Root locus Analysis. P.S. Gandhi Mechanical Engineering IIT Bombay. Acknowledgements: Mr Chaitanya, SYSCON 07


 Leon Boyd
 1 years ago
 Views:
Transcription
1 Root locus Analysis P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: Mr Chaitanya, SYSCON 07
2 Recap R(t) + _ k p + k s d 1 s( s+ a) C(t) For the above system the closed loop transfer function is given by: ks + d p 2 s + ( kd + a) s+ kp We can see that the closed loop poles location in splane s depends on the open loop system gain, poles (i.e( a), zeros (if exist), controller gains (kp( kp, ki and kd). k
3 Why Root locus? Varying any one or all of these parameters changes the closed loop poles and hence the impulse response and stability of the system changes. And it is laborious each time to find the closed loop poles by varying these parameter values. Root locus is a graphical method which can easily find the closed loop poles by changing any one of these parameters (if others kept constant).
4 Root locus This method may not give the exact results but a fast approximate result can be achieved. Root locus is defined as the locus of the roots of the characteristic equation of the closed loop system as a specific parameter is varied from zero to infinity.
5 Root locus approach R(s)  + KG(s) C(s) H(s) Consider a system shown above. The closed loop transfer function of this system is given by C(s) KG(s) = R(s) 1+ KG(s)H(s) So the characteristic equation is 1+ KG(s)H(s) = 0
6 Root locus approach contd.. Which is same as KG(s)H(s) = 1 Now this can be written as: Angle condition: 0 G(s)H(s) = ±180 (2k +1) (k=0,1..) Magnitude condition: KG(s)H(s) =1 A locus of all the points in the complex plane satisfying the angle condition alone is called root locus. The closed loop poles for a give parameter value are determined from the magnitude condition.
7 Root locus approach contd.. Suppose KG(s)H(s) ) is of the form: K(s + z )(s + z )...(s + z ) s p s p s p n KG(s)H(s) = 1 2 m ( + )( )...( ) Now to sketch the root locus with K as the parameter first we must know the location of poles and zeros of G(s)H(s). Later we test a point in complex plane for the angle condition. If condition is satisfied the test point lies on the root locus.
8 For a system with 4 poles and 1 zero Assuming two of these poles are complex conjugates. The angle of G(s)H(s) at this test point is: G(s)H(s) = φ1 θ1 θ2 θ3 θ4 Is this value is equal to 0 ±180 (2k +1) then the test point lies on the root locus.
9 Rules to plot Root locus It is difficult to test each and every point on the complex plane for angle condition. There are 8 rules which states the procedure to plot the root locus of any system. To draw a root locus first we must locate the open loop poles and zeros on the splane. s One fact is that the root locus plots are symmetric about the real axis as the complex roots occur in conjugate form.
10 Set of Rules to plot RootLocus 1. Locate the poles and zeros of GsHs () () on the Splane. S The root locus branches start at open loop poles and terminate at zeros. If no. of (poleszeros) > 0, those (nm) branches will end at infinite. 2. Determining the root loci on real axis. Taking any test point, if the sum of no. of (poles+zeros) right to it, is an odd number, then that point will be on RootLoci. 3. Determining the asymptotes of the RootLoci. These asymptotes show the way through which the (nm) branches should end at infinite.
11 Rules contd 4. Finding the breakaway away and breakin points. These are the points at which the root locus branch divides or combines. 5. If there are any complex poles or zeros, we have to find the angle of departure or arrival of root loci at that point. 6. Finding the points where the root loci crosses the imaginary axis. This can be found from Routh s s stability criterion. 7. Taking a series of test points in the neighborhood of origin and jw axis at the intersection points. 8. Determining the closed loop poles at desired k value
12 Rule1 As K increases from 0 to infinity, each branch of the root locus originates from an openloop pole with K=0 and terminates either on open loop zero or on infinity with K= The number of branches terminating on infinity equals the number of openloop poles minus zeros. The proof of this statement is as follows:
13 Rule1 contd.. The general characteristic equation can be rewritten as: When K=0, this equation has roots at  open loop poles. The equation can also be written as: 1 n j j= 1 i= 1 n ( s+ p ) + K ( s+ z ) = 0 ( s+ p ) + ( s+ z ) = 0 j K j = 1 i = 1 When K, this equation has roots at  open loop zeros of the system. m m i i p j which are the z i which are
14 Rule1 contd.. Therefore m branches terminate at openloop zeros, the other (nm) branches terminate at infinity. Examining the magnitude condition m i= 1 n j= 1 ( s+ z ) ( s+ p ) i j s We find that this is satisfied by as K Hence (nm) branches terminate at infinity as K = 1 K
15 Rule 2 A point on the real axis lies on the locus if the number of openloop poles plus zeros on the real axis to the right of this point is odd. This can be easily verified by checking the angle criterion at that point. [G(s)H(s)] = (m  n )180 r Where m r are number of open loop zeros to the right of the point and n r are the number of openloop poles to the right of the point. r =± + = 0 0 (2q 1)180 ; q 0,1, 2...
16 Rule 3 (determining the asymptotes of root loci) The (nm) branches of the root locus which tend to infinity, do so along straight line asymptotes whose angles are given by φ A 0 (2q + 1)180 ; q 0,1, 2...,( n m 1) = = n m Proof: Consider a point in splane s which is far away from the openloop poles and zeros, then the angle made by all the phasors at this point is almost same. Hence, [G(s)H(s)] = (n  m)φ
17 Rule 3 (determining the asymptotes of root loci) contd.. If this point has to lie on the root locus then it must satisfy Hence (n  m) φ =± (2q + 1)180 0 φ A 0 (2q + 1)180 ; q 0,1, 2...,( n m 1) = = n m The asymptotes cross the real axis at a point known as centroid,, determined by the relationship: (sum of real parts of poles sum of real parts of zeros)/(number of poles number of zeros)
18 Rule 3 (determining the asymptotes of root loci) contd.. The open loop transfer function can also be m m written as m m1 G(s)H(s) = This can be written as G(s)H(s) = The denominator is like a expansion of which is of the form K[s + ( z )s ( z )] i i=1 i=1 n n n n1 pj j=1 j=1 [s + ( )s ( p )] K n m nm nm1 [s + ( pj z i)s +...] j=1 i=1 nm n m 1 [s + ( n m) σ As +...] j i ( ) n s + σ m A
19 Rule 3 (determining the asymptotes of root loci) contd.. Comparing both as s we get σ = A n m ( p ) (z ) j j=1 i=1 nm Because all the complex poles and zeros (if exist) are conjugate pairs, σ A is always a real quantity. Hence σ A is (sum of real parts of poles sum of real parts of zeros)/(number of poles number of zeros) i
Lecture 1 Root Locus
Root Locus ELEC304Alper Erdogan 1 1 Lecture 1 Root Locus What is RootLocus? : A graphical representation of closed loop poles as a system parameter varied. Based on RootLocus graph we can choose the
More informationSoftware Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
More informationRoot Locus. Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering
Root Locus Signals and Systems: 3C1 Control Systems Handout 3 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie Recall, the example of the PI controller car cruise control system.
More information7.4 STEP BY STEP PROCEDURE TO DRAW THE ROOT LOCUS DIAGRAM
ROOT LOCUS TECHNIQUE. Values of on the root loci The value of at any point s on the root loci is determined from the following equation G( s) H( s) Product of lengths of vectors from poles of G( s)h( s)
More informationLecture 3: The Root Locus Method
Lecture 3: The Root Locus Method Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 56001 This draft: March 1, 008 1 The Root Locus method The Root Locus method,
More informationControl Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho Tel: Fax:
Control Systems Engineering ( Chapter 8. Root Locus Techniques ) Prof. KwangChun Ho kwangho@hansung.ac.kr Tel: 027604253 Fax:027604435 Introduction In this lesson, you will learn the following : The
More informationAutomatic Control Systems, 9th Edition
Chapter 7: Root Locus Analysis Appendix E: Properties and Construction of the Root Loci Automatic Control Systems, 9th Edition Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois
More informationUnit 7: Part 1: Sketching the Root Locus
Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland March 14, 2010 ENGI 5821 Unit 7: Root
More informationCHAPTER # 9 ROOT LOCUS ANALYSES
F K א CHAPTER # 9 ROOT LOCUS ANALYSES 1. Introduction The basic characteristic of the transient response of a closedloop system is closely related to the location of the closedloop poles. If the system
More informationCourse roadmap. ME451: Control Systems. What is Root Locus? (Review) Characteristic equation & root locus. Lecture 18 Root locus: Sketch of proofs
ME451: Control Systems Modeling Course roadmap Analysis Design Lecture 18 Root locus: Sketch of proofs Dr. Jongeun Choi Department of Mechanical Engineering Michigan State University Laplace transform
More informationSchool of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See
More informationECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
More informationChapter 7 : Root Locus Technique
Chapter 7 : Root Locus Technique By Electrical Engineering Department College of Engineering King Saud University 1431143 7.1. Introduction 7.. Basics on the Root Loci 7.3. Characteristics of the Loci
More informationI What is root locus. I System analysis via root locus. I How to plot root locus. Root locus (RL) I Uses the poles and zeros of the OL TF
EE C28 / ME C34 Feedback Control Systems Lecture Chapter 8 Root Locus Techniques Lecture abstract Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley
More informationUnit 7: Part 1: Sketching the Root Locus. Root Locus. Vector Representation of Complex Numbers
Root Locus Root Locus Unit 7: Part 1: Sketching the Root Locus Engineering 5821: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland 1 Root Locus Vector Representation
More informationECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8
Learning Objectives ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 8 Dr. Oishi oishi@unm.edu November 2, 203 State the phase and gain properties of a root locus Sketch a root locus, by
More informationModule 07 Control Systems Design & Analysis via RootLocus Method
Module 07 Control Systems Design & Analysis via RootLocus Method Ahmad F. Taha EE 3413: Analysis and Desgin of Control Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha March
More informationLecture Sketching the root locus
Lecture 05.02 Sketching the root locus It is easy to get lost in the detailed rules of manual root locus construction. In the old days accurate root locus construction was critical, but now it is useful
More informationMAK 391 System Dynamics & Control. Presentation Topic. The Root Locus Method. Student Number: Group: IB. Name & Surname: Göksel CANSEVEN
MAK 391 System Dynamics & Control Presentation Topic The Root Locus Method Student Number: 9901.06047 Group: IB Name & Surname: Göksel CANSEVEN Date: December 2001 The RootLocus Method Göksel CANSEVEN
More informationIntroduction to Root Locus. What is root locus?
Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response
More informationRoot Locus Techniques
Root Locus Techniques 8 Chapter Learning Outcomes After completing this chapter the student will be able to: Define a root locus (Sections 8.1 8.2) State the properties of a root locus (Section 8.3) Sketch
More informationRoot Locus Methods. The root locus procedure
Root Locus Methods Design of a position control system using the root locus method Design of a phase lag compensator using the root locus method The root locus procedure To determine the value of the gain
More informationa. Closedloop system; b. equivalent transfer function Then the CLTF () T is s the poles of () T are s from a contribution of a
Root Locus Simple definition Locus of points on the s plane that represents the poles of a system as one or more parameter vary. RL and its relation to poles of a closed loop system RL and its relation
More informationClass 12 Root Locus part II
Class 12 Root Locus part II Revising (from part I): Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K Comple plane jω ais 0 real ais Thus,
More information2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Reading: ise: Chapter 8 Massachusetts
More informationTest 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010
Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the
More informationStep input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?
IC6501 CONTROL SYSTEM UNITII TIME RESPONSE PARTA 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April
More informationExample on Root Locus Sketching and Control Design
Example on Root Locus Sketching and Control Design MCE44  Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We
More informationSECTION 5: ROOT LOCUS ANALYSIS
SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More informationChemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University
Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this
More information5 Root Locus Analysis
5 Root Locus Analysis 5.1 Introduction A control system is designed in tenns of the perfonnance measures discussed in chapter 3. Therefore, transient response of a system plays an important role in the
More informationEE302  Feedback Systems Spring Lecture KG(s)H(s) = KG(s)
EE3  Feedback Systems Spring 19 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 1.. 1.1 Root Locus In control theory, root locus analysis is a graphical analysis method for investigating the change of
More informationClass 11 Root Locus part I
Class 11 Root Locus part I Closed loop system G(s) G(s) G(s) Closed loop system K The Root Locus the locus of the poles of the closed loop system, when we vary the value of K We shall assume here K >,
More information2.004 Dynamics and Control II Spring 2008
MT OpenCourseWare http://ocw.mit.edu.004 Dynamics and Control Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts nstitute of Technology
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More information"APPENDIX. Properties and Construction of the Root Loci " E1 K ¼ 0ANDK ¼1POINTS
AppendixE_1 5/14/29 1 "APPENDIX E Properties and Construction of the Root Loci The following properties of the root loci are useful for constructing the root loci manually and for understanding the root
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationRoot locus 5. tw4 = 450. Root Locus S51 S O L U T I O N S
Root Locus S51 S O L U T I O N S Root locus 5 Note: All references to Figures and Equations whose numbers are not preceded by an "S" refer to the textbook. (a) Rule 2 is all that is required to find the
More informationChapter 7. Root Locus Analysis
Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( )  K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloedloop characteritic equation define the ytem characteritic repone. Their location in the complex
More information6.302 Feedback Systems Recitation 7: Root Locus Prof. Joel L. Dawson
To start with, let s mae sure we re clear on exactly what we mean by the words root locus plot. Webster can help us with this: ROOT: A number that reduces and equation to an identity when it is substituted
More informationEXAMPLE PROBLEMS AND SOLUTIONS
Similarly, the program for the fourthorder transfer function approximation with T = 0.1 sec is [num,denl = pade(0.1, 4); printsys(num, den, 'st) numlden = sa42o0sa3 + 1 80O0sA2840000~ + 16800000 sa4
More informationIf you need more room, use the backs of the pages and indicate that you have done so.
EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty
More informationLecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore
Lecture 5 Classical Control Overview III Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore A Fundamental Problem in Control Systems Poles of open
More informationModule 3F2: Systems and Control EXAMPLES PAPER 2 ROOTLOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOTLOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the rootlocus
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationRoot Locus U R K. Root Locus: Find the roots of the closedloop system for 0 < k < infinity
Background: Root Locus Routh Criteria tells you the range of gains that result in a stable system. It doesn't tell you how the system will behave, however. That's a problem. For example, for the following
More informationCONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is
CONTROL SYSTEMS Chapter 5 : Root Locu Diagram GATE Objective & Numerical Type Solution Quetion 1 [Work Book] [GATE EC 199 IIScBangalore : Mark] The tranfer function of a cloed loop ytem i T () where i
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationEE402  Discrete Time Systems Spring Lecture 10
EE402  Discrete Time Systems Spring 208 Lecturer: Asst. Prof. M. Mert Ankarali Lecture 0.. Root Locus For continuous time systems the root locus diagram illustrates the location of roots/poles of a closed
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationEE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO
EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationProportional plus Integral (PI) Controller
Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on
More informationCISE302: Linear Control Systems
Term 8 CISE: Linear Control Sytem Dr. Samir AlAmer Chapter 7: Root locu CISE_ch 7 AlAmer8 ١ Learning Objective Undertand the concept of root locu and it role in control ytem deign Be able to ketch root
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 13: Root Locus Continued Overview In this Lecture, you will learn: Review Definition of Root Locus Points on the Real Axis
More informationRoot Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus  1
Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus  1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationControl Systems. Frequency Method Nyquist Analysis.
Frequency Method Nyquist Analysis chibum@seoultech.ac.kr Outline Polar plots Nyquist plots Factors of polar plots PolarNyquist Plots Polar plot: he locus of the magnitude of ω vs. the phase of ω on polar
More informationControl Systems. Root Locus & Pole Assignment. L. Lanari
Control Systems Root Locus & Pole Assignment L. Lanari Outline rootlocus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS  Root
More informationRoot Locus Techniques
4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since
More informationMethods for analysis and control of. Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March
More informationMODERN CONTROL SYSTEMS
MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More information1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I
MAE 43B Linear Control Prof. M. Krstic FINAL June 9, Problem. ( points) Consider a plant in feedback with the PI controller G(s) = (s + 3)(s + )(s + a) C(s) = K P + K I s. (a) (4 points) For a given constant
More informationProblems XO («) splane. splane *~8 X 5. id) X splane. splane. * Xtg) FIGURE P8.1. jplane. JO) k JO)
Problems 1. For each of the root loci shown in Figure P8.1, tell whether or not the sketch can be a root locus. If the sketch cannot be a root locus, explain why. Give all reasons. [Section: 8.4] *~8 XO
More informationIC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
More informationCourse Outline. Closed Loop Stability. Stability. Amme 3500 : System Dynamics & Control. Nyquist Stability. Dr. Dunant Halim
Amme 3 : System Dynamics & Control Nyquist Stability Dr. Dunant Halim Course Outline Week Date Content Assignment Notes 1 5 Mar Introduction 2 12 Mar Frequency Domain Modelling 3 19 Mar System Response
More informationSECTION 8: ROOTLOCUS ANALYSIS. ESE 499 Feedback Control Systems
SECTION 8: ROOTLOCUS ANALYSIS ESE 499 Feedback Control Systems 2 Introduction Introduction 3 Consider a general feedback system: Closedloop transfer function is KKKK ss TT ss = 1 + KKKK ss HH ss GG ss
More informationControl Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control DMAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:
More informationIdentification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability  26 March, 2014
Prof. Dr. Eleni Chatzi System Stability  26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can
More informationControl Systems. University Questions
University Questions UNIT1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write
More informationControl Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Guzzella 9.13, Emilio Frazzoli
Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Guzzella 9.13, 13.3 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 3, 2017 E. Frazzoli (ETH)
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationAutomatic Control (TSRT15): Lecture 4
Automatic Control (TSRT15): Lecture 4 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13282226 Office: Bhouse extrance 2527 Review of the last
More informationRoot Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0
Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root
More informationMethods for analysis and control of dynamical systems Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.inpg.fr www.gipsalab.fr/ o.sename 5th February 2015 Outline
More informationEC6405  CONTROL SYSTEM ENGINEERING Questions and Answers Unit  I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform
More informationLecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types
Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types Venkata Sonti Department of Mechanical Engineering Indian Institute of Science Bangalore, India, 562 This
More informationand a where is a Vc. K val paran This ( suitab value
198 Chapter 5 RootLocus Method One classical technique in determining pole variations with parameters is known as the rootlocus method, invented by W. R. Evens, which will be introduced in this chapter.
More informationLecture 12: Examples of Root Locus Plots. Dr. Kalyana Veluvolu. Lecture 12: Examples of Root Locus Plots Dr. Kalyana Veluvolu
ROOTLOCUS ANALYSIS Example: Given that G( ) ( + )( + ) Dr. alyana Veluvolu Sketch the root locu of 1 + G() and compute the value of that will yield a dominant econd order behavior with a damping ratio,
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationBlock Diagram Reduction
Block Diagram Reduction Figure 1: Single block diagram representation Figure 2: Components of Linear Time Invariant Systems (LTIS) Figure 3: Block diagram components Figure 4: Block diagram of a closedloop
More informationStability Analysis Techniques
Stability Analysis Techniques In this section the stability analysis techniques for the Linear TimeInvarient (LTI) discrete system are emphasized. In general the stability techniques applicable to LTI
More informationEC CONTROL SYSTEM UNIT I CONTROL SYSTEM MODELING
EC 2255  CONTROL SYSTEM UNIT I CONTROL SYSTEM MODELING 1. What is meant by a system? It is an arrangement of physical components related in such a manner as to form an entire unit. 2. List the two types
More informationLocus 6. More Root S 0 L U T I 0 N S. Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook.
S 0 L U T I 0 N S More Root Locus 6 Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. For the first transfer function a(s), the root locus is
More informationCourse Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: SteadyState Error Unit 7: Root Locus Techniques
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More informationAutomatic Control Systems. Part III: Root Locus Technique
www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By ShihMin Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root
More informationLaplace Transforms and use in Automatic Control
Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral
More informationControl Systems. Root locus.
Control Sytem Root locu chibum@eoultech.ac.kr Outline Concet of Root Locu Contructing root locu Control Sytem Root Locu Stability and tranient reone i cloely related with the location of ole in lane How
More informationD G 2 H + + D 2
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists
More informationProfessor Fearing EE C128 / ME C134 Problem Set 4 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley. control input. error Controller D(s)
Professor Fearing EE C18 / ME C13 Problem Set Solution Fall 1 Jansen Sheng and Wenjie Chen, UC Berkeley reference input r(t) + Σ error e(t) Controller D(s) grid 8 pixels control input u(t) plant G(s) output
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2
More informationFrequency Response Analysis
Frequency Response Analysis Consider let the input be in the form Assume that the system is stable and the steady state response of the system to a sinusoidal inputdoes not depend on the initial conditions
More informationControl Systems. Root locus.
Control Sytem Root locu chibum@eoultech.ac.kr Outline Concet of Root Locu Contructing root locu Control Sytem Root Locu Stability and tranient reone i cloely related with the location of ole in lane How
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More information