A comparison of the defects introduced during plasma exposure in. high- and low-k dielectrics

Size: px
Start display at page:

Download "A comparison of the defects introduced during plasma exposure in. high- and low-k dielectrics"

Transcription

1 A comparison of the defects introduced during plasma exposure in high- and low-k dielectrics H. Ren, 1 G. Jiang, 2 G. A. Antonelli, 2 Y. Nishi, 3 and J.L. Shohet 1 1 Plasma Processing & Technology Laboratory and Department of Electrical & Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin Novellus Systems, Tualatin, Oregon Stanford University, Stanford, California ABSTRACT Defects in pristine and ultraviolet-cured low-k organosilicate glass (SiCOH) before and after electron cyclotron resonance plasma exposure were measured using electron-spin resonance. The plasma was parameterized by combinations of pressure and power to obtain a range of ion and photon fluences. The results show that for SiCOH films, ion bombardment increases the defect concentrations more than photon bombardment does. In addition, UV-cured SiCOH films have larger defect concentrations compared with pristine films. The results were confirmed with leakage-current measurements using a mercury probe. 1

2 Defects in low-k organosilicate glass (SiCOH) films have been determined to be the sources of large leakage currents 1,2 and jeopardize the use of these films for interconnects in the manufacturing of microelectronic devices. 3 Recent work using electron-spin resonance (ESR) spectroscopy shows that plasma exposure can strongly affect the defect concentrations in SiCOH. 4 A capillary-array window 5 was used as an ion filter to separate the effects from ion and photon bombardment. 6 However, synergistic effects between ion and photon bombardment may occur during plasma exposure. 7 In order to fully understand the damage mechanisms of ion and photon fluences on the defects in SiCOH films, it is critical to develop a methodology to investigate the plasma exposure with different fluences. Previous work has shown that by varying plasma parameters, charge accumulation and defect-formation mechanisms resulting from both ion and photon fluence can be found for high-k dielectrics. 8 In addition, it was found that the defects in high-k dielectrics, located in the interfacial layers, were modified primarily by the photon flux because the VUV photons, as opposed to the plasma ions, could penetrate to the dielectric-substrate interface. 8 In this Letter, we extend this work to investigate the effects of ion and photon fluences on defects in low-k (SiCOH) films. It is hypothesized that, unlike the defects in high-k dielectric films, defects in SiCOH are located in the bulk dielectric rather than at the interface. This is because in the deposition of SiCOH films, when the carbon doping process, which is used to increase porosity takes place, more silicon bonds are broken. 3 2

3 Thus, the bulk SiCOH dielectric layer is likely to have more defects than the interface. Meanwhile, because the interfacial layers are much thinner than the bulk dielectric, there are more defects in the bulk dielectric layer. As a result, both ion and photon flux can have measurable effects on the defect concentration. In order to verify the hypothesis, pressure and power in an electron cyclotron resonance (ECR) plasma were varied to obtain various combinations of ion and photon flux, as discussed in Reference 8. In addition, in order to obtain the ion energy, a Langmuir probe 9 was used to investigate the plasma potential. From these measurements, with a d.c. bias voltage of -20 V at the wafer chuck, the ion energy was estimated to be about 50 ev. After plasma exposure, the defect concentrations were measured with ESR spectroscopy. This work will show how both ion and photon fluence modify defect concentration in SiCOH. This permits the identification of the nature of the defects and how they change during plasma exposure. To conduct the investigation, SiCOH films were plasma-enhanced-chemical-vapordeposited (PECVD) on two-inch-diameter high-resistivity silicon wafers. After the deposition, the dielectric constant was measured to be 2.75 and the film thickness was 50 nm. In addition, some of the SiCOH films were UV-cured. The UV cure was made at a temperature of 400 with ambient nitrogen. The UV photon energy was between 3-6 ev with a total fluence of approximately photons/cm 2. ECR Plasma exposure 6 was then made on the SiCOH films. Argon plasma was used to minimize the creation of free radicals 10 so that ion and photon bombardment were the primary sources of potential damage. The pressure was set various values between 5 and 3

4 30 mtorr while microwave power was varied from 100 to 400 W. Plasma diagnostics, including a Langmuir probe and a VUV monochromator were used to measure the ion and photon flux. Since fluxes are functions of pressure and power, over these ranges the ion flux varied between 0.4 and ions/(cm 2 s) while the photon flux varied between 0.2 and photons/(cm 2 s). Note that the ion flux is about an order of magnitude lower than that in a typical ECR plasma, 11 due to the fact that the dielectric sample was displaced far from the resonant layer along the axis of the vacuum chamber. After plasma exposure, the defect concentrations were measured with ESR and the results are shown in Figure 1. The calculation method and calibration for absolute defect levels are given in References [4] and [12]. For comparison, Figure 1(a) shows contours of constant defect concentration of interfacial silicon dangling bonds in 20-nm-thick HfO 2 films that were atomic-layer-deposited on a silicon substrate. Figures 1 (b) and (c) show similar defect concentration contours of silicon dangling bonds in pristine and UV-cured SiCOH films. It is seen that the defect concentrations in HfO 2 are two orders of magnitude smaller than those in SiCOH. This difference between the defect concentrations comes from the fact that the defects in HfO 2 are located in the 3-nm-thick interfacial oxide layer 12 while the defects in SiCOH, as will be shown, reside in the 50- nm-thick bulk dielectric. Furthermore, comparing Figure 1(a) with Figure 1(b) and (c), it is seen that the defects in high-k HfO 2 films are modified primarily by photon bombardment, while defect 4

5 concentration in low-k SiCOH films increases more from ion than from photon bombardment. This is explained as follows. For HfO 2, the ion-penetration depth, approximately 5 nm, 13 is less than the film thickness. Thus, the ions were not able to reach and modify the interfacial defects. 14 However, photons with penetration depths that are comparable to the dielectric thickness can reach the interface and modify the defect concentration. For the results shown in Figure 1(a), plasma photons in the UV range (wavelength longer than 200 nm) penetrate through the dielectric layer and decrease the defect concentration by electron repopulation into the defect. 12,15 Thus, the Figure shows that the defect concentration for HfO 2 decreases with increasing photon fluence. On the other hand, for SiCOH, ion bombardment, together with photon bombardment, can modify the defects at the dielectric surface and beyond. Because of the amorphous structure and lower density of SiCOH, 16 the ion penetration depth in SiCOH is likely to be larger than that in HfO 2 so that effects of ion bombardment on defects in SiCOH can be deeper in the bulk dielectric. The comparison between defect modifications in pristine SiCOH (Figure 1 (b)) and UVcured SiCOH (Figure 1 (c)) shows that the defect concentration in UV-cured SiCOH is larger for the same fluence. However, the change in defect concentration is smaller in UV-cured SiCOH. It is believed that the UV curing process, although it introduces 5

6 defects in the dielectric, also enhances the chemical stability of SiCOH in the sense that fewer defects are introduced during any processing that takes place after UV curing. In order to verify the relationship between defects and leakage currents in SiCOH, current-voltage (I-V) characteristics were measured on pristine SiCOH films using a mercury probe. Figure 2 shows the I-V characteristics after plasma exposure. During exposure, some SiCOH films were covered with a capillary-array window so that only photons were incident on the dielectric sample. From Figure 2, it is seen that photon and ion bombardment increase the leakage current. Comparison between the effects of full plasma exposure with photon bombardment alone shows that photon bombardment contributes only a small part of the leakage current increase. Hence, the ion bombardment will be the main source of this damage. The results are consistent with that in Figure 1. That is, as more defects were created, higher leakage currents were observed. In contrast with SiCOH, leakage currents in HfO 2 were found to be much smaller and did not vary significantly with photon or ion exposure. 17 In summary, the changes in defect concentrations after plasma exposure in both HfO 2 and SiCOH (uncured and UV cured) have been measured. For HfO 2, the defects are located at the interface and can be modified mainly by UV photon exposure. For SiCOH, it was found that ion bombardment dominates the changes in defect concentration because even though defects are located in the bulk dielectric, the ions can more easily penetrate into the lower-density SiCOH. Although the UV-curing process introduces more defects in SiCOH, it also reduces the potential for further damage by improving the chemical 6

7 stability of the bulk dielectric. Increases in defect concentration lead to larger leakage currents regardless of the mechanism that produced the defects. This work is supported by the Semiconductor Research Corporation under Contract Number 2008-KJ-1781 and the National Science Foundation under Grant CBET

8 Reference cited 1 S. Nakao, Y. Kamigaki, J. Ushio, T. Hamada, T. Ohno, M. Kato, K. Yoneda, S. Kondo, and N Kobayashi, Jap. J. Appl. Phys. 46, 3351 (2007). 2 B. C. Bittel, P. M. Lenahan, and S. W. King, Appl. Phys. Lett. 97, (2010). 3 K. Maex, M. R. Baklanov, D. Shamiryan, F. Lacopi, S. H. Brongersma, and Z. S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003). 4 H. Ren, M. T. Nichols, G. Jiang, G. A. Antonelli, Y. Nishi, and J.L. Shohet, Appl. Phys. Lett. 98, (2011). 5 J.D. Chatterton, G.S. Upadhyaya, J.L. Shohet, J.L. Lauer, R.D. Bathke and K.Kukkady, J. Appl. Phys. 100, (2006). 6 H. Ren, G.A. Antonelli, Y. Nishi, and J.L. Shohet, J. Appl. Phys. 108, (2010). 7 J. Lee and D.B. Graves, J. Phys. D: Appl. Phys. 43, (2010). 8 H. Ren, Y. Nishi and J.L. Shohet, Electrochem. Solid-State Lett. 14, H107 (2011). 9 N. Hershkowitz, in Plasma Diagnostics, O. Auciello and D. L. Flamm, Editors, Academic, New York (1993). 10 B. D. Beake, J. S. G. Ling, and G. J. Leggett, J. Mater. Chem. 8, 1735 (1998). 11 S. Guruvenket, G. Mohan Rao, M. Komath, and A. M. Raichur, Appl. Surf. Sci. 236, 278 (2004). 12 H. Ren, S.L. Cheng, Y. Nishi and J.L. Shohet, Appl. Phys. Lett. 96, (2010). 13 H. Ren, Y. Nishi and J.L. Shohet, Electrochem. Solid-State Lett. 14 H107 (2011). 14 K. Y. Fu, X. Tian, and P. K. Chu, Rev. Sci. Instrum. 74, 3697 (2003). 15 J.L. Lauer, H. Sinha, M.T. Nichols, G. A. Antonelli, Y.Nishi and J.L. Shohet, J. Electrochem. Soc. 157, G177 (2010). 8

9 16 A. Grill, J. Appl. Phys. 93, 1785 (2003). 17 J.L. Lauer, J.L. Shohet, and Y. Nishi, Appl. Phys. Lett. 94, (2009). 9

10 Figure Captions Figure 1. Contours of the defect concentrations in (a) 20 nm HfO 2, (b) 50 nm pristine SiCOH, and (c) UV-cured SiCOH due to plasma exposure. Figure 2. I-V characteristics for 50 nm pristine SiCOH before and after plasma exposure. 10

11 H. Ren - Figure 1 11

12 H. Ren - Figure 2 12

Effects of Ultraviolet Exposure on the current-voltage characteristics of. high-k dielectric layers

Effects of Ultraviolet Exposure on the current-voltage characteristics of. high-k dielectric layers Effects of Ultraviolet Exposure on the current-voltage characteristics of high-k dielectric layers H. Ren 1, A. Sehgal 1, G.A. Antonelli 2, Y. Nishi 3 and J.L. Shohet 1 1 Plasma Processing & Technology

More information

Experimental verification of physical models for defect states in. crystalline and amorphous ultrathin dielectric films

Experimental verification of physical models for defect states in. crystalline and amorphous ultrathin dielectric films Experimental verification of physical models for defect states in crystalline and amorphous ultrathin dielectric films H. Ren, 1 M. T. Nichols, 1 G. Jiang, 2 G. A. Antonelli, 3 Y. Nishi, 4 and J.L. Shohet

More information

In situ electrical characterization of dielectric thin films directly exposed to plasma vacuum-ultraviolet radiation

In situ electrical characterization of dielectric thin films directly exposed to plasma vacuum-ultraviolet radiation JOURNAL OF APPLIED PHYSICS VOLUME 88, NUMBER 4 15 AUGUST 2000 In situ electrical characterization of dielectric thin films directly exposed to plasma vacuum-ultraviolet radiation C. Cismaru a) and J. L.

More information

Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics H. Zheng 1, X. Guo 1, D. Pei 1, W. Li 1, J. Blatz 1, K. Hsu 1, D. Benjamin 1, Y-H Lin 2, H-S Fung 2,

More information

Chapter 2 On-wafer UV Sensor and Prediction of UV Irradiation Damage

Chapter 2 On-wafer UV Sensor and Prediction of UV Irradiation Damage Chapter 2 On-wafer UV Sensor and Prediction of UV Irradiation Damage Abstract UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface

More information

Engineering, University of Wisconsin-Madison, Madison, WI Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706

Engineering, University of Wisconsin-Madison, Madison, WI Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706 Radiation-Induced Effects on HfO x -Based Resistive Random Access Memory K-W Hsu 1, T-H Chang 2, L. Zhao 3, R.J. Agasie 4, T. B. Betthauser 5, R.J. Nickles 5, Y. Nishi 3, Z. Ma 2, and J.L. Shohet 1 1 Plasma

More information

Plasma-Surface Interactions and Impact on Electron Energy Distribution Function

Plasma-Surface Interactions and Impact on Electron Energy Distribution Function Plasma-Surface Interactions and Impact on Electron Energy Distribution Function N. Fox-Lyon(a), N. Ning(b), D.B. Graves(b), V. Godyak(c) and G.S. Oehrlein(a) (a) University of Maryland, College Park (b)

More information

Plasma-Surface Interactions in Patterning High-k k Dielectric Materials

Plasma-Surface Interactions in Patterning High-k k Dielectric Materials Plasma-Surface Interactions in Patterning High-k k Dielectric Materials October 11, 4 Feature Level Compensation and Control Seminar Jane P. Chang Department of Chemical Engineering University of California,

More information

Mechanistic study of plasma damage of low k dielectric surfaces

Mechanistic study of plasma damage of low k dielectric surfaces Mechanistic study of plasma damage of low k dielectric surfaces J. Bao, a H. Shi, J. Liu, H. Huang, and P. S. Ho Laboratory for Interconnect and Packaging, Microelectronics Research Center, The University

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting

Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting Temperature Dependent Current-voltage Characteristics of P- type Crystalline Silicon Solar Cells Fabricated Using Screenprinting Process Hyun-Jin Song, Won-Ki Lee, Chel-Jong Choi* School of Semiconductor

More information

Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195

Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195 ptimized Materials Properties for rganosilicate Glasses Produced by Plasma-Enhanced Chemical Vapor Deposition M.L. Neill, R.N. Vrtis, J.L. Vincent, A.S. Lukas, E.J. Karwacki, B.K. Peterson, and M.D. Bitner

More information

ELECTRON-cyclotron-resonance (ECR) plasma reactors

ELECTRON-cyclotron-resonance (ECR) plasma reactors 154 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 10, NO. 1, FEBRUARY 1997 Plasma-Parameter Dependence of Thin-Oxide Damage from Wafer Charging During Electron-Cyclotron-Resonance Plasma Processing

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Real-time electron-spin-resonance measurement of plasma induced surface interactions

Real-time electron-spin-resonance measurement of plasma induced surface interactions Realtime electronspinresonance measurement of plasma induced surface interactions 1 Naoya Sumi, 1 Kenji Ishikawa, 2 Hideo Horibe, 2 Akihiko Kono, 1 Keigo Takeda, 1 Hiroki Kondo, 1,3 Makoto Sekine and 1,3

More information

ETCHING Chapter 10. Mask. Photoresist

ETCHING Chapter 10. Mask. Photoresist ETCHING Chapter 10 Mask Light Deposited Substrate Photoresist Etch mask deposition Photoresist application Exposure Development Etching Resist removal Etching of thin films and sometimes the silicon substrate

More information

Effects of plasma treatment on the precipitation of fluorine-doped silicon oxide

Effects of plasma treatment on the precipitation of fluorine-doped silicon oxide ARTICLE IN PRESS Journal of Physics and Chemistry of Solids 69 (2008) 555 560 www.elsevier.com/locate/jpcs Effects of plasma treatment on the precipitation of fluorine-doped silicon oxide Jun Wu a,, Ying-Lang

More information

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX Understanding process-dependent oxygen vacancies in thin HfO 2 /SiO 2 stacked-films on Si (100) via competing electron-hole injection dynamic contributions to second harmonic generation. J. Price, 1,2

More information

Transmission of oxygen radicals through free-standing single-layer and multilayer silicon-nitride and silicon-dioxide films

Transmission of oxygen radicals through free-standing single-layer and multilayer silicon-nitride and silicon-dioxide films Transmission of oxygen radicals through free-standing single-layer and multilayer silicon-nitride and silicon-dioxide films F. A. Choudhury, H. M. Nguyen, G. Sabat, B. B. Minkoff, Y. Nishi, M. R. Sussman,

More information

Modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans

Modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans Modification of thin films and nanoparticles Johannes Berndt, GREMI,Orléans Low temperature plasmas not fully ionized Ionization degree 10-6 10-4 far away from thermodynamic equlilibrium T electron >>

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Engineered doping of organic semiconductors for enhanced thermoelectric efficiency G.-H. Kim, 1 L. Shao, 1 K. Zhang, 1 and K. P. Pipe 1,2,* 1 Department of Mechanical Engineering, University of Michigan,

More information

DOE WEB SEMINAR,

DOE WEB SEMINAR, DOE WEB SEMINAR, 2013.03.29 Electron energy distribution function of the plasma in the presence of both capacitive field and inductive field : from electron heating to plasma processing control 1 mm PR

More information

Cathodoluminescence spectroscopy of nitrided SiO 2 Si interfaces

Cathodoluminescence spectroscopy of nitrided SiO 2 Si interfaces Cathodoluminescence spectroscopy of nitrided SiO 2 Si interfaces A. P. Young a) Department of Electrical Engineering, The Ohio State University, Columbus, Ohio 43210-1272 R. Bandhu Department of Physics,

More information

24th Symposium on Plasma Science for Materials (SPSM-24) - Keynote

24th Symposium on Plasma Science for Materials (SPSM-24) - Keynote 24th Symposium on Plasma Science for Materials (SPSM-24) - Keynote Electron-Spin Resonance (ESR) Analysis of Plasma-Surface Interaction Kenji Ishikawa, Naoya Sumi, *Akihiko Kono, *ideo oribe, Keigo Takeda,

More information

Wettability Enhancement of Polystyrene with Electron Cyclotron Resonance Plasma with Argon

Wettability Enhancement of Polystyrene with Electron Cyclotron Resonance Plasma with Argon Wettability Enhancement of Polystyrene with Electron Cyclotron Resonance Plasma with Argon S. Guruvenket, 1 Manoj Komath, 2 S. P. Vijayalakshmi, 3 A. M. Raichur, 3 G. Mohan Rao 1 1 Department of Instrumentation,

More information

Low-Dielectric-Constant SiOC(-H) Films Prepared from DMDMS and O 2 Precursors by Using Plasma Enhanced Chemical Vapor Deposition

Low-Dielectric-Constant SiOC(-H) Films Prepared from DMDMS and O 2 Precursors by Using Plasma Enhanced Chemical Vapor Deposition Journal of the Korean Physical Society, Vol. 50, No. 6, June 2007, pp. 1814 1818 Low-Dielectric-Constant SiOC(-H) Films Prepared from DMDMS and O 2 Precursors by Using Plasma Enhanced Chemical Vapor Deposition

More information

Adjustment of electron temperature in ECR microwave plasma

Adjustment of electron temperature in ECR microwave plasma Vacuum (3) 53 Adjustment of electron temperature in ECR microwave plasma Ru-Juan Zhan a, Xiaohui Wen a,b, *, Xiaodong Zhu a,b, Aidi zhao a,b a Structure Research Laboratory, University of Science and Technology

More information

A STUDY OF ATOMIC LAYER DEPOSITION AND REACTIVE PLASMA COMPATIBILITY WITH MESOPOROUS ORGANOSILICATE GLASS FILMS

A STUDY OF ATOMIC LAYER DEPOSITION AND REACTIVE PLASMA COMPATIBILITY WITH MESOPOROUS ORGANOSILICATE GLASS FILMS A STUDY OF ATOMIC LAYER DEPOSITION AND REACTIVE PLASMA COMPATIBILITY ITH MESOPOROUS ORGANOSILICATE GLASS FILMS E. Todd Ryan*, Melissa Freeman, Lynne Svedberg, J.J. Lee, Todd Guenther, Jim Connor, Katie

More information

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials July 19-23, 29, Harbin, China L-7 Enhancing the Performance of Organic Thin-Film Transistor using

More information

DISTRIBUTION OF POTENTIAL BARRIER HEIGHT LOCAL VALUES AT Al-SiO 2 AND Si-SiO 2 INTERFACES OF THE METAL-OXIDE-SEMICONDUCTOR (MOS) STRUCTURES

DISTRIBUTION OF POTENTIAL BARRIER HEIGHT LOCAL VALUES AT Al-SiO 2 AND Si-SiO 2 INTERFACES OF THE METAL-OXIDE-SEMICONDUCTOR (MOS) STRUCTURES DISTRIBUTION OF POTENTIAL BARRIER HEIGHT LOCAL VALUES AT Al-SiO 2 AND Si-SiO 2 INTERFACES OF THE ETAL-OXIDE-SEICONDUCTOR (OS) STRUCTURES KRZYSZTOF PISKORSKI (kpisk@ite.waw.pl), HENRYK. PRZEWLOCKI Institute

More information

Study of C 4 F 8 ÕN 2 and C 4 F 8 ÕArÕN 2 plasmas for highly selective organosilicate glass etching over Si 3 N 4 and SiC

Study of C 4 F 8 ÕN 2 and C 4 F 8 ÕArÕN 2 plasmas for highly selective organosilicate glass etching over Si 3 N 4 and SiC Study of C 4 F 8 ÕN 2 and C 4 F 8 ÕArÕN 2 plasmas for highly selective organosilicate glass etching over Si 3 N 4 and SiC Xuefeng Hua, a) Department of Physics, University of Maryland, College Park, Maryland

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Characterisation of the plasma density with two artificial neural network models

Characterisation of the plasma density with two artificial neural network models Characterisation of the plasma density with two artificial neural network models Wang Teng( 王腾 ) a)b), Gao Xiang-Dong( 高向东 ) a), and Li Wei( 李炜 ) c) a) Faculty of Electromechanical Engineering, Guangdong

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of Supplementary Figures Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of bulk SrTiO 3. The normalized high-energy reflectivity (0.5 35 ev) of SrTiO 3 is compared to the

More information

Defect Formation in 18 MeV Electron Irradiated MOS Structures

Defect Formation in 18 MeV Electron Irradiated MOS Structures Bulg. J. Phys. 33 (2006) 48 54 Defect Formation in 18 MeV Electron Irradiated MOS Structures S. Kaschieva 1, V. Gueorguiev 1, E. Halova 2, S. N. Dmitriev 3 1 Institute of Solid State Physics, Bulgarian

More information

Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method

Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method F. L. Martínez a, R. Ruiz-Merino a, A. del Prado b, E. San Andrés b, I.

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

Plasma based modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans

Plasma based modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans Plasma based modification of thin films and nanoparticles Johannes Berndt, GREMI,Orléans What is a plasma? A plasma is a ionized quasineutral gas! + electron electrons Neon bottle Ne atom Ne ion: Ne +

More information

SIMULATION OF POROUS LOW-k DIELECTRIC SEALING BY COMBINED He AND NH 3 PLASMA TREATMENT *

SIMULATION OF POROUS LOW-k DIELECTRIC SEALING BY COMBINED He AND NH 3 PLASMA TREATMENT * SIMULATION OF POROUS LOW-k DIELECTRIC SEALING BY COMBINED He AND NH 3 PLASMA TREATMENT * JULINE_ICOPS09_01 Juline Shoeb a) and Mark J. Kushner b) a) Department of Electrical and Computer Engineering Iowa

More information

Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen

Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen W. Jacob, C. Hopf, and M. Schlüter Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr.

More information

Formation of Nanostructured Layers for Passivation of High Power Silicon Devices

Formation of Nanostructured Layers for Passivation of High Power Silicon Devices Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Formation of Nanostructured Layers for Passivation of High Power Silicon Devices

More information

Characterization of an Oxygen Plasma by Using a Langmuir Probe in an Inductively Coupled Plasma

Characterization of an Oxygen Plasma by Using a Langmuir Probe in an Inductively Coupled Plasma Journal of the Korean Physical Society, Vol. 38, No. 3, March 001, pp. 59 63 Characterization of an Oxygen Plasma by Using a Langmuir Probe in an Inductively Coupled Plasma Jong-Sik Kim and Gon-Ho Kim

More information

Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers

Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers Continuous room-temperature operation of optically pumped InGaAs/InGaAsP microdisk lasers S. M. K. Thiyagarajan, A. F. J. Levi, C. K. Lin, I. Kim, P. D. Dapkus, and S. J. Pearton + Department of Electrical

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

UC Berkeley UC Berkeley Electronic Theses and Dissertations

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas Permalink https://escholarship.org/uc/item/0hn5z4f1 Author

More information

Diamond-like carbon film deposition on PZT ferroelectrics and YBCO superconducting films using KrF excimer laser deposition

Diamond-like carbon film deposition on PZT ferroelectrics and YBCO superconducting films using KrF excimer laser deposition Composites: Part B 30 (1999) 685 689 www.elsevier.com/locate/compositesb Diamond-like carbon film deposition on PZT ferroelectrics and YBCO superconducting films using KrF excimer laser deposition K. Ebihara*,

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Fall Exam 1 UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 143 Fall 2008 Exam 1 Professor Ali Javey Answer Key Name: SID: 1337 Closed book. One sheet

More information

Accelerated Neutral Atom Beam (ANAB)

Accelerated Neutral Atom Beam (ANAB) Accelerated Neutral Atom Beam (ANAB) Development and Commercialization July 2015 1 Technological Progression Sometimes it is necessary to develop a completely new tool or enabling technology to meet future

More information

Gas utilization in remote plasma cleaning and stripping applications

Gas utilization in remote plasma cleaning and stripping applications Gas utilization in remote plasma cleaning and stripping applications B. E. E. Kastenmeier IBM Semiconductor Research and Development Center, 2070 Rt. 52, Zip E40, Hopewell Junction, New York 12533 G. S.

More information

DEPOSITION AND COMPOSITION OF POLYMER FILMS IN FLUOROCARBON PLASMAS*

DEPOSITION AND COMPOSITION OF POLYMER FILMS IN FLUOROCARBON PLASMAS* DEPOSITION AND COMPOSITION OF POLYMER FILMS IN FLUOROCARBON PLASMAS* Kapil Rajaraman and Mark J. Kushner 1406 W. Green St. Urbana, IL 61801 rajaramn@uiuc.edu mjk@uiuc.edu http://uigelz.ece.uiuc.edu November

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Chapter 7 Plasma Basic

Chapter 7 Plasma Basic Chapter 7 Plasma Basic Hong Xiao, Ph. D. hxiao89@hotmail.com www2.austin.cc.tx.us/hongxiao/book.htm Hong Xiao, Ph. D. www2.austin.cc.tx.us/hongxiao/book.htm 1 Objectives List at least three IC processes

More information

FINAL REPORT. DOE Grant DE-FG03-87ER13727

FINAL REPORT. DOE Grant DE-FG03-87ER13727 FINAL REPORT DOE Grant DE-FG03-87ER13727 Dynamics of Electronegative Plasmas for Materials Processing Allan J. Lichtenberg and Michael A. Lieberman Department of Electrical Engineering and Computer Sciences

More information

Supporting Information

Supporting Information Temperature Effect on Transport, Charging and Binding of Low-Energy Electrons Interacting with Amorphous Solid Water Films Roey Sagi, Michelle Akerman, Sujith Ramakrishnan and Micha Asscher * Institute

More information

Micro-patterned porous silicon using proton beam writing

Micro-patterned porous silicon using proton beam writing Micro-patterned porous silicon using proton beam writing M. B. H. Breese, D. Mangaiyarkarasi, E. J. Teo*, A. A. Bettiol and D. Blackwood* Centre for Ion Beam Applications, Department of Physics, National

More information

Nanopantography: A method for parallel writing of etched and deposited nanopatterns

Nanopantography: A method for parallel writing of etched and deposited nanopatterns Nanopantography: A method for parallel writing of etched and deposited nanopatterns Vincent M. Donnelly 1, Lin Xu 1, Azeem Nasrullah 2, Zhiying Chen 1, Sri C. Vemula 2, Manish Jain 1, Demetre J. Economou

More information

Wet and Dry Etching. Theory

Wet and Dry Etching. Theory Wet and Dry Etching Theory 1. Introduction Etching techniques are commonly used in the fabrication processes of semiconductor devices to remove selected layers for the purposes of pattern transfer, wafer

More information

PLASMA immersion ion implantation (PIII) is a fledgling

PLASMA immersion ion implantation (PIII) is a fledgling IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 26, NO. 6, DECEMBER 1998 1661 Low Pressure Plasma Immersion Ion Implantation of Silicon Zhi-Neng Fan, Qing-Chuan Chen, Paul K. Chu, Member, IEEE, and Chung Chan

More information

physics/ Sep 1997

physics/ Sep 1997 GLAS-PPE/97-6 28 August 1997 Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland. Telephone: +44 - ()141 3398855 Fax:

More information

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017

ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems. Prof. Peter Bermel April 12, 2017 ECE 695 Numerical Simulations Lecture 35: Solar Hybrid Energy Conversion Systems Prof. Peter Bermel April 12, 2017 Ideal Selective Solar Absorber Efficiency Limits Ideal cut-off wavelength for a selective

More information

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam Lecture 10 Outline 1. Wet Etching/Vapor Phase Etching 2. Dry Etching DC/RF Plasma Plasma Reactors Materials/Gases Etching Parameters

More information

Carbon Nanotube Thin-Films & Nanoparticle Assembly

Carbon Nanotube Thin-Films & Nanoparticle Assembly Nanodevices using Nanomaterials : Carbon Nanotube Thin-Films & Nanoparticle Assembly Seung-Beck Lee Division of Electronics and Computer Engineering & Department of Nanotechnology, Hanyang University,

More information

Physics Letters A. Theoretical model for study of the voltage current curve of a Langmuir-probe used in the hot region of the ECR plasma

Physics Letters A. Theoretical model for study of the voltage current curve of a Langmuir-probe used in the hot region of the ECR plasma Physics Letters A 372 (2008) 4927 4931 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Theoretical model for study of the voltage current curve of a Langmuir-probe

More information

Chapter 7. Plasma Basics

Chapter 7. Plasma Basics Chapter 7 Plasma Basics 2006/4/12 1 Objectives List at least three IC processes using plasma Name three important collisions in plasma Describe mean free path Explain how plasma enhance etch and CVD processes

More information

Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC

Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC Energy position of the active near-interface traps in metal oxide semiconductor field-effect transistors on 4H SiC Author Haasmann, Daniel, Dimitrijev, Sima Published 2013 Journal Title Applied Physics

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

Semiconductor Nanocrystals from Nonthermal Plasmas. Rebecca J. Anthony University of Minnesota

Semiconductor Nanocrystals from Nonthermal Plasmas. Rebecca J. Anthony University of Minnesota Semiconductor Nanocrystals from Nonthermal Plasmas Rebecca J. Anthony University of Minnesota 1 Nanocrystals in devices efficient light emitters and absorbers versatile deposition schemes possibility for

More information

Patterning Challenges and Opportunities: Etch and Film

Patterning Challenges and Opportunities: Etch and Film Patterning Challenges and Opportunities: Etch and Film Ying Zhang, Shahid Rauf, Ajay Ahatnagar, David Chu, Amulya Athayde, and Terry Y. Lee Applied Materials, Inc. SEMICON, Taiwan 2016 Sept. 07-09, 2016,

More information

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric

Frequency dispersion effect and parameters. extraction method for novel HfO 2 as gate dielectric 048 SCIENCE CHINA Information Sciences April 2010 Vol. 53 No. 4: 878 884 doi: 10.1007/s11432-010-0079-8 Frequency dispersion effect and parameters extraction method for novel HfO 2 as gate dielectric LIU

More information

T: +44 (0) W:

T: +44 (0) W: Ultraviolet Deposition of Thin Films and Nanostructures Ian W. Boyd ETC Brunel University Kingston Lane Uxbridge Middx UB8 3PH UK T: +44 (0)1895 267419 W: etcbrunel.co.uk E: ian.boyd@brunel.ac.uk Outline

More information

PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS

PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS O. Goossens, D. Vangeneugden, S. Paulussen and E. Dekempeneer VITO Flemish Institute for Technological Research, Boeretang

More information

K. Takechi a) and M. A. Lieberman Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720

K. Takechi a) and M. A. Lieberman Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 7 1 OCTOBER 2001 Effect of Ar addition to an O 2 plasma in an inductively coupled, traveling wave driven, large area plasma source: O 2 ÕAr mixture plasma modeling

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Impact of Contact Evolution on the Shelf Life of Organic Solar Cells

Impact of Contact Evolution on the Shelf Life of Organic Solar Cells Impact of Contact Evolution on the Shelf Life of Organic Solar Cells By Matthew T. Lloyd, Dana C. Olson, Ping Lu, Erica Fang, Diana L. Moore, Matthew S. White, Matthew O. Reese, David S. Ginley, and Julia

More information

ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA

ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA ATOMIC-SCALE THEORY OF RADIATION-INDUCED PHENOMENA OVERVIEW OF THE LAST FIVE YEARS AND NEW RESULTS Sokrates T. Pantelides Department of Physics and Astronomy, Vanderbilt University, Nashville, TN The theory

More information

The effect of the chamber wall on fluorocarbonassisted atomic layer etching of SiO 2 using cyclic Ar/C 4 F 8 plasma

The effect of the chamber wall on fluorocarbonassisted atomic layer etching of SiO 2 using cyclic Ar/C 4 F 8 plasma The effect of the chamber wall on fluorocarbonassisted atomic layer etching of SiO 2 using cyclic Ar/C 4 F 8 plasma Running title: The effect of the chamber wall on FC assisted atomic layer etching of

More information

Plasma Processing in the Microelectronics Industry. Bert Ellingboe Plasma Research Laboratory

Plasma Processing in the Microelectronics Industry. Bert Ellingboe Plasma Research Laboratory Plasma Processing in the Microelectronics Industry Bert Ellingboe Plasma Research Laboratory Outline What has changed in the last 12 years? What is the relavant plasma physics? Sheath formation Sheath

More information

Laser matter interaction

Laser matter interaction Laser matter interaction PH413 Lasers & Photonics Lecture 26 Why study laser matter interaction? Fundamental physics Chemical analysis Material processing Biomedical applications Deposition of novel structures

More information

CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES

CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES Tomomi Murakami 1*, Takashi Fukada 1 and Woo Sik Yoo 2 1 WaferMasters Service Factory, 2020-3 Oaza Tabaru, Mashiki, Kamimashiki,

More information

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Hong Young Chang Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea Index 1. Introduction 2. Some plasma sources 3. Related issues 4. Summary -2 Why is

More information

Diagnostics for plasma processing (etching plasmas) (invited)

Diagnostics for plasma processing (etching plasmas) (invited) Diagnostics for plasma processing (etching plasmas) (invited) Noah Hershkowitz and Robert A. Breun Engineering Research Center for Plasma Aided Manufacturing, University of Wisconsin Madison, Madison,

More information

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer

The goal of this project is to enhance the power density and lowtemperature efficiency of solid oxide fuel cells (SOFC) manufactured by atomic layer Stanford University Michael Shandalov1, Shriram Ramanathan2, Changhyun Ko2 and Paul McIntyre1 1Department of Materials Science and Engineering, Stanford University 2Division of Engineering and Applied

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger XPS/UPS and EFM Brent Gila XPS/UPS Ryan Davies EFM Andy Gerger XPS/ESCA X-ray photoelectron spectroscopy (XPS) also called Electron Spectroscopy for Chemical Analysis (ESCA) is a chemical surface analysis

More information

Measurement of electron energy distribution function in an argon/copper plasma for ionized physical vapor deposition

Measurement of electron energy distribution function in an argon/copper plasma for ionized physical vapor deposition Measurement of electron energy distribution function in an argon/copper plasma for ionized physical vapor deposition Z. C. Lu, J. E. Foster, T. G. Snodgrass, J. H. Booske, and A. E. Wendt a) Engineering

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AFM profiles of the charge transport and perovskite layers. AFM Image showing the thickness (y axis) of the layer with respect to the horizontal position of

More information

NBTI and Spin Dependent Charge Pumping in 4H-SiC MOSFETs

NBTI and Spin Dependent Charge Pumping in 4H-SiC MOSFETs NBTI and Spin Dependent Charge Pumping in 4H-SiC MOSFETs Mark A. Anders, Patrick M. Lenahan, Pennsylvania State University Aivars Lelis, US Army Research Laboratory Energy Deviations from the resonance

More information

Energy fluxes in plasmas for fabrication of nanostructured materials

Energy fluxes in plasmas for fabrication of nanostructured materials Energy fluxes in plasmas for fabrication of nanostructured materials IEAP, Universität Kiel 2nd Graduate Summer Institute "Complex Plasmas" August 5-13, 2010 in Greifswald (Germany) AG 1 Outline Motivation

More information

Infrared characterization of a-si:h/a-si1-xc x:h interfaces

Infrared characterization of a-si:h/a-si1-xc x:h interfaces Infrared characterization of a-si:h/a-si1-xc x:h interfaces J. Bertomeu, J. Puigdollers, J.M. Asensi and J. Andreu. Laboratori de Física de Capes fines (LCFC), Departament de Física Aplicada i Electrònica,

More information

Oxidation of hydrogenated crystalline silicon as an alternative approach for ultrathin SiO 2 growth

Oxidation of hydrogenated crystalline silicon as an alternative approach for ultrathin SiO 2 growth Institute of Physics Publishing Journal of Physics: Conference Series 10 (2005) 246 250 doi:10.1088/1742-6596/10/1/061 Second Conference on Microelectronics, Microsystems and Nanotechnology Oxidation of

More information

Low-temperature in situ cleaning of silicon (100) surface by electron cyclotron resonance hydrogen plasma

Low-temperature in situ cleaning of silicon (100) surface by electron cyclotron resonance hydrogen plasma Low-temperature in situ cleaning of silicon (100) surface by electron cyclotron resonance hydrogen plasma Heung-Sik Tae, a) Sang-June Park, b) Seok-Hee Hwang, a) Ki-Hyun Hwang, b) Euijoon Yoon, b) and

More information

Ambient-protecting organic light transducer grown on pentacenechannel of photo-gating complementary inverter

Ambient-protecting organic light transducer grown on pentacenechannel of photo-gating complementary inverter Electronic Supplementary information Ambient-protecting organic light transducer grown on pentacenechannel of photo-gating complementary inverter Hee Sung Lee, a Kwang H. Lee, a Chan Ho Park, b Pyo Jin

More information

Chapter 6. Summary and Conclusions

Chapter 6. Summary and Conclusions Chapter 6 Summary and Conclusions Plasma deposited amorphous hydrogenated carbon films (a-c:h) still attract a lot of interest due to their extraordinary properties. Depending on the deposition conditions

More information

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Optics of Surfaces & Interfaces - VIII September 10 th, 2009 Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Jimmy Price and Michael C. Downer Physics

More information

NITROGEN CONTAINING ULTRA THIN SiO 2 FILMS ON Si OBTAINED BY ION IMPLANTATION

NITROGEN CONTAINING ULTRA THIN SiO 2 FILMS ON Si OBTAINED BY ION IMPLANTATION NITROGEN CONTAINING ULTRA THIN SiO 2 FILMS ON Si OBTAINED BY ION IMPLANTATION Sashka Petrova Alexandrova 1, Evgenia Petrova Valcheva 2, Rumen Georgiev Kobilarov 1 1 Department of Applied Physics, Technical

More information

an introduction to Semiconductor Devices

an introduction to Semiconductor Devices an introduction to Semiconductor Devices Donald A. Neamen Chapter 6 Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor Introduction: Chapter 6 1. MOSFET Structure 2. MOS Capacitor -

More information

Investigation of tungsten incorporated amorphous carbon lm

Investigation of tungsten incorporated amorphous carbon lm Thin Solid Films 355±356 (1999) 174±178 www.elsevier.com/locate/tsf Investigation of tungsten incorporated amorphous carbon lm Rusli a, *, S.F. Yoon a, H. Yang a, J. Ahn a, Q.F. Huang a, Q. Zhang a, Y.P.

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. fabrication. A schematic of the experimental setup used for graphene Supplementary Figure 2. Emission spectrum of the plasma: Negative peaks indicate an

More information