Lecture 20. Calorimetry

Size: px
Start display at page:

Download "Lecture 20. Calorimetry"

Transcription

1 Ltur 0 Calorimtry

2 CLORIMTRY In nular and partil physis alorimtry rfrs to th dttion of partils through total absorption in a blok of mattr Th masurmnt pross is dstrutiv for almost all partil Th xption ar muons (and nutrinos) à idntify muons asily sin thy pntrat a substantial amount of mattr In th absorption, almost all partil s nrgy is vntually onvrtd to hat à origin of th nam alorimtr Calorimtrs ar ssntial to masur nutral partils CMS

3 Calorimtry nrgy masurmnt by total absorption with addd spatial ronstrution Calorimtr provids a dstrutiv masurmnt Dttor rspons ~ Calorimtry works both for ð hargd partils ( ± and hadrons) ð and nutral partils (n,γ) Basi mhanism: formation of ð ltromagnti ð or hadroni showrs Finally, th nrgy is onvrtd into ionization or xitation of th mattr (light)

4 Intration of hargd partils nrgy loss by Brmsstrahlung Radiation of ral photons in th Coulomb fild of th nuli of th absorbr d dx 4αN Z z 1 4πε0 m 183 ln 1 3 Z m Z, - Ngativ sign à nrgy loss /m à fft is important only for ± with momntum p > fw hundrd MV and for ultra-rlativisti muons with momntum p >1000 GV

5 For ltrons ln ln Z r Z N X X dx d Z r Z N dx d α α 0 / 0 X x X 0 - Radiation lngth, g/m distan ovr whih a high nrgy ltron loss all but a fration 1/ of its nrgy du to Brmsstrahlung

6 Intration of hargd partils (Lo) nrgy loss (radiativ + ionization) of ltrons and protons in oppr proton brmsstrahlung ltron proton ollision ross stion raiss slowly ~ log() ollision loss Critial nrgy, losss du to ionisation and Brmsstrahlung ar qual d dx ( ) ( ) Brms d dx ion solid + liq 610MV Z gas 710MV Z For muons l m m µ ( - ) in F(Z6).4 MV (µ) in F(Z6) 1 TV

7 Intration of photons In ordr to b dttd, a photon has to rat hargd partils and/or transfr nrgy to hargd partils Photo-ltri fft X X + ē γ + atom à atom Only possibl in th los nighborhood of a third ollision partnr à photo-fft rlass mainly ltrons from th K-shll. σ K photo γ 8 7 α Z σth ε σ Th πr 3 ε m Cross stion shows strong modulation if γ shll t high nrgis (ε >> 1) (Thomson) σ K photo 4π r 4 α Z 5 1 ε σ photo Z 5

8 Compton sattring γ + γ ' + ' θ γ γ γ 1 1+ ε osθ ( 1 ) γ Cross-stion on quasi-fr ltron: approximat Klin-Nishina formula at high nrgis σ lnε ε Cross stion on atoms γ /m σ atomi Z σ

9 Pair prodution - γ + nulus + + nulus + Z Only possibl in th Coulomb fild of a nulus (or an ltron) if γ m Cross-stion (high nrgy approximation) σ pair 4αr Z ln 1 9 indpndnt of nrgy! 3 Z N X λ pair 9 7 N X 0 1 λ 0 pair nrgy sharing btwn + and - boms slightly asymmtri at high nrgis.

10 Pair prodution Positron annihilation Z Z ppliation of positron annihilation in mdiin à PT Position mission Tomography Us 18 F labld radiotrar 18 F à 18 O à γ ( x 511 kv) γ s ar dttd by sintillators in oinidn. 18 F lis somwhr on this lin of rord! Nd many lins of rord + tomographi ronstrution.

11 I γ I µ µ 0 µ x photo Photon intrations + µ Compton + µ pair +... photo fft µ - attnuation offiint N µ [ ] m g i σi / Rayligh sattring (no nrgy loss!) pair prodution Compton sattring 1 MV (PDG)

12 ltromagnti showr Photons pair prodution is a dominant pross σ pair 7 9 4α r Z ln Z 1/ 3 9 X 0 radiation lngth in m or g/m Intnsity Whr th attnuation offiint N X 0 ltrons brmsstrahlung is a dominant pross d dx 4αN Z I(x) I 0 µx µ 7 9 ρ X 0 r ln 183 Z 1/ 3 X 0 0 x / X 0 ftr travrsing xx 0 th ltron has only 1/ 37% of its initial nrgy

13 ltromagnti showr Simpl showr modl: ltrnating brmsstrahlung and pair prodution t partils aftr t [X 0 ] ah with nrgy /t Stops if < Numbr of partils N / Maximum at t max ~ln(/ )

14 Longitudinal showr distribution ltron showr simulation t max ln + C γ 0 Som photons pntrating (almost) th ntir slab without intrating (pak at 0) Showr maximum at t max ln + C γ 0 C γ 0.5 for photons; 1 for ltrons

15 Longitudinal ontainmnt Longitudinal showr distribution inrass only logarithmially with th primary nrgy of th inidnt partil, i.. alorimtrs an b ompat. Containmnt lngth: à L(95%) t max Z [X 0 ] Numbr of partil in showr: Loation of showr maximum: N max tmax 0 / t max ln 0 / Longitudinal showr distribution: L ln 0 / Typial valus for X 0 : Pb m, Lr 14 m, sintillator 34 m 100 GV ltron is ontaind in 5 m of Pb

16 Dvlopmnt of th transvrs dimnsions of th showr Opning angl an b du to brmstrahlung and pair prodution θ m 1 γ multipl Coulomb sattring θ s x X 0 s 4π α (m ) 1.MV à Main ontribution from low nrgy ltrons

17 Largr dviations ar du to low nrgy photons produs in Compton s sattring, photo-ltri fft t. Prdominant part aftr showr max spially in high Z absorbrs Th showr gts widr at largr dpth Th width is usually xprssd in Molir radius R M R M s X 0 1.MV X 0 n infinit ylindr of radius 1 R M ontains 90% of th showr

18 3-D showr dvlopmnt Linar sal Logarithmi sal

Chapter 37 The Quantum Revolution

Chapter 37 The Quantum Revolution Chaptr 37 Th Quantum Rvolution Max Plank Th Nobl Priz in Physis 1918 "in rognition of th srvis h rndrd to th advanmnt of Physis by his disovry of nrgy quanta" Albrt Einstin Th Nobl Priz in Physis 191 "for

More information

Lecture 14 (Oct. 30, 2017)

Lecture 14 (Oct. 30, 2017) Ltur 14 8.31 Quantum Thory I, Fall 017 69 Ltur 14 (Ot. 30, 017) 14.1 Magnti Monopols Last tim, w onsidrd a magnti fild with a magnti monopol onfiguration, and bgan to approah dsribing th quantum mhanis

More information

de/dx Effectively all charged particles except electrons

de/dx Effectively all charged particles except electrons de/dx Lt s nxt turn our attntion to how chargd particls los nrgy in mattr To start with w ll considr only havy chargd particls lik muons, pions, protons, alphas, havy ions, Effctivly all chargd particls

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

Pair (and Triplet) Production Effect:

Pair (and Triplet) Production Effect: Pair (and riplt Production Effct: In both Pair and riplt production, a positron (anti-lctron and an lctron (or ngatron ar producd spontanously as a photon intracts with a strong lctric fild from ithr a

More information

Gamma-ray burst spectral evolution in the internal shock model

Gamma-ray burst spectral evolution in the internal shock model Gamma-ray burst spctral volution in th intrnal shock modl in collaboration with: Žljka Marija Bošnjak Univrsity of Rijka, Croatia Frédéric Daign (Institut d Astrophysiqu d Paris) IAU$Symposium$324$0$Ljubljana,$Sptmbr$2016$

More information

Chapter 37 The Quantum Revolution

Chapter 37 The Quantum Revolution Chaptr 7 Th Quantum Rvolution Max Plank Th Nobl Priz in Physis 98 "in rognition o th srvis h rndrd to th advanmnt o Physis by his disovry o nrgy quanta" Albrt Einstin Th Nobl Priz in Physis 9 "or his srvis

More information

Lecture 2. Interaction of Radiation with Matter

Lecture 2. Interaction of Radiation with Matter Lctur Intraction of Radiation with Mattr Dats 14.10. Vorlsung 1 T.Stockmanns 1.10. Vorlsung J.Ritman 8.10. Vorlsung 3 J.Ritman 04.11. Vorlsung 4 J.Ritman 11.11. Vorlsung 5 J.Ritman 18.11. Vorlsung 6 J.

More information

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017 Th following qustions ar to b answrd individually. Usful information such as tabls with dtctor charactristics and graphs with th proprtis of matrials ar availabl in th cours wb sit: http://www.lip.pt/~patricia/fisicadaradiacao.

More information

Standard Model - Electroweak Interactions. Standard Model. Outline. Weak Neutral Interactions. Electroweak Theory. Experimental Tests.

Standard Model - Electroweak Interactions. Standard Model. Outline. Weak Neutral Interactions. Electroweak Theory. Experimental Tests. Standard Modl - Elctrowak Intractions Outlin ak Nutral Intractions Nutral Currnts (NC) Elctrowak Thory ± and Z and γ Discovry of ± Exprimntal Tsts LEP Z Boson Mass and idth Numbr of Nutrinos ± Boson ±

More information

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m MS 0-C 40 Intrinsi Smiondutors Bill Knowlton Fr Carrir find n and p for intrinsi (undopd) S/Cs Plots: o g() o f() o n( g ) & p() Arrhnius Bhavior Fr Carrir : Carrir onntrations as a funtion of tmpratur

More information

Why is a E&M nature of light not sufficient to explain experiments?

Why is a E&M nature of light not sufficient to explain experiments? 1 Th wird world of photons Why is a E&M natur of light not sufficint to xplain xprimnts? Do photons xist? Som quantum proprtis of photons 2 Black body radiation Stfan s law: Enrgy/ ara/ tim = Win s displacmnt

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

Chapter. 3 Wave & Particles I

Chapter. 3 Wave & Particles I Announcmnt Cours wbpag http://highnrgy.phys.ttu.du/~sl/2402/ Txtbook PHYS-2402 Lctur 8 Quiz 1 Class avrag: 14.2 (out of 20) ~ 70% Fb. 10, 2015 HW2 (du 2/19) 13, 17, 23, 25, 28, 31, 37, 38, 41, 44 Chaptr.

More information

Precision Standard Model Tests (at JLab)

Precision Standard Model Tests (at JLab) Prcision Standard Modl Tsts (at JLab) Xiaochao Zhng Jun 21st, 2018 Th Standard Modl of Particl Physics How should w sarch for nw physics? Prcision SM tsts at Jffrson Lab Qwak, PVDIS Mollr, 12 GV PVDIS

More information

BETA DECAY VISUAL PHYSICS ONLINE

BETA DECAY VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE BETA DECAY Suppos now that a nuclus xists which has ithr too many or too fw nutrons rlativ to th numbr of protons prsnt for stability. Stability can b achivd by th convrsion insid

More information

Pion condensation with neutrinos

Pion condensation with neutrinos Pion condnsation with nutrinos Or how dos QCD bhav undr high dnsitis of lctron/muon nutrinos Harmn Warringa, Goth Univrsität, Frankfurt Basd on work don with Hiroaki Abuki and Tomas Braunr arxiv:0901.2477

More information

Electron Transport Properties for Argon and Argon-Hydrogen Plasmas

Electron Transport Properties for Argon and Argon-Hydrogen Plasmas Chaptr-5 Eltron Transport Proprtis for Argon and Argon-Hydrogn Plasmas Argon and argon-hydrogn plasmas hav important appliations in many thrmal plasma dvis (Patyron t al., 1992; Murphy, 2000; Crssault

More information

CARBONATED WATER. 5 2, 4 during the surfacing. The answer should be an. k 3. Neglect a change in the density of CO 2

CARBONATED WATER. 5 2, 4 during the surfacing. The answer should be an. k 3. Neglect a change in the density of CO 2 CARBONATED WATER Suppos you hav a rgular 1-litr fatory sald bottl of arbonatd watr You hav turnd th bottl ap slightly to unsrw it (so a hissing sound was hard) and srw th ap tightly again Now you would

More information

APP-IV Introduction to Astro-Particle Physics. Maarten de Jong

APP-IV Introduction to Astro-Particle Physics. Maarten de Jong APP-IV Introduction to Astro-Particl Physics Maartn d Jong 1 cosmology in a nut shll Hubbl s law cosmic microwav background radiation abundancs of light lmnts (H, H, ) Hubbl s law (199) 1000 vlocity [km/s]

More information

Characteristics of beam-electron cloud interaction

Characteristics of beam-electron cloud interaction Charatriti of bam-ltron loud intration Tun hift and intabilit K. Ohmi KEK Int. Workhop on Two-tram Intabiliti in Partil Alrator and Storag Ring @ KEK Tukuba Japan Bam-ltron intration Bam partil ar loalid

More information

Electroweak studies and search for new phenomena at HERA

Electroweak studies and search for new phenomena at HERA Elctrowak studis and sarch for nw phnomna at HERA A.F.Żarncki Warsaw Univrsity for ZEUS A.F.Żarncki Elctrowak studis and sarch for nw phnomna at HERA p./25 Outlin Introduction HERA and xprimnts A.F.Żarncki

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

EAcos θ, where θ is the angle between the electric field and

EAcos θ, where θ is the angle between the electric field and 8.4. Modl: Th lctric flux flows out of a closd surfac around a rgion of spac containing a nt positiv charg and into a closd surfac surrounding a nt ngativ charg. Visualiz: Plas rfr to Figur EX8.4. Lt A

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

Lecture 16: Bipolar Junction Transistors. Large Signal Models.

Lecture 16: Bipolar Junction Transistors. Large Signal Models. Whits, EE 322 Ltur 16 Pag 1 of 8 Ltur 16: Bipolar Juntion Transistors. Larg Signal Modls. Transistors prform ky funtions in most ltroni iruits. This is rtainly tru in RF iruits, inluding th NorCal 40A.

More information

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions)

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions) Spring 01, P67, YK Monday January 30, 01 8 Obsrvabl particl dtction ffcts ar : (most) du to long rang m forcs i.. via atomic collisions or du to short rang nuclar collisions or through dcay ( = wak intractions)

More information

THE MOMENT OF MOMENTUM AND THE PROTON RADIUS

THE MOMENT OF MOMENTUM AND THE PROTON RADIUS ussian Phsis Journal Vol 45 No 5 pp 54-58 () https://ddoiorg//a:5666 THE OENT OF OENTU AND THE POTON ADIUS S Fdosin and A S Kim UDC 59 Th thor of nular gravitation is usd to alulat th momnt of momntum

More information

Acid Base Reactions. Acid Base Reactions. Acid Base Reactions. Chemical Reactions and Equations. Chemical Reactions and Equations

Acid Base Reactions. Acid Base Reactions. Acid Base Reactions. Chemical Reactions and Equations. Chemical Reactions and Equations Chmial Ratins and Equatins Hwitt/Lyns/Suhki/Yh Cnptual Intgratd Sin During a hmial ratin, n r mr nw mpunds ar frmd as a rsult f th rarrangmnt f atms. Chaptr 13 CHEMICAL REACTIONS Ratants Prduts Chmial

More information

Interaction of particles with matter

Interaction of particles with matter Introduction to Elmntary Particl Physics. Not 1 Pag 1 of 15 Intraction of particls with mattr 1. Particls and intractions. Wak intractions (nutrinos) 3. Elctromagntic intractions (chargd particls) 3.1.

More information

Chapter 2 Radiation-Matter Interactions

Chapter 2 Radiation-Matter Interactions Chapter 2 Radiation-Matter Interactions The behavior of radiation and matter as a function of energy governs the degradation of astrophysical information along the path and the characteristics of the detectors.

More information

Chapter 8: Electron Configurations and Periodicity

Chapter 8: Electron Configurations and Periodicity Elctron Spin & th Pauli Exclusion Principl Chaptr 8: Elctron Configurations and Priodicity 3 quantum numbrs (n, l, ml) dfin th nrgy, siz, shap, and spatial orintation of ach atomic orbital. To xplain how

More information

Assignment 4 Biophys 4322/5322

Assignment 4 Biophys 4322/5322 Assignmnt 4 Biophys 4322/5322 Tylr Shndruk Fbruary 28, 202 Problm Phillips 7.3. Part a R-onsidr dimoglobin utilizing th anonial nsmbl maning rdriv Eq. 3 from Phillips Chaptr 7. For a anonial nsmbl p E

More information

Decay Rates: Pions. u dbar. Look at pion branching fractions (BF)

Decay Rates: Pions. u dbar. Look at pion branching fractions (BF) Day Rats: Pions Look at ion branhing frations (BF τ 0.6 8 s BF BF BF 0% 1. 1.0 139.6MV Th Bta day is th asist. ~Sa as nutron bta day Q 4.1 MV. Assu FT1600 s. LogF3. (fro ot F 1600 gis artia width(-1 T1600/F1

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

Nuclear reactions The chain reaction

Nuclear reactions The chain reaction Nuclar ractions Th chain raction Nuclar ractions Th chain raction For powr applications want a slf-sustaind chain raction. Natural U: 0.7% of 235 U and 99.3% of 238 U Natural U: 0.7% of 235 U and 99.3%

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

0WAVE PROPAGATION IN MATERIAL SPACE

0WAVE PROPAGATION IN MATERIAL SPACE 0WAVE PROPAGATION IN MATERIAL SPACE All forms of EM nrgy shar thr fundamntal charactristics: 1) thy all tral at high locity 2) In traling, thy assum th proprtis of was 3) Thy radiat outward from a sourc

More information

VARIATION OF PLASMA RESISTIVITY DURING TOKAMAK START-UP

VARIATION OF PLASMA RESISTIVITY DURING TOKAMAK START-UP VARIATION OF LASMA RESISTIVITY DURING TOKAMAK START-U S. I. W. Shah (IFN, Lisbon, ortugal) I. INTRODUCTION Th variation of plasma rsistivity, du to ollisions, during TOKAMAK start-up is rviwd. For th brakdown

More information

Equilibrium Composition and Thermodynamic Properties of Hydrogen Plasma

Equilibrium Composition and Thermodynamic Properties of Hydrogen Plasma Chatr- Equilibrium Comosition and Thrmodynami Prortis of ydrogn Plasma It is wll known that th thrmodynami and transort rortis dnd dirtly on th lasma omosition, whih furthr dnds uon th inlusion of ltronially

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice.

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice. Utilizing xat and Mont Carlo mthods to invstigat proprtis of th Blum Capl Modl applid to a nin sit latti Nik Franios Writing various xat and Mont Carlo omputr algorithms in C languag, I usd th Blum Capl

More information

E γ. Electromagnetic Radiation -- Photons. 2. Mechanisms. a. Photoelectric Effect: photon disappears. b. Compton Scattering: photon scatters

E γ. Electromagnetic Radiation -- Photons. 2. Mechanisms. a. Photoelectric Effect: photon disappears. b. Compton Scattering: photon scatters III. letromagneti Radiation -- Photons. Mehanisms a. Photoeletri ffet: γ photon disappears b. Compton Sattering: γ photon satters. Pair Prodution: γ e ± pair produed C. Photoeletri ffet e Sine photon is

More information

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12 Physis 56 Wintr 6 Homwork Assignmnt # Solutions Ttbook problms: Ch. 4: 4., 4.4, 4.6, 4. 4. A partil of harg is moving in narly uniform nonrlativisti motion. For tims nar t = t, its vtorial position an

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Interaction of Electron and Photons with Matter

Interaction of Electron and Photons with Matter Interaction of Electron and Photons with Matter In addition to the references listed in the first lecture (of this part of the course) see also Calorimetry in High Energy Physics by Richard Wigmans. (Oxford

More information

0 +1e Radionuclides - can spontaneously emit particles and radiation which can be expressed by a nuclear equation.

0 +1e Radionuclides - can spontaneously emit particles and radiation which can be expressed by a nuclear equation. Radioactivity Radionuclids - can spontanously mit particls and radiation which can b xprssd by a nuclar quation. Spontanous Emission: Mass and charg ar consrvd. 4 2α -β Alpha mission Bta mission 238 92U

More information

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered Chaptr 1 Lat 1800 s Svral failurs of classical (Nwtonian) physics discovrd 1905 195 Dvlopmnt of QM rsolvd discrpancis btwn xpt. and classical thory QM Essntial for undrstanding many phnomna in Chmistry,

More information

Magnetic vector potential. Antonio Jose Saraiva ; -- Electric current; -- Magnetic momentum; R Radius.

Magnetic vector potential. Antonio Jose Saraiva ; -- Electric current; -- Magnetic momentum; R Radius. Magnti vtor potntial Antonio Jos araiva ajps@hotail.o ; ajps137@gail.o A I.R A Magnti vtor potntial; -- auu prability; I -- ltri urrnt; -- Magnti ontu; R Radius. un agnti ronntion un tru surfa tpratur

More information

Byeong-Joo Lee

Byeong-Joo Lee OSECH - MSE calphad@postch.ac.kr Equipartition horm h avrag nrgy o a particl pr indpndnt componnt o motion is ε ε ' ε '' ε ''' U ln Z Z ε < ε > U ln Z β ( ε ' ε '' ε ''' / Z' Z translational kintic nrgy

More information

ELECTRON COOLING and ELECTRON-NUCLEI COLLIDERS. A.Skrinsky Budker Institute of Nuclear Physics Novosibirsk, Russia

ELECTRON COOLING and ELECTRON-NUCLEI COLLIDERS. A.Skrinsky Budker Institute of Nuclear Physics Novosibirsk, Russia EECTRON COOING and EECTRON-NUCEI COIDERS A.Skrinsky Budkr Institut of Nular Physis Novosibirsk, Russia Eltron Cooling, proposd and dvlopd at INP (Novosibirsk) in 960s and 970s //, is usd now ativly at

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Handout 28. Ballistic Quantum Transport in Semiconductor Nanostructures

Handout 28. Ballistic Quantum Transport in Semiconductor Nanostructures Hanout 8 Ballisti Quantum Transport in Smionutor Nanostruturs In this ltur you will larn: ltron transport without sattring (ballisti transport) Th quantum o onutan an th quantum o rsistan Quanti onutan

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by: Elctromagntic Induction. Lorntz forc on moving charg Point charg moving at vlocity v, F qv B () For a sction of lctric currnt I in a thin wir dl is Idl, th forc is df Idl B () Elctromotiv forc f s any

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

SUGGESTED SOLUTION TO EXAM I COURSE TFY 4310 MOLECULAR BIOPHYSICS Saturday 18. december 2010 Time: kl

SUGGESTED SOLUTION TO EXAM I COURSE TFY 4310 MOLECULAR BIOPHYSICS Saturday 18. december 2010 Time: kl NORWEIAN UNIVERSITY OF SCIENCE AND TECHNOLOY DEPARTMENT OF PHYSICS Pag 1 of 6 SUESTED SOLUTION TO EXAM I COURSE TFY 431 MOLECULAR BIOPHYSICS Saturday 18. dmbr 1 Tim: kl. 9 13. EXERCISE 1 a) sp-, sp - and

More information

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Radiation Physics PHYS /251. Prof. Gocha Khelashvili Radiation Physics PHYS 571-051/251 Prof. Gocha Khelashvili Interaction of Radiation with Matter: Heavy Charged Particles Directly and Indirectly Ionizing Radiation Classification of Indirectly Ionizing

More information

Numerical Simulation for Magnetic Mirror Effect on Electron Movement in a Hall Thruster

Numerical Simulation for Magnetic Mirror Effect on Electron Movement in a Hall Thruster Numrial Simulation for Magnti Mirror Efft on Eltron Momnt in a Hall hrustr IEPC-7-37 Prsntd at th 3 th Intrnational Eltri Propulsion Confrn, Florn, Italy Sptmbr 7-, 7 Darn Yu *, Hui Liu and Haiyang Fu

More information

The DELPHI experiment at the LEP accelerator at the CERN laboratory

The DELPHI experiment at the LEP accelerator at the CERN laboratory Th DELPHI xprimnt at th LEP acclrator at th CERN laboratory Part 1. Th LEP acclrator Part 2. Th DELPHI xprimnt Part 3. Particl physics rsarch at LEP Th LEP acclrator Th study of collisions btwn lctrons

More information

Neutrinos are chargeless, nearly massless particles Most abundant particle in the Universe Interact with matter via weak nuclear force

Neutrinos are chargeless, nearly massless particles Most abundant particle in the Universe Interact with matter via weak nuclear force By Wndi Wamlr Nutrinos ar charglss, narly masslss articls Most abundant articl in th Univrs Intract with mattr via wak nuclar forc Narly transarnt to mattr Only known ty of articl that can sca from th

More information

Collisions between electrons and ions

Collisions between electrons and ions DRAFT 1 Collisions btwn lctrons and ions Flix I. Parra Rudolf Pirls Cntr for Thortical Physics, Unirsity of Oxford, Oxford OX1 NP, UK This rsion is of 8 May 217 1. Introduction Th Fokkr-Planck collision

More information

Collisionless anisotropic electron heating and turbulent transport in coronal flare loops

Collisionless anisotropic electron heating and turbulent transport in coronal flare loops Collisionlss anisotropic lctron hating and turbulnt transport in coronal flar loops K.-W. L and J. Büchnr 5 April 2011 Outlin: 1. HXR obsrvation and standard flar modl 2. Linar stability analysis (multi-fluid

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

high-mobility two-dimensional semiconductors

high-mobility two-dimensional semiconductors Radiation-indud magntorsistan osillations in high-mobility two-dimnsional smiondutors X. L. Li Dpartmnt of Physis, Shanghai Jiaotong Univrsity, 1954 Huashan Road, Shanghai 00030, China Abstrat: W giv a

More information

Physics 2D Lecture Slides Lecture 14: Feb 1 st 2005

Physics 2D Lecture Slides Lecture 14: Feb 1 st 2005 Physics D Lctur Slids Lctur 14: Fb 1 st 005 Vivk Sharma UCSD Physics Compton Effct: what should Happn Classically? Plan wav [f,λ] incidnt on a surfac with loosly bound lctrons intraction of E fild of EM

More information

A STUDY ON THE RESPONSES OF FREE SHEAR LAYERS UNDER EXTERNAL EXCITATIONS

A STUDY ON THE RESPONSES OF FREE SHEAR LAYERS UNDER EXTERNAL EXCITATIONS ISTP-6, 5, PRAGE 6 TH INTERNATIONAL SYMPOSIM ON TRANSPORT PHENOMENA A STDY ON THE RESPONSES OF FREE SHEAR LAYERS NDER EXTERNAL EXCITATIONS Hsu, Chng-Chiang Dpartmnt of Airraft Enginring, Air For Institut

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

2. Laser physics - basics

2. Laser physics - basics . Lasr physics - basics Spontanous and stimulatd procsss Einstin A and B cofficints Rat quation analysis Gain saturation What is a lasr? LASER: Light Amplification by Stimulatd Emission of Radiation "light"

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

Classical Magnetic Dipole

Classical Magnetic Dipole Lctur 18 1 Classical Magntic Dipol In gnral, a particl of mass m and charg q (not ncssarily a point charg), w hav q g L m whr g is calld th gyromagntic ratio, which accounts for th ffcts of non-point charg

More information

Searches for Contact Interactions at HERA

Searches for Contact Interactions at HERA Sarchs for Contact Intractions at HERA A.F.Żarncki Univrsity of Warsaw for ZEUS XVI Intrnational Workshop on Dp-Inlastic Scattring and Rlatd Subjcts 7- April 2008, Univrsity Collg London A.F.Żarncki Sarchs

More information

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER J. C. Sprott PLP 821 Novmbr 1979 Plasma Studis Univrsity of Wisconsin Ths PLP Rports ar informal and prliminary and as such may contain rrors not yt

More information

Davisson Germer experiment Announcements:

Davisson Germer experiment Announcements: Davisson Grmr xprimnt Announcmnts: Homwork st 7 is du Wdnsday. Problm solving sssions M3-5, T3-5. Th 2 nd midtrm will b April 7 in MUEN E0046 at 7:30pm. BFFs: Davisson and Grmr. Today w will go ovr th

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

Neutrino Probes of Dark Energy and Dark Matter

Neutrino Probes of Dark Energy and Dark Matter SNOWPAC@Snowbird March 25, 2010 Nutrino Probs of Dark Enrgy and Dark Mattr Shin ichiro Ando California Institut of Tchnology Dark Enrgy and Dark Mattr 2.0 1.5 1.0 No Big Bang SN Most of th nrgy in th Univrs

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Signal Prossing, Fall 006 Ltur 7: Filtr Dsign Zhng-ua an Dpartmnt of Eltroni Systms Aalborg Univrsity, Dnmar t@om.aau. Cours at a glan MM Disrt-tim signals an systms Systm MM Fourir-omain rprsntation

More information

1. Thermal Motion of electrons and holes

1. Thermal Motion of electrons and holes 1. Thral Motion of ltrons and hols Eltrons and hols ov at th thral vloity but not in a sil straight lin fashion. Zig zag otion is du to ollisions or sattring with irftions in th rystal. Nt thral vloity

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Random Process Part 1

Random Process Part 1 Random Procss Part A random procss t (, ζ is a signal or wavform in tim. t : tim ζ : outcom in th sampl spac Each tim w rapat th xprimnt, a nw wavform is gnratd. ( W will adopt t for short. Tim sampls

More information

EFFECTIVENESS AND OPTIMIZATION OF FIBER BRAGG GRATING SENSOR AS EMBEDDED STRAIN SENSOR

EFFECTIVENESS AND OPTIMIZATION OF FIBER BRAGG GRATING SENSOR AS EMBEDDED STRAIN SENSOR EFFECTIVENESS AND OPTIMIZATION OF FIBE BAGG GATING SENSO AS EMBEDDED STAIN SENSO Xiaoming Tao, Liqun Tang,, Chung-Loong Choy Institut of Txtils and Clothing, Matrials sarh Cntr, Th Hong Kong Polythni Univrsity

More information

University of Oslo. Department of Physics. Interaction Between Ionizing Radiation And Matter, Part 2 Charged-Particles.

University of Oslo. Department of Physics. Interaction Between Ionizing Radiation And Matter, Part 2 Charged-Particles. Interaction Between Ionizing Radiation And Matter, Part Charged-Particles Audun Sanderud Excitation / ionization Incoming charged particle interact with atom/molecule: Ionization Excitation Ion pair created

More information

High Energy Astrophysics

High Energy Astrophysics High Enrg Astrophsics Radiation Procsss /4 Giampaolo Pisano Jodrll Bank Cntr for Astrophsics - Univrsit of Manchstr giampaolo.pisano@manchstr.ac.uk Fbruar 1 Radiation Procsss Rfrncs: - Brmsstrahlung -

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry PHYS 5012 Radiation Physics and Dosimetry Tuesday 17 March 2009 What are the dominant photon interactions? (cont.) Compton scattering, the photoelectric effect and pair production are the three main energy

More information

Extraction of Doping Density Distributions from C-V Curves

Extraction of Doping Density Distributions from C-V Curves Extraction of Doping Dnsity Distributions from C-V Curvs Hartmut F.-W. Sadrozinski SCIPP, Univ. California Santa Cruz, Santa Cruz, CA 9564 USA 1. Connction btwn C, N, V Start with Poisson quation d V =

More information

The United States Nuclear Regulatory Commission and Duke University Present: Regulatory and Radiation Protection Issues in Radionuclide Therapy

The United States Nuclear Regulatory Commission and Duke University Present: Regulatory and Radiation Protection Issues in Radionuclide Therapy Th Unitd Stats Nuclar Rgulatory Commission and Duk Univrsity Prsnt: Rgulatory and Radiation Protction Issus in Radionuclid Thrapy Copyright 008 Duk Radiation Safty and Duk Univrsity. All Rights Rsrvd.

More information

A NEW MODEL FOR W,Z, HIGGS BOSONS MASSES CALCULATION AND VALIDATION TESTS BASED ON THE DUAL GINZBURG-LANDAU THEORY(revised-2015)

A NEW MODEL FOR W,Z, HIGGS BOSONS MASSES CALCULATION AND VALIDATION TESTS BASED ON THE DUAL GINZBURG-LANDAU THEORY(revised-2015) A NEW MODEL FOR W,Z, HIGGS BOSONS MASSES CALCULATION AND VALIDATION TESTS BASED ON THE DUAL GINZBURG-LANDAU THEORY(rvisd-5) Stfan Mhdintanu CITON Cntr of Thnology and Enginring for Nular Projts, Str. Atomistilor

More information

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e 8/7/018 Cours Instructor Dr. Raymond C. Rumpf Offic: A 337 Phon: (915) 747 6958 E Mail: rcrumpf@utp.du EE 4347 Applid Elctromagntics Topic 3 Skin Dpth & Powr Flow Skin Dpth Ths & Powr nots Flow may contain

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 4

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. Lecture 4 Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics Lecture 4 Karsten Heeger heeger@wisc.edu Homework Homework is posted on course website http://neutrino.physics.wisc.edu/teaching/phys736/

More information

Deepak Rajput

Deepak Rajput Q Prov: (a than an infinit point lattic is only capabl of showing,, 4, or 6-fold typ rotational symmtry; (b th Wiss zon law, i.. if [uvw] is a zon axis and (hkl is a fac in th zon, thn hu + kv + lw ; (c

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information