long-Term Dependencies with Gradient Descent is Difficult Y. Bengio, P. Simard & P. Frasconi, IEEE Trans. Neural Nets, 1994 June 23, 2016, ICML, New York City Back-to-the-future Workshop Yoshua

More information

Contents. (75pts) COS495 Midterm. (15pts) Short answers

Contents. (75pts) COS495 Midterm. (15pts) Short answers Contents (75pts) COS495 Midterm 1 (15pts) Short answers........................... 1 (5pts) Unequal loss............................. 2 (15pts) About LSTMs........................... 3 (25pts) Modular

More information

Neural Turing Machine. Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve)

Neural Turing Machine. Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve) Neural Turing Machine Author: Alex Graves, Greg Wayne, Ivo Danihelka Presented By: Tinghui Wang (Steve) Introduction Neural Turning Machine: Couple a Neural Network with external memory resources The combined

More information

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions

Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions 2018 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 18) Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions Authors: S. Scardapane, S. Van Vaerenbergh,

More information

Recurrent Neural Networks. deeplearning.ai. Why sequence models?

Recurrent Neural Networks. deeplearning.ai. Why sequence models? Recurrent Neural Networks deeplearning.ai Why sequence models? Examples of sequence data The quick brown fox jumped over the lazy dog. Speech recognition Music generation Sentiment classification There

More information

Recurrent and Recursive Networks

Recurrent and Recursive Networks Neural Networks with Applications to Vision and Language Recurrent and Recursive Networks Marco Kuhlmann Introduction Applications of sequence modelling Map unsegmented connected handwriting to strings.

More information

Lecture 15: Exploding and Vanishing Gradients

Lecture 15: Exploding and Vanishing Gradients Lecture 15: Exploding and Vanishing Gradients Roger Grosse 1 Introduction Last lecture, we introduced RNNs and saw how to derive the gradients using backprop through time. In principle, this lets us train

More information

Natural Language Understanding. Recap: probability, language models, and feedforward networks. Lecture 12: Recurrent Neural Networks and LSTMs

Natural Language Understanding. Recap: probability, language models, and feedforward networks. Lecture 12: Recurrent Neural Networks and LSTMs Natural Language Understanding Lecture 12: Recurrent Neural Networks and LSTMs Recap: probability, language models, and feedforward networks Simple Recurrent Networks Adam Lopez Credits: Mirella Lapata

More information

Spike-based Long Short-Term Memory networks

Spike-based Long Short-Term Memory networks Spike-based Long Short-Term Memory networks MSc Thesis Roeland Nusselder Mathematical Institute Utrecht University Machine Learning CWI Amsterdam Project supervisor: Prof. dr. R.H. Bisseling Daily supervisors:

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Vanishing and Exploding Gradients. ReLUs. Xavier Initialization

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Vanishing and Exploding Gradients. ReLUs. Xavier Initialization TTIC 31230, Fundamentals of Deep Learning David McAllester, April 2017 Vanishing and Exploding Gradients ReLUs Xavier Initialization Batch Normalization Highway Architectures: Resnets, LSTMs and GRUs Causes

More information

Natural Language Processing and Recurrent Neural Networks

Natural Language Processing and Recurrent Neural Networks Natural Language Processing and Recurrent Neural Networks Pranay Tarafdar October 19 th, 2018 Outline Introduction to NLP Word2vec RNN GRU LSTM Demo What is NLP? Natural Language? : Huge amount of information

More information

Analysis of the Learning Process of a Recurrent Neural Network on the Last k-bit Parity Function

Analysis of the Learning Process of a Recurrent Neural Network on the Last k-bit Parity Function Analysis of the Learning Process of a Recurrent Neural Network on the Last k-bit Parity Function Austin Wang Adviser: Xiuyuan Cheng May 4, 2017 1 Abstract This study analyzes how simple recurrent neural

More information

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino

Artificial Neural Networks D B M G. Data Base and Data Mining Group of Politecnico di Torino. Elena Baralis. Politecnico di Torino Artificial Neural Networks Data Base and Data Mining Group of Politecnico di Torino Elena Baralis Politecnico di Torino Artificial Neural Networks Inspired to the structure of the human brain Neurons as

More information

CSC321 Lecture 10 Training RNNs

CSC321 Lecture 10 Training RNNs CSC321 Lecture 10 Training RNNs Roger Grosse and Nitish Srivastava February 23, 2015 Roger Grosse and Nitish Srivastava CSC321 Lecture 10 Training RNNs February 23, 2015 1 / 18 Overview Last time, we saw

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information

Biologically Plausible Speech Recognition with LSTM Neural Nets

Biologically Plausible Speech Recognition with LSTM Neural Nets Biologically Plausible Speech Recognition with LSTM Neural Nets Alex Graves, Douglas Eck, Nicole Beringer, Juergen Schmidhuber Istituto Dalle Molle di Studi sull Intelligenza Artificiale, Galleria 2, 6928

More information

Tracking the World State with Recurrent Entity Networks

Tracking the World State with Recurrent Entity Networks Tracking the World State with Recurrent Entity Networks Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, Yann LeCun Task At each timestep, get information (in the form of a sentence) about the

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Neural Networks Language Models

Neural Networks Language Models Neural Networks Language Models Philipp Koehn 10 October 2017 N-Gram Backoff Language Model 1 Previously, we approximated... by applying the chain rule p(w ) = p(w 1, w 2,..., w n ) p(w ) = i p(w i w 1,...,

More information

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen Neural Networks - I Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Neural Networks 1 /

More information

Structured Neural Networks (I)

Structured Neural Networks (I) Structured Neural Networks (I) CS 690N, Spring 208 Advanced Natural Language Processing http://peoplecsumassedu/~brenocon/anlp208/ Brendan O Connor College of Information and Computer Sciences University

More information

Learning Unitary Operators with Help from u(n)

Learning Unitary Operators with Help from u(n) @_hylandsl Learning Unitary Operators with Help from u(n) Stephanie L. Hyland 1,2, Gunnar Rätsch 1 1 Department of Computer Science, ETH Zurich 2 Tri-Institutional Training Program in Computational Biology

More information

EE-559 Deep learning LSTM and GRU

EE-559 Deep learning LSTM and GRU EE-559 Deep learning 11.2. LSTM and GRU François Fleuret https://fleuret.org/ee559/ Mon Feb 18 13:33:24 UTC 2019 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Long-Short Term Memory unit (LSTM) by Hochreiter

More information

Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting 卷积 LSTM 网络 : 利用机器学习预测短期降雨 施行健 香港科技大学 VALSE 2016/03/23

Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting 卷积 LSTM 网络 : 利用机器学习预测短期降雨 施行健 香港科技大学 VALSE 2016/03/23 Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting 卷积 LSTM 网络 : 利用机器学习预测短期降雨 施行健 香港科技大学 VALSE 2016/03/23 Content Quick Review of Recurrent Neural Network Introduction

More information

EE-559 Deep learning Recurrent Neural Networks

EE-559 Deep learning Recurrent Neural Networks EE-559 Deep learning 11.1. Recurrent Neural Networks François Fleuret https://fleuret.org/ee559/ Sun Feb 24 20:33:31 UTC 2019 Inference from sequences François Fleuret EE-559 Deep learning / 11.1. Recurrent

More information

(

( Class 15 - Long Short-Term Memory (LSTM) Study materials http://colah.github.io/posts/2015-08-understanding-lstms/ (http://colah.github.io/posts/2015-08-understanding-lstms/) http://karpathy.github.io/2015/05/21/rnn-effectiveness/

More information

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Christian Mohr

Christian Mohr Christian Mohr 20.12.2011 Recurrent Networks Networks in which units may have connections to units in the same or preceding layers Also connections to the unit itself possible Already covered: Hopfield

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks Topics in Machine Learning-EE 5359 Neural Networks 1 The Perceptron Output: A perceptron is a function that maps D-dimensional vectors to real numbers. For notational convenience, we add a zero-th dimension

More information

Recurrent Neural Network

Recurrent Neural Network Recurrent Neural Network Xiaogang Wang xgwang@ee..edu.hk March 2, 2017 Xiaogang Wang (linux) Recurrent Neural Network March 2, 2017 1 / 48 Outline 1 Recurrent neural networks Recurrent neural networks

More information

Neural Networks. Volker Tresp Summer 2015

Neural Networks. Volker Tresp Summer 2015 Neural Networks Volker Tresp Summer 2015 1 Introduction The performance of a classifier or a regression model critically depends on the choice of appropriate basis functions The problem with generic basis

More information

Deep Learning Recurrent Networks 10/11/2017

Deep Learning Recurrent Networks 10/11/2017 Deep Learning Recurrent Networks 10/11/2017 1 Which open source project? Related math. What is it talking about? And a Wikipedia page explaining it all The unreasonable effectiveness of recurrent neural

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017 Deep Learning for Natural Language Processing Sidharth Mudgal April 4, 2017 Table of contents 1. Intro 2. Word Vectors 3. Word2Vec 4. Char Level Word Embeddings 5. Application: Entity Matching 6. Conclusion

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

(2pts) What is the object being embedded (i.e. a vector representing this object is computed) when one uses

(2pts) What is the object being embedded (i.e. a vector representing this object is computed) when one uses Contents (75pts) COS495 Midterm 1 (15pts) Short answers........................... 1 (5pts) Unequal loss............................. 2 (15pts) About LSTMs........................... 3 (25pts) Modular

More information

More on Neural Networks

More on Neural Networks More on Neural Networks Yujia Yan Fall 2018 Outline Linear Regression y = Wx + b (1) Linear Regression y = Wx + b (1) Polynomial Regression y = Wφ(x) + b (2) where φ(x) gives the polynomial basis, e.g.,

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

Demystifying deep learning. Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK

Demystifying deep learning. Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK Demystifying deep learning Petar Veličković Artificial Intelligence Group Department of Computer Science and Technology, University of Cambridge, UK London Data Science Summit 20 October 2017 Introduction

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Basics of Neural Networks. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Basics of Neural Networks Connelly Barnes Overview Simple neural networks Perceptron Feedforward neural networks Multilayer perceptron and properties Autoencoders

More information

Recurrent Neural Networks. COMP-550 Oct 5, 2017

Recurrent Neural Networks. COMP-550 Oct 5, 2017 Recurrent Neural Networks COMP-550 Oct 5, 2017 Outline Introduction to neural networks and deep learning Feedforward neural networks Recurrent neural networks 2 Classification Review y = f( x) output label

More information

Deep Residual. Variations

Deep Residual. Variations Deep Residual Network and Its Variations Diyu Yang (Originally prepared by Kaiming He from Microsoft Research) Advantages of Depth Degradation Problem Possible Causes? Vanishing/Exploding Gradients. Overfitting

More information

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu

Convolutional Neural Networks II. Slides from Dr. Vlad Morariu Convolutional Neural Networks II Slides from Dr. Vlad Morariu 1 Optimization Example of optimization progress while training a neural network. (Loss over mini-batches goes down over time.) 2 Learning rate

More information

Training Multi-Layer Neural Networks. - the Back-Propagation Method. (c) Marcin Sydow

Training Multi-Layer Neural Networks. - the Back-Propagation Method. (c) Marcin Sydow Plan training single neuron with continuous activation function training 1-layer of continuous neurons training multi-layer network - back-propagation method single neuron with continuous activation function

More information

RECURRENT NEURAL NETWORKS WITH FLEXIBLE GATES USING KERNEL ACTIVATION FUNCTIONS

RECURRENT NEURAL NETWORKS WITH FLEXIBLE GATES USING KERNEL ACTIVATION FUNCTIONS 2018 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17 20, 2018, AALBORG, DENMARK RECURRENT NEURAL NETWORKS WITH FLEXIBLE GATES USING KERNEL ACTIVATION FUNCTIONS Simone Scardapane,

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

An Investigation of the State Formation and Transition Limitations for Prediction Problems in Recurrent Neural Networks

An Investigation of the State Formation and Transition Limitations for Prediction Problems in Recurrent Neural Networks An Investigation of the State Formation and Transition Limitations for Prediction Problems in Recurrent Neural Networks Angel Kennedy and Cara MacNish School of Computer Science and Software Engineering

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Back-propagation as reinforcement in prediction tasks

Back-propagation as reinforcement in prediction tasks Back-propagation as reinforcement in prediction tasks André Grüning Cognitive Neuroscience Sector S.I.S.S.A. via Beirut 4 34014 Trieste Italy gruening@sissa.it Abstract. The back-propagation (BP) training

More information

From perceptrons to word embeddings. Simon Šuster University of Groningen

From perceptrons to word embeddings. Simon Šuster University of Groningen From perceptrons to word embeddings Simon Šuster University of Groningen Outline A basic computational unit Weighting some input to produce an output: classification Perceptron Classify tweets Written

More information

A New Concept using LSTM Neural Networks for Dynamic System Identification

A New Concept using LSTM Neural Networks for Dynamic System Identification A New Concept using LSTM Neural Networks for Dynamic System Identification Yu Wang Abstract Recently, Recurrent Neural Network becomes a very popular research topic in machine learning field. Many new

More information

Ways to make neural networks generalize better

Ways to make neural networks generalize better Ways to make neural networks generalize better Seminar in Deep Learning University of Tartu 04 / 10 / 2014 Pihel Saatmann Topics Overview of ways to improve generalization Limiting the size of the weights

More information

Conditional Language modeling with attention

Conditional Language modeling with attention Conditional Language modeling with attention 2017.08.25 Oxford Deep NLP 조수현 Review Conditional language model: assign probabilities to sequence of words given some conditioning context x What is the probability

More information

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box

Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses about the label (Top-5 error) No Bounding Box ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton Motivation Classification goals: Make 1 guess about the label (Top-1 error) Make 5 guesses

More information

Lecture 5: Recurrent Neural Networks

Lecture 5: Recurrent Neural Networks 1/25 Lecture 5: Recurrent Neural Networks Nima Mohajerin University of Waterloo WAVE Lab nima.mohajerin@uwaterloo.ca July 4, 2017 2/25 Overview 1 Recap 2 RNN Architectures for Learning Long Term Dependencies

More information

arxiv: v1 [cs.cl] 21 May 2017

arxiv: v1 [cs.cl] 21 May 2017 Spelling Correction as a Foreign Language Yingbo Zhou yingbzhou@ebay.com Utkarsh Porwal uporwal@ebay.com Roberto Konow rkonow@ebay.com arxiv:1705.07371v1 [cs.cl] 21 May 2017 Abstract In this paper, we

More information

Seq2Tree: A Tree-Structured Extension of LSTM Network

Seq2Tree: A Tree-Structured Extension of LSTM Network Seq2Tree: A Tree-Structured Extension of LSTM Network Weicheng Ma Computer Science Department, Boston University 111 Cummington Mall, Boston, MA wcma@bu.edu Kai Cao Cambia Health Solutions kai.cao@cambiahealth.com

More information

A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010

A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010 A thorough derivation of back-propagation for people who really want to understand it by: Mike Gashler, September 2010 Define the problem: Suppose we have a 5-layer feed-forward neural network. (I intentionally

More information

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning

CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning CS 229 Project Final Report: Reinforcement Learning for Neural Network Architecture Category : Theory & Reinforcement Learning Lei Lei Ruoxuan Xiong December 16, 2017 1 Introduction Deep Neural Network

More information

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4

Neural Networks Learning the network: Backprop , Fall 2018 Lecture 4 Neural Networks Learning the network: Backprop 11-785, Fall 2018 Lecture 4 1 Recap: The MLP can represent any function The MLP can be constructed to represent anything But how do we construct it? 2 Recap:

More information

Direct Method for Training Feed-forward Neural Networks using Batch Extended Kalman Filter for Multi- Step-Ahead Predictions

Direct Method for Training Feed-forward Neural Networks using Batch Extended Kalman Filter for Multi- Step-Ahead Predictions Direct Method for Training Feed-forward Neural Networks using Batch Extended Kalman Filter for Multi- Step-Ahead Predictions Artem Chernodub, Institute of Mathematical Machines and Systems NASU, Neurotechnologies

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Pushpak Bhattacharyya CSE Dept, IIT Patna and Bombay LSTM 15 jun, 2017 lgsoft:nlp:lstm:pushpak 1 Recap 15 jun, 2017 lgsoft:nlp:lstm:pushpak 2 Feedforward Network and Backpropagation

More information

y(x n, w) t n 2. (1)

y(x n, w) t n 2. (1) Network training: Training a neural network involves determining the weight parameter vector w that minimizes a cost function. Given a training set comprising a set of input vector {x n }, n = 1,...N,

More information

Intro to Neural Networks and Deep Learning

Intro to Neural Networks and Deep Learning Intro to Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi UVA CS 6316 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions Backpropagation Nonlinearity Functions NNs

More information

Policy Gradient Critics

Policy Gradient Critics Policy Gradient Critics Daan Wierstra 1 and Jürgen Schmidhuber 1,2 1 Istituto Dalle Molle di Studi sull Intelligenza Artificiale (IDSIA), CH-6928 Manno-Lugano, Switzerland, daan@idsia.ch 2 Department of

More information