Matrix Mathematics. Errata and Addenda for the Second Edition. Dennis S. Bernstein February 13, 2014

Size: px
Start display at page:

Download "Matrix Mathematics. Errata and Addenda for the Second Edition. Dennis S. Bernstein February 13, 2014"

Transcription

1 Matrix Mathematics Errata and Addenda for the Second Edition Dennis S. Bernstein February 13, 2014 This document contains an updated list of errata for the second edition of Matrix Mathematics. Please me if you discover additional errors, and I will include them in future updates. 1. Page 3, line 20: Replace and with and, respectively. 2. Page 13, Fact , statement i): Delete f 1 [f(a)]. 3. Page 24, Fact : Append ) to the left hand side of the inequality, and ] to the right hand side of the inequality. 4. Page 46, Fact : In the inequality below In particular, multiply the right hand side by Page 49, Proof of Fact : Replace obtuse with isosceles. 6. Page 51, Fact : Replace (y 2 + z 2 ) 2 with (y 2 z 2 ) Page 55, Fact : Replace complex with real. 8. Page 61, Fact : For r = 0, define M r by ( n i=1 xα i i ) 1/n. 9. Page 67, Fact : Delete the statement beginning with Now, and the following statement. 10. Page 68, Fact : Replace the last sentence with: Furthermore, equality holds if and only if there exists α 0 such that either [x 1 x n ] = α[y 1 y n ] or [y 1 y n ] = α[x 1 x n ] Page 75, Fact : In statements xix) and xx) change (Re z) 2 to 2(Re z) Page 76, Fact : In xxiii), change to =. 13. Page 83, Fact , statement xxviii): Replace tan 1 xy x+y 1 xy with tan 1 1 xy. 14. Page 105, Fact 2.5.6: Replace F n m with F n n. 15. Page 106, Proof of Proposition 2.5.9: Change the second to =. 1

2 16. Page 110, line -2: Change F m to F n. 17. Page 123, Fact : In statement i), require S F m. 18. Page 124, Fact : In statement i), delete f 1 [f(s)]. 19. Page 126, Fact , statement iii): Replace N(A ) R(B ) with N(B ) R(A ). 20. Page 128, Fact : For the two equalities, assume that both x and y are nonzero. 21. Page 131, Fact : In iv) replace the first = with = {0} and. 22. Page 137, Fact : In ii) change R to rank. 23. Page 138, Fact : In the definition of C replace (A T + yx T ) k y with (A T + yx T ) k 1 y. 24. Page 155, Fact : Replace 1 T 1 n AA 1 with 1 1 n A A 1 n Page 166, line 6: Replace nonsingular. Then, with nonsingular, then 26. Page 170, Fact : Replace 18R 2 a 2 + b 2 + c 2 with 18rR a 2 + b 2 + c Page 172, Fact , lines 6 and 12: Replace ac + bc with ac + bd. 28. Page 175, Fact , line 2: Replace [x y z] with det [x y z]. 29. Page 185, Section 3.3, line 2: Replace Section 11.5 with Section Page 193, Fact 3.7.7: Change Let A R n n. to Let A R n n, and assume that A is symmetric Page 193, Fact 3.7.9: In v) and vi), change if and only if to only if. 32. Page 194, Fact : Assume that A is skew-hermitian. 33. Pages 197 and 198, Fact and Fact : Change then ˆB and Ĉ are given by to then B and C are given by. 34. Page 203, Fact : In xliii) replace (x T x) 1 with (x T x) Page 215, Fact : Replace only if with only if A is semisimple and. 36. Page 227, Fact : In statement iii) replace = with. 37. Page 227, Fact : The solution to the problem is yes. 38. Page 231, Fact : Change p. 114 to p Page 236, Fact : Delete Toeplitz. 40. Page 237, Fact : In statement ii), change A to A Page 248: Replace c 2 + c 2 with c 2 + d Page 272, line -4: Change n = 1 to i = Page 276, Fact 4.8.2, line -5: Change β 3 to β n 3. 2

3 44. Page 276, Fact 4.8.2, line -2: Change Fact to Fact Page 300, Fact : Change perturbation to permutation twice. 46. Page 304, line 8: Replace L k+1 L k with lim k L k+1 L k. 47. Page 306, Fact : Change [174, p. 27] to [186, p. 27]. 48. Page 306, Fact : Change x > 0 and y > 0 to x >> 0 and y >> Page 320, proof of Proposition 5.4.6: Replace S by Ŝ, diag(b 1, 0, B 2 ) by diag( B 1, 0, B 2 ), I ν (A) by I ν (A), and I ν+ (A) by I ν+ (A). 50. Page 328, replace (5.6.9) by: {σ 1,..., σ n } ms = { λ 1 (A),..., λ n (A) } ms. 51. Page 333, Proposition 5.7.4: Change hold to are equivalent. 52. Page 337, Fact : Delete, and assume that S is nonsingular. 53. Page 338, Fact 5.9.2: Change min { a, b } to a 2 + b Page 342, Fact : Change mspec(i n ) = mspec(i n ) to mspec(în) = mspec(în). 55. Page 342, Fact : Change the (1,2) block of S to I. 56. Page 342, Fact : Change F n m to F n n. 57. Page 347, Fact : Change an orthogonal matrix to a projector. 58. Page 355, Fact : Delete the last sentence. 59. Page 355, Fact : Delete the left-hand inequalities in the first two strings. 60. Page 365, Fact : Assume B F m m and replace σ i (B) by σ 2 i (B) 61. Page 394, Fact : Can omit assume that A is nonsingular 62. Page 399, Fact 6.1.6: In xxx), change orthogonal to unitary. 63. Page 404, Fact 6.3.6: Change Let A F n m to Let n 2, let A F n n. 64. Page 411, Fact : Change (A I) = (A I) + to (A I) # = (A I) Page 412, Fact 6.4.2: Change Finally, to Finally, assume that A does not have full rank. Then,. 66. Page 419, Fact : Change A B to AB. 67. Page 423, Fact 6.5.5: Change and assume to and assume that A is Hermitian and. 68. Page 424, Fact 6.5.8: Change rank(d B A + B) to rank(c B A + B). 69. Page 431, Fact 6.6.3: Delete AB = Page 435, Fact : Change BA is nonsingular to CB is nonsingular. 71. Page 452, Fact : Change A, D to A, C and change C, B to B, D 72. Page 452, Fact : Change A (k) B (k) to A (n) B (n). 3

4 73. Page 456, Fact : Change x 1,..., x n R n to x 1,..., x n R. 74. Page 463, Proposition 8.2.7: In v) change β 0,..., β n 1 0 to ( 1) n i β i Page 466, proof of Corollary 8.3.7, line 2: Replace R by F. 76. Page 473, Lemma 8.5.1: Change λ nr to λ r ; change µ nr to µ r ; and change λ r R to µ r R. 77. Page 488, Fact 8.7.8: Delete and for S {1,..., n} and change inclusions to inequalities. 78. Page 502, Fact : Assume that A I is positive definite. 79. Page 505, Fact : Assume that S is nonsingular. 80. Page 505, Fact and Fact : Change H n n to H n. 81. Page 524, Fact : Delete tr AB. 82. Page 534, Fact : Change A + B on the left hand side to B 83. Page 526, Fact : The upper left inequality of the Problem is false. 84. Page 534, Fact : Change and assume that A is positive semidefinite to assume that A is positive semidefinite, and assume that B is skew Hermitian. Also, on the left hand side of the first inequality, replace A + B with B. 85. Page 535, Fact : Change det(a + ȷB) to det(a + ȷB). 86. Page 543, Fact : Change det A det à to det A det Ãn. 87. Page 547, Fact : Change the second instance of λ min to λ max. 88. Page 553, Fact : Change R n to F n and change min to max. 89. Page 561, Fact : Change σ i (A) to rσ i (A) 90. Page 563, Fact : Change λ i to λ i (A) twice. 91. Page 565, Fact : Change λ i [f(αa + (1 α)b)] αλ i [f(a)] + (1 α)λ i [f(b)]. to λ i [f(αa + (1 α)b)] λ i [αf(a) + (1 α)f(b)] Page 566, Fact : Multiply the left hand sides of the third and fourth strings by 1/2 93. Page 568, Fact : The answer to the problem is yes. 94. Page 572, Fact : Change spec(a) to spec(ab). 95. Page 578, Fact : Delete 1/2 on the right-hand side of the equation. 96. Page 578, Fact : In the definition of S, change A to A. Also, change A AA + A to A AA + A. 97. Page 585, Fact : Change 1 spec(a A 1 ) to 1 spec(a A T ). 98. Page 590, Fact : Change Hermitian to positive semidefinite. 4

5 99. Page 611, Corollary : Change A F m l to B F m l Page 617, Corollary 9.6.9: Assume that n m Page 618, Fact 9.7.4: In v), change the second + to Page 625, Fact : In the second string, change the fifth + to. In the last string, change the last + to Page 636, Fact 9.9.5: Change A B to B A B Page 642, Fact : Change λ i (A) to λ i, and change λ j (A) to λ j 105. Page 643, Fact : Change all to σp 106. Page 658, Fact : Change λ j to µ j 107. Page 659, Fact : Delete the second remark Page 663, Fact : Change the upper limit of the last summation to n 109. Page 665, Fact : Define r = min {m, n} Page 671, Fact : Replace A, B F n m by A F n m and B F m n 111. Page 702, Fact : Change 2sB to 2sB Page 731, first displayed equation: Change x [(ȷωI to x [(ȷωI Page 798, line 3: Change ( ) to ( ) 114. Page 809, 2 lines above (12.6.5): Change m nm to n nm 115. Page 813, Proposition : Change K R n m to K R m n. Also, the proof is missing a change of basis transformation Page 813: A 1 R q q and B k F q m. In line 4, replace A by A T Page 821, Line 6 of the proof of Proposition : Change Proposition to Proposition Page 823, Proof of Proposition : In the matrix at the bottom of the page, the entries below the sub-anti-diagonal are incorrect Page 824, Line 2: Multiply the 2 2 matrix with 1 s on the diagonal by Page 824: Proposition : Change A Rˆn ˆn to  Rˆn ˆn Page 825: Corollary : Define S c = [O(A, C)] 1 O(A c, C c ) and S o = [O(A, C)] 1 O(A o, C o ) Page 840, line 3: Change G 2 + G 2 to G 1 + G Page 842, line above ( ): Change +ȷ cos ϕ 0 to ȷ cos ϕ Page 842, one line above ( ): Delete Re. 5

6 125. Page 852, line 2: Change P 4 to P Page 858, line 8: Change Z R n n to Z R 2n 2n Page 859, line 4: Change λz to λx Page 859, Section 12.18: Change the first paragraph to In this section we consider the existence of the maximal solution of ( ). Example shows that ( ) may not have a maximal solution. 6

CHARACTERIZATIONS. is pd/psd. Possible for all pd/psd matrices! Generating a pd/psd matrix: Choose any B Mn, then

CHARACTERIZATIONS. is pd/psd. Possible for all pd/psd matrices! Generating a pd/psd matrix: Choose any B Mn, then LECTURE 6: POSITIVE DEFINITE MATRICES Definition: A Hermitian matrix A Mn is positive definite (pd) if x Ax > 0 x C n,x 0 A is positive semidefinite (psd) if x Ax 0. Definition: A Mn is negative (semi)definite

More information

Lecture Notes in Linear Algebra

Lecture Notes in Linear Algebra Lecture Notes in Linear Algebra Dr. Abdullah Al-Azemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

Chapter SSM: Linear Algebra Section Fails to be invertible; since det = 6 6 = Invertible; since det = = 2.

Chapter SSM: Linear Algebra Section Fails to be invertible; since det = 6 6 = Invertible; since det = = 2. SSM: Linear Algebra Section 61 61 Chapter 6 1 2 1 Fails to be invertible; since det = 6 6 = 0 3 6 3 5 3 Invertible; since det = 33 35 = 2 7 11 5 Invertible; since det 2 5 7 0 11 7 = 2 11 5 + 0 + 0 0 0

More information

Linear Algebra: Lecture notes from Kolman and Hill 9th edition.

Linear Algebra: Lecture notes from Kolman and Hill 9th edition. Linear Algebra: Lecture notes from Kolman and Hill 9th edition Taylan Şengül March 20, 2019 Please let me know of any mistakes in these notes Contents Week 1 1 11 Systems of Linear Equations 1 12 Matrices

More information

1 Linear Algebra Problems

1 Linear Algebra Problems Linear Algebra Problems. Let A be the conjugate transpose of the complex matrix A; i.e., A = A t : A is said to be Hermitian if A = A; real symmetric if A is real and A t = A; skew-hermitian if A = A and

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Instructions. 2. Four possible answers are provided for each question and only one of these is correct.

Instructions. 2. Four possible answers are provided for each question and only one of these is correct. Instructions 1. This question paper has forty multiple choice questions. 2. Four possible answers are provided for each question and only one of these is correct. 3. Marking scheme: Each correct answer

More information

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013 CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1 Prof. N. Harnew University of Oxford TT 2013 1 OUTLINE 1. Vector Algebra 2. Vector Geometry 3. Types of Matrices and Matrix Operations 4. Determinants

More information

Math 489AB Exercises for Chapter 2 Fall Section 2.3

Math 489AB Exercises for Chapter 2 Fall Section 2.3 Math 489AB Exercises for Chapter 2 Fall 2008 Section 2.3 2.3.3. Let A M n (R). Then the eigenvalues of A are the roots of the characteristic polynomial p A (t). Since A is real, p A (t) is a polynomial

More information

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B Chapter 8 - S&B Algebraic operations Matrix: The size of a matrix is indicated by the number of its rows and the number of its columns. A matrix with k rows and n columns is called a k n matrix. The number

More information

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1...

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1... Chapter Matrices We review the basic matrix operations What is a Matrix? An array of numbers a a n A = a m a mn with m rows and n columns is a m n matrix Element a ij in located in position (i, j The elements

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises This document gives the solutions to all of the online exercises for OHSx XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Answers are in square brackets [. Lecture 02 ( 1.1)

More information

Recall the convention that, for us, all vectors are column vectors.

Recall the convention that, for us, all vectors are column vectors. Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists

More information

MIT Final Exam Solutions, Spring 2017

MIT Final Exam Solutions, Spring 2017 MIT 8.6 Final Exam Solutions, Spring 7 Problem : For some real matrix A, the following vectors form a basis for its column space and null space: C(A) = span,, N(A) = span,,. (a) What is the size m n of

More information

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION)

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) PROFESSOR STEVEN MILLER: BROWN UNIVERSITY: SPRING 2007 1. CHAPTER 1: MATRICES AND GAUSSIAN ELIMINATION Page 9, # 3: Describe

More information

Math 407: Linear Optimization

Math 407: Linear Optimization Math 407: Linear Optimization Lecture 16: The Linear Least Squares Problem II Math Dept, University of Washington February 28, 2018 Lecture 16: The Linear Least Squares Problem II (Math Dept, University

More information

MATH 369 Linear Algebra

MATH 369 Linear Algebra Assignment # Problem # A father and his two sons are together 00 years old. The father is twice as old as his older son and 30 years older than his younger son. How old is each person? Problem # 2 Determine

More information

Some properties of index of Lie algebras

Some properties of index of Lie algebras arxiv:math/0001042v1 [math.rt] 7 Jan 2000 Some properties of index of Lie algebras Contents Vladimir Dergachev February 1, 2008 1 Introduction 1 2 Index of Lie algebras 2 3 Tensor products 3 4 Associative

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Math 408 Advanced Linear Algebra

Math 408 Advanced Linear Algebra Math 408 Advanced Linear Algebra Chi-Kwong Li Chapter 4 Hermitian and symmetric matrices Basic properties Theorem Let A M n. The following are equivalent. Remark (a) A is Hermitian, i.e., A = A. (b) x

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

GENERALIZED MATRIX MULTIPLICATION AND ITS SOME APPLICATION. 1. Introduction

GENERALIZED MATRIX MULTIPLICATION AND ITS SOME APPLICATION. 1. Introduction FACTA UNIVERSITATIS (NIŠ) Ser Math Inform Vol, No 5 (7), 789 798 https://doiorg/9/fumi75789k GENERALIZED MATRIX MULTIPLICATION AND ITS SOME APPLICATION Osman Keçilioğlu and Halit Gündoğan Abstract In this

More information

Symmetric and anti symmetric matrices

Symmetric and anti symmetric matrices Symmetric and anti symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric if. A = A Because equal matrices have equal

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 5, 2012 Andre Tkacenko

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

Matrix Completion Problems for Pairs of Related Classes of Matrices

Matrix Completion Problems for Pairs of Related Classes of Matrices Matrix Completion Problems for Pairs of Related Classes of Matrices Leslie Hogben Department of Mathematics Iowa State University Ames, IA 50011 lhogben@iastate.edu Abstract For a class X of real matrices,

More information

NOTES on LINEAR ALGEBRA 1

NOTES on LINEAR ALGEBRA 1 School of Economics, Management and Statistics University of Bologna Academic Year 207/8 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura

More information

CHAPTER 2 -idempotent matrices

CHAPTER 2 -idempotent matrices CHAPTER 2 -idempotent matrices A -idempotent matrix is defined and some of its basic characterizations are derived (see [33]) in this chapter. It is shown that if is a -idempotent matrix then it is quadripotent

More information

NOTES ON LINEAR ALGEBRA. 1. Determinants

NOTES ON LINEAR ALGEBRA. 1. Determinants NOTES ON LINEAR ALGEBRA 1 Determinants In this section, we study determinants of matrices We study their properties, methods of computation and some applications We are familiar with the following formulas

More information

18.06 Problem Set 8 Solution Due Wednesday, 22 April 2009 at 4 pm in Total: 160 points.

18.06 Problem Set 8 Solution Due Wednesday, 22 April 2009 at 4 pm in Total: 160 points. 86 Problem Set 8 Solution Due Wednesday, April 9 at 4 pm in -6 Total: 6 points Problem : If A is real-symmetric, it has real eigenvalues What can you say about the eigenvalues if A is real and anti-symmetric

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

2 Constructions of manifolds. (Solutions)

2 Constructions of manifolds. (Solutions) 2 Constructions of manifolds. (Solutions) Last updated: February 16, 2012. Problem 1. The state of a double pendulum is entirely defined by the positions of the moving ends of the two simple pendula of

More information

Spectral inequalities and equalities involving products of matrices

Spectral inequalities and equalities involving products of matrices Spectral inequalities and equalities involving products of matrices Chi-Kwong Li 1 Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187 (ckli@math.wm.edu) Yiu-Tung Poon Department

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

Eigenvalues, Eigenvectors. Eigenvalues and eigenvector will be fundamentally related to the nature of the solutions of state space systems.

Eigenvalues, Eigenvectors. Eigenvalues and eigenvector will be fundamentally related to the nature of the solutions of state space systems. Chapter 3 Linear Algebra In this Chapter we provide a review of some basic concepts from Linear Algebra which will be required in order to compute solutions of LTI systems in state space form, discuss

More information

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2 MATH 7- Final Exam Sample Problems Spring 7 ANSWERS ) ) ). 5 points) Let A be a matrix such that A =. Compute A. ) A = A ) = ) = ). 5 points) State ) the definition of norm, ) the Cauchy-Schwartz inequality

More information

Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications

Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications Yongge Tian China Economics and Management Academy, Central University of Finance and Economics,

More information

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show

Problem Set (T) If A is an m n matrix, B is an n p matrix and D is a p s matrix, then show MTH 0: Linear Algebra Department of Mathematics and Statistics Indian Institute of Technology - Kanpur Problem Set Problems marked (T) are for discussions in Tutorial sessions (T) If A is an m n matrix,

More information

Errata to Introduction to Lie Algebras

Errata to Introduction to Lie Algebras Errata to Introduction to Lie Algebras We would like to thank Thorsten Holm for many of the corrections below. The reprinted 1st edition (published June 2007) incorporates all corrections except those

More information

Massachusetts Institute of Technology Department of Economics Statistics. Lecture Notes on Matrix Algebra

Massachusetts Institute of Technology Department of Economics Statistics. Lecture Notes on Matrix Algebra Massachusetts Institute of Technology Department of Economics 14.381 Statistics Guido Kuersteiner Lecture Notes on Matrix Algebra These lecture notes summarize some basic results on matrix algebra used

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

1 Matrices and vector spaces

1 Matrices and vector spaces Matrices and vector spaces. Which of the following statements about linear vector spaces are true? Where a statement is false, give a counter-example to demonstrate this. (a) Non-singular N N matrices

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

Homework 1 Elena Davidson (B) (C) (D) (E) (F) (G) (H) (I)

Homework 1 Elena Davidson (B) (C) (D) (E) (F) (G) (H) (I) CS 106 Spring 2004 Homework 1 Elena Davidson 8 April 2004 Problem 1.1 Let B be a 4 4 matrix to which we apply the following operations: 1. double column 1, 2. halve row 3, 3. add row 3 to row 1, 4. interchange

More information

0.1 Rational Canonical Forms

0.1 Rational Canonical Forms We have already seen that it is useful and simpler to study linear systems using matrices. But matrices are themselves cumbersome, as they are stuffed with many entries, and it turns out that it s best

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

OCR Maths FP1. Topic Questions from Papers. Matrices. Answers

OCR Maths FP1. Topic Questions from Papers. Matrices. Answers OCR Maths FP Topic Questions from Papers Matrices Answers PhysicsAndMathsTutor.com . (i) A = 8 PhysicsAndMathsTutor.com Obtain given answer correctly Attempt to find A, elements correct All elements correct

More information

Part IA. Vectors and Matrices. Year

Part IA. Vectors and Matrices. Year Part IA Vectors and Matrices Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2018 Paper 1, Section I 1C Vectors and Matrices For z, w C define the principal value of z w. State de Moivre s

More information

Mathematical Methods wk 2: Linear Operators

Mathematical Methods wk 2: Linear Operators John Magorrian, magog@thphysoxacuk These are work-in-progress notes for the second-year course on mathematical methods The most up-to-date version is available from http://www-thphysphysicsoxacuk/people/johnmagorrian/mm

More information

Solution to Homework 1

Solution to Homework 1 Solution to Homework Sec 2 (a) Yes It is condition (VS 3) (b) No If x, y are both zero vectors Then by condition (VS 3) x = x + y = y (c) No Let e be the zero vector We have e = 2e (d) No It will be false

More information

Linear Algebra. Workbook

Linear Algebra. Workbook Linear Algebra Workbook Paul Yiu Department of Mathematics Florida Atlantic University Last Update: November 21 Student: Fall 2011 Checklist Name: A B C D E F F G H I J 1 2 3 4 5 6 7 8 9 10 xxx xxx xxx

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

LINEAR ALGEBRA WITH APPLICATIONS

LINEAR ALGEBRA WITH APPLICATIONS SEVENTH EDITION LINEAR ALGEBRA WITH APPLICATIONS Instructor s Solutions Manual Steven J. Leon PREFACE This solutions manual is designed to accompany the seventh edition of Linear Algebra with Applications

More information

Inequalities in Hilbert Spaces

Inequalities in Hilbert Spaces Inequalities in Hilbert Spaces Jan Wigestrand Master of Science in Mathematics Submission date: March 8 Supervisor: Eugenia Malinnikova, MATH Norwegian University of Science and Technology Department of

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information

MATRICES AND MATRIX OPERATIONS

MATRICES AND MATRIX OPERATIONS SIZE OF THE MATRIX is defined by number of rows and columns in the matrix. For the matrix that have m rows and n columns we say the size of the matrix is m x n. If matrix have the same number of rows (n)

More information

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then 1. x S is a global minimum point of f over S if f (x) f (x ) for any x S. 2. x S

More information

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants.

MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. MATH 323 Linear Algebra Lecture 6: Matrix algebra (continued). Determinants. Elementary matrices Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication

More information

Page 21, Exercise 6 should read: bysetting up a one-to-one correspondence between the set Z = {..., 3, 2, 1, 0, 1, 2, 3,...} and the set N.

Page 21, Exercise 6 should read: bysetting up a one-to-one correspondence between the set Z = {..., 3, 2, 1, 0, 1, 2, 3,...} and the set N. Errata for Elementary Classical Analysis, Second Edition Jerrold E. Marsden and Michael J. Hoffman marsden@cds.caltech.edu, mhoffma@calstatela.edu Version: August 10, 2001. What follows are the errata

More information

Mathematical Foundations

Mathematical Foundations Chapter 1 Mathematical Foundations 1.1 Big-O Notations In the description of algorithmic complexity, we often have to use the order notations, often in terms of big O and small o. Loosely speaking, for

More information

Symmetric and self-adjoint matrices

Symmetric and self-adjoint matrices Symmetric and self-adjoint matrices A matrix A in M n (F) is called symmetric if A T = A, ie A ij = A ji for each i, j; and self-adjoint if A = A, ie A ij = A ji or each i, j Note for A in M n (R) that

More information

APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF

APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF ELEMENTARY LINEAR ALGEBRA WORKBOOK/FOR USE WITH RON LARSON S TEXTBOOK ELEMENTARY LINEAR ALGEBRA CREATED BY SHANNON MARTIN MYERS APPENDIX: MATHEMATICAL INDUCTION AND OTHER FORMS OF PROOF When you are done

More information

Mathematics. EC / EE / IN / ME / CE. for

Mathematics.   EC / EE / IN / ME / CE. for Mathematics for EC / EE / IN / ME / CE By www.thegateacademy.com Syllabus Syllabus for Mathematics Linear Algebra: Matrix Algebra, Systems of Linear Equations, Eigenvalues and Eigenvectors. Probability

More information

Math 18.6, Spring 213 Problem Set #6 April 5, 213 Problem 1 ( 5.2, 4). Identify all the nonzero terms in the big formula for the determinants of the following matrices: 1 1 1 2 A = 1 1 1 1 1 1, B = 3 4

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra 1.1. Introduction SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear algebra is a specific branch of mathematics dealing with the study of vectors, vector spaces with functions that

More information

Assignment 11 (C + C ) = (C + C ) = (C + C) i(c C ) ] = i(c C) (AB) = (AB) = B A = BA 0 = [A, B] = [A, B] = (AB BA) = (AB) AB

Assignment 11 (C + C ) = (C + C ) = (C + C) i(c C ) ] = i(c C) (AB) = (AB) = B A = BA 0 = [A, B] = [A, B] = (AB BA) = (AB) AB Arfken 3.4.6 Matrix C is not Hermition. But which is Hermitian. Likewise, Assignment 11 (C + C ) = (C + C ) = (C + C) [ i(c C ) ] = i(c C ) = i(c C) = i ( C C ) Arfken 3.4.9 The matrices A and B are both

More information

Math 489AB Exercises for Chapter 1 Fall Section 1.0

Math 489AB Exercises for Chapter 1 Fall Section 1.0 Math 489AB Exercises for Chapter 1 Fall 2008 Section 1.0 1.0.2 We want to maximize x T Ax subject to the condition x T x = 1. We use the method of Lagrange multipliers. Let f(x) = x T Ax and g(x) = x T

More information

Extra Problems for Math 2050 Linear Algebra I

Extra Problems for Math 2050 Linear Algebra I Extra Problems for Math 5 Linear Algebra I Find the vector AB and illustrate with a picture if A = (,) and B = (,4) Find B, given A = (,4) and [ AB = A = (,4) and [ AB = 8 If possible, express x = 7 as

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 11. Determinants

More information

Matrix Theory. A.Holst, V.Ufnarovski

Matrix Theory. A.Holst, V.Ufnarovski Matrix Theory AHolst, VUfnarovski 55 HINTS AND ANSWERS 9 55 Hints and answers There are two different approaches In the first one write A as a block of rows and note that in B = E ij A all rows different

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

ECON 4117/5111 Mathematical Economics

ECON 4117/5111 Mathematical Economics Test 1 September 29, 2006 1. Use a truth table to show the following equivalence statement: (p q) (p q) 2. Consider the statement: A function f : X Y is continuous on X if for every open set V Y, the pre-image

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to 1.1. Introduction Linear algebra is a specific branch of mathematics dealing with the study of vectors, vector spaces with functions that

More information

MATH36001 Generalized Inverses and the SVD 2015

MATH36001 Generalized Inverses and the SVD 2015 MATH36001 Generalized Inverses and the SVD 201 1 Generalized Inverses of Matrices A matrix has an inverse only if it is square and nonsingular. However there are theoretical and practical applications

More information

Notes on Linear Algebra

Notes on Linear Algebra 1 Notes on Linear Algebra Jean Walrand August 2005 I INTRODUCTION Linear Algebra is the theory of linear transformations Applications abound in estimation control and Markov chains You should be familiar

More information

Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Page

Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Page Errata for ASM Exam LTAM Study Manual (First Edition Second Printing) Sorted by Page Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Page Practice Exam 0:A7, 2:A7, and 2:A8

More information

Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Date

Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Date Errata for ASM Exam LTAM Study Manual (First Edition Second Printing) Sorted by Date Errata and Updates for ASM Exam LTAM (First Edition Second Printing) Sorted by Date Practice Exam 0:A7, 2:A7, and 2:A8

More information

STAT200C: Review of Linear Algebra

STAT200C: Review of Linear Algebra Stat200C Instructor: Zhaoxia Yu STAT200C: Review of Linear Algebra 1 Review of Linear Algebra 1.1 Vector Spaces, Rank, Trace, and Linear Equations 1.1.1 Rank and Vector Spaces Definition A vector whose

More information

The Maximum Dimension of a Subspace of Nilpotent Matrices of Index 2

The Maximum Dimension of a Subspace of Nilpotent Matrices of Index 2 The Maximum Dimension of a Subspace of Nilpotent Matrices of Index L G Sweet Department of Mathematics and Statistics, University of Prince Edward Island Charlottetown, PEI C1A4P, Canada sweet@upeica J

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex

More information

G1110 & 852G1 Numerical Linear Algebra

G1110 & 852G1 Numerical Linear Algebra The University of Sussex Department of Mathematics G & 85G Numerical Linear Algebra Lecture Notes Autumn Term Kerstin Hesse (w aw S w a w w (w aw H(wa = (w aw + w Figure : Geometric explanation of the

More information

Appendix A: Matrices

Appendix A: Matrices Appendix A: Matrices A matrix is a rectangular array of numbers Such arrays have rows and columns The numbers of rows and columns are referred to as the dimensions of a matrix A matrix with, say, 5 rows

More information

Digital Workbook for GRA 6035 Mathematics

Digital Workbook for GRA 6035 Mathematics Eivind Eriksen Digital Workbook for GRA 6035 Mathematics November 10, 2014 BI Norwegian Business School Contents Part I Lectures in GRA6035 Mathematics 1 Linear Systems and Gaussian Elimination........................

More information

This MUST hold matrix multiplication satisfies the distributive property.

This MUST hold matrix multiplication satisfies the distributive property. The columns of AB are combinations of the columns of A. The reason is that each column of AB equals A times the corresponding column of B. But that is a linear combination of the columns of A with coefficients

More information

First selection test

First selection test First selection test Problem 1. Let ABC be a triangle right at C and consider points D, E on the sides BC, CA, respectively such that BD = AE = k. Lines BE and AC CD AD intersect at point O. Show that

More information

Linear Algebra. Christos Michalopoulos. September 24, NTU, Department of Economics

Linear Algebra. Christos Michalopoulos. September 24, NTU, Department of Economics Linear Algebra Christos Michalopoulos NTU, Department of Economics September 24, 2011 Christos Michalopoulos Linear Algebra September 24, 2011 1 / 93 Linear Equations Denition A linear equation in n-variables

More information

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION Chapter-1 GROUPS 1.1. INTRODUCTION The theory of groups arose from the theory of equations, during the nineteenth century. Originally, groups consisted only of transformations. The group of transformations

More information

Math 10 - Unit 5 Final Review - Polynomials

Math 10 - Unit 5 Final Review - Polynomials Class: Date: Math 10 - Unit 5 Final Review - Polynomials Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Factor the binomial 44a + 99a 2. a. a(44 + 99a)

More information

Chapter 7. Linear Algebra: Matrices, Vectors,

Chapter 7. Linear Algebra: Matrices, Vectors, Chapter 7. Linear Algebra: Matrices, Vectors, Determinants. Linear Systems Linear algebra includes the theory and application of linear systems of equations, linear transformations, and eigenvalue problems.

More information

Nonlinear Optimization

Nonlinear Optimization Nonlinear Optimization (Com S 477/577 Notes) Yan-Bin Jia Nov 7, 2017 1 Introduction Given a single function f that depends on one or more independent variable, we want to find the values of those variables

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information