Arbitrage in fractional Brownian motion models

Size: px
Start display at page:

Download "Arbitrage in fractional Brownian motion models"

Transcription

1 Arbirage i fracioal Browia moio models Parick Cheridio Depareme für Mahemaik, Eidgeössische Techische Hochschule Zürich, 892 Zürich, Swizerlad dio@mah.ehz.ch Ocober 22 Absrac We cosruc arbirage sraegies for a fiacial marke ha cosiss of a moey marke accou ad a sock whose discoued price follows a fracioal Browia moio wih drif or a expoeial fracioal Browia moio wih drif. The we show how arbirage ca be excluded from hese models by resricig he class of radig sraegies. Key words: fracioal Browia moio, arbirage, srog arbirage, exclusio of arbirage JEL Classificaio: C6, G1 Mahemaics Subjec Classificaio 2: 6G15, 6K3, 91B28 1 Iroducio We cosider a marke ha cosiss of a moey marke accou ad a sock ha pays o divideds. All ecoomic aciviy akes place i a ime ierval, T for some T,. Borrowig ad shor-sellig are allowed, he borrowig rae is equal o he ledig rae, ad i is possible o buy ad sell ay fracio of sock shares. Moreover, here exis o rasacio coss ad sock shares ca be be bough ad sold a he same price. We assume ha here exis wo sochasic processes X,T ad Y,T o a probabiliy space Ω, A, P such ha moey i he moey marke accou evolves accordig o X,T ad he sock price follows Y,T. This paper is par of he auhor s docoral disseraio wrie uder he supervisio of Freddy Delbae. Fiacial suppor from Credi Suisse is graefully ackowledged.

2 2 Parick Cheridio A fracioal Browia moio fbm wih Hurs parameer H, 1, is a coiuous, ceered Gaussia process B H R wih covariace Cov B H, B H s 1 = 2H + s 2H s 2H,, s R B 1 2 is a wo-sided Browia moio. The pahs of B 1 are sraigh lies wih a ormally disribued slope. For H 1 2, 1 he correlaio of wo icremes of B H over o-ierlappig ime-iervals is posiive, ad for H, 1 2 i is egaive. I ca easily be see from 1.1 ha E B H Bs H 2 = s 2H. Hece, Kolmogorov s coiuiy crierio applies see e.g. Theorem I.2.1 i Revuz ad Yor 1999, ad i follows ha almos all pahs of B H are locally Hölder coiuous of order α for every α < H. Furhermore, B H has saioary icremes ad is H-self-similar, ha is, for all a >, Ba H R has he same disribuio as a H B H R. More deails abou fbm ca be foud i Secio 7.2 of Samorodisky ad Taqqu We call X = 1, Y = Y + ν + σb H,, T, 1.2 he fracioal Bachelier model ad X = expr, Y = Y exp {r + ν} + σb H,, T, 1.3 he fracioal Samuelso model or fracioal Black-Scholes model. For he mome we assume ha Y, σ are posiive cosas ad ν, r are real cosas, bu all our resuls will also hold rue if ν is replaced by ay fucio i C 1 R + ad r by a arbirary righ-coiuous sochasic process. For a discussio of he empirical evidece of correlaio i sock price reurs see e.g Culad e al or Williger e al ad he refereces herei. For H, , 1, BH is o a semimarigale see e.g. Lipser ad Shiryaev 1989 or Rogers Hece, i immediaely follows from Theorem 7.2 of Delbae ad Schachermayer 1994 ha i boh models 1.2 ad 1.3 here exiss a weak form of arbirage called free luch wih vaishig risk cosisig of simple iegrads ha are predicable wih respec o he smalles filraio ha saisfies he usual assumpios ad coais he filraio geeraed by he discoued sock price process. Rogers 1997, Shiryaev 1998 ad Salopek 1998 give arbirage sraegies for fbm models. Rogers 1997 cosrucs arbirage for he fracioal Bachelier model 1.2. His sraegy cosiss of a combiaio of buy ad hold sraegies ad works for all Hurs parameers H, , 1. However, as selfsimilariy of he process Y is esseial for is cosrucio, Rogers arbirage oly exiss i he case ν =, i.e. Y = Y + σb H. Moreover, Rogers models Y for, ad o geerae a profi o he ime ierval 1,, his arbirage sraegy eeds o kow he whole hisory of Y from ime uil he prese.

3 Arbirage i fracioal Browia moio models 3 I Shiryaev 1998 oly he case H 1 2, 1 is reaed. A iegral wih respec o B H is defied ad i is idicaed how i ca be show ha for regular eough fucios F, he modified Iô formula df, B H = 1 F, B H d + 2 F, B H db H 1.4 holds. Usig his for he fracioal Bachelier model 1.2 wih H 1 2, 1, oe ca choose a c > ad se ϑ := c ν + σb H 2 2cY ν + σb H, ϑ 1 := 2c ν + σb H o obai ϑ X + ϑ 1 Y = ϑ X + ϑ 1 Y + ϑ 1 udy u = c ν + σb H Hece, if coiuous adjusme of he porfolio is allowed, ϑ, ϑ 1 is a self-fiacig arbirage sraegy for he fracioal Bachelier model. For he fracioal Samuelso model 1.3 wih H 1 2, 1, oe ca se for all c >, 2. ϑ := cy { 1 exp 2ν + 2σB H }, I follows from 1.4 ha ϑ 1 := 2c { exp ν + σb H 1 }. ϑ X + ϑ 1 Y = ϑ X + ϑ 1 Y + = cy expr { exp ν + σb H 1 } 2, ϑ udx u + ϑ 1 udy u which shows ha ϑ, ϑ 1 is a self-fiacig arbirage sraegy for he fracioal Samuelso model. More geerally, i follows from Youg s heorem o Sieljes iegrabiliy see Youg 1936 ha if a sochasic process Y is almos surely coiuous ad of bouded p-variaio for some p < 2 his is he case for Y i 1.2 ad 1.3 whe H 1 2, 1, he for a real fucio f o R ha is locally Lipschiz, he pah-wise Riema-Sieljes iegral fy udy u exiss for all ad equals F Y F Y, where F = f. I Salopek 1998 his is used o cosruc a self-fiacig arbirage sraegy for wo fiacial asses whose price processes X ad Y are almos surely coiuous, of bouded p-variaio for some p < 2 ad such ha X Y for all. I his paper we wa o do he followig wo higs: for a class of models ha coais 1.2 ad 1.3 for all H, , 1, firs, cosruc as simple as possible arbirage sraegies ad secodly, fid a as big as possible class of radig sraegies ha does o coai arbirage. The srucure of he paper is as follows: I Secio 2 we iroduce differe classes of radig sraegies ad defie he oios of free luch wih vaishig risk, arbirage ad srog arbirage. I Secio 3 we cosruc arbirage sraegies. As i Rogers 1997 our arbirage sraegies cosis of combiaios of buy ad hold sraegies. Therefore we eed o iegraio

4 4 Parick Cheridio heory for fbm. Moreover, o geerae a profi o he ime ierval, T, our sraegies eed oly kow he hisory of he discoued sock price Y/X from ime o. However, hese sraegies ca oly be performed if i is possible o buy ad sell wihi arbirarily small ime iervals. I Secio 4 we show ha arbirage ca be ruled ou from models of he form 1.2 ad 1.3 by iroducig a miimal amou of ime h > ha mus lie bewee wo cosecuive rasacios. 2 Tradig sraegies I his secio he ime ierval is a arbirary compac ierval a, b. Moey ca be ivesed i a moey marke accou where moey grows accordig o a sochasic process X a,b ad a sock whose price follows a sochasic process Y a,b. We firs give he defiiio of differe oios of arbirage ad specify he radig sraegies aferwards. For he ime beig a radig sraegy is jus a pair ϑ = ϑ, ϑ 1 of sochasic processes ϑ a,b ad ϑ 1 a,b. ϑ X describes he moey i he moey marke accou a ime ad ϑ 1 he umber of sock shares held a ime. Hece, he evoluio of he porfolio value of a sraegy ϑ is give by V ϑ := ϑ X + ϑ 1 Y, a, b. Sice we wa o use X as uméraire, we require i o be posiive. We se Ỹ := Y ad Ṽ ϑ X := V ϑ, a, b. X Defiiio 2.1 Le ξ be a, -valued radom variable wih P ξ > >. a A sequece of radig sraegies {ϑ} =1 is a ξ-flvr ξ-free luch wih vaishig risk if ϑ lim Ṽ b Ṽ a ϑ = ξ i probabiliy, ad lim ϑ Ṽ b Ṽ a ϑ =. {ϑ} =1 is a FLVR if i is a ξ -FLVR for some, -valued radom variable ξ wih P ξ > >. b A radig sraegy ϑ is a ξ-arbirage if Ṽb ϑ Ṽ a ϑ = ξ almos surely. ϑ is a arbirage if i is a ξ -arbirage for some, -valued radom variable ξ wih P ξ > >. c A radig sraegy ϑ is a srog arbirage if here exiss a cosa c > such ha Ṽ b ϑ Ṽ a ϑ c almos surely. I is clear ha we mus pu cerai resricios o a radig sraegy o give i a ecoomic meaig. Firs of all, radig sraegies should oly be based o available iformaio. To describe he evoluio of iformaio we

5 Arbirage i fracioal Browia moio models 5 iroduce a family of σ-algebras F = F a,b. We assume ha a ay ime a, b, X ad Y ca be observed ad o iformaio is los over ime. I oher words, F is a filraio ad F X,Y := σ X u u,, Y u u, F for all a, b. Noe ha F Ỹ := σ Ỹu F X,Y for all a, b. u, Furhermore, we require X ad Y o be progressively measurable wih respec o F. This is i paricular he case whe X ad Y are righcoiuous, ad i esures ha for all F-soppig imes τ, he sopped processes X τ a,b ad Y τ a,b are also progressively measurable wih respec o F. To cosruc arbirage i fbm models of he form 1.2 or 1.3 i is eough o cosider combiaios of buy ad hold sraegies. Defiiio 2.2 a The se of simple predicable iegrads is give by SF := {g 1 {a} + 1 g j1 τj,τ j+1 : 2, a = τ 1... τ = b; all τ j s are F-soppig imes; g is a real, F a -measurable radom variable; ad he oher g j s are real, F τj -measurable radom variables}. The class of simple predicable radig sraegies is give by Θ S F := { ϑ = ϑ, ϑ 1 : ϑ, ϑ 1 SF }. b The se of almos simple predicable iegrads is give by asf := {g 1 {a} + g j1 τj,τ j+1 : a = τ 1 τ 2... b; all τ j s are F-soppig imes; g is a real, F a -measurable radom variable; he oher g j s are real, F τj -measurable radom variables; P j such ha τ j = b = 1}. The class of almos simple predicable radig sraegies is give by Θ as F := { ϑ = ϑ, ϑ 1 : ϑ, ϑ 1 asf }. c For ϑ 1 = g 1 {a} + g j1 τj,τ j+1 asf we defie ϑ1 Y := g jy τj+1 Y τj, a, b. Noe ha his is almos surely a sum of fiiely may erms ad he process ϑ 1 Y a,b is progressively measurable because Y a,b is. Defiiio 2.3 Le ϑ = ϑ, ϑ 1 Θ as F. There exis soppig imes a = τ 1 τ 2... b such ha ϑ ad ϑ 1 ca be wrie i he form ϑ = f 1 {a} + f j 1 τj,τ j+1, ϑ 1 = g 1 {a} + g j 1 τj,τ j

6 6 Parick Cheridio We se τ = a 1 ad call ϑ self-fiacig for X, Y if for all j 1, k = 1,..., j ad l, { } a.s. 1 {τj k <τ j k+1 =τ j+l <τ j+l+1 } fj+l f j k X τj + g j+l g j k Y τj =. 2.2 Noe ha propery 2.2 is idepede of he represeaio 2.1 of ϑ. Furhermore, we se Θ S sff := { ϑ Θ S F : ϑ is self-fiacig } ad Θ as sf F := { ϑ Θ as F : ϑ is self-fiacig }. Proposiio 2.4 Le ϑ = ϑ, ϑ 1 Θ as F. The he followig are equivale: i ϑ is self-fiacig for X, Y ii almos surely, V ϑ iii ϑ is self-fiacig for 1, Ỹ iv almos surely, Ṽ ϑ = V ϑ a + ϑ X + ϑ 1 Y for all a, b = Ṽ ϑ a + ϑ 1 Ỹ for all a, b Proof Le a = τ 1 τ 2... b be a icreasig sequece of F-soppig imes such ha ϑ = f 1 {a} + f j 1 τj,τ j+1, ϑ 1 = g 1 {a} + g j 1 τj,τ j+1. i ii: I follows from i ha here exiss a measurable Ω Ω wih P Ω = 1 such ha for each ω Ω, equaio 2.2 holds for all j 1, k = 1,..., j ad l simulaeously. For = a, he equaio i ii holds for all ω Ω. Furhermore, here exiss a measurable Ω Ω wih P Ω = 1 such ha for all ω Ω, here exiss for every a, b, a j N, such ha τ j, τ j+1, ad = a + ϑ X + ϑ 1 Y = f j 1 X τ1 + g Y τ1 + f i Xτi+1 X τi V ϑ i=1 j 1 +f j X X τj + g i Yτi+1 Y τi + gj Y Y τj i=1 j X τi f i 1 f i + i=1 j Y τi g i 1 g i + f j X + g j Y = ϑ X + ϑ 1 Y. i=1 This shows ii. ii i: Le j 1, k = 1,..., j ad l. O {τ j k < τ j k+1 = τ j+l < τ j+l+1 } we have f j+l f j k X τj + g j+l g j k Y τj = f j+l X τj+l+1 + g j+l Y τj+l+1 fj k X τj + g j k Y τj

7 Arbirage i fracioal Browia moio models 7 f j+l Xτj+l+1 X τj gj+l Yτj+l+1 Y τj = ϑ τj+l+1 X τj+l+1 + ϑ 1 τj+l+1 Y τj+l+1 ϑ τj X τj + ϑ 1 τj Y τj j+l ϑ ax a + ϑ 1 j+l ay a + f i Xτi+1 X τi + g i Yτi+1 Y τi i=1 j 1 + ϑ ax a + ϑ 1 j 1 a.s. ay a + f i Xτi+1 X τi + g i Yτi+1 Y τi =, i=1 which proves i. The equivalece of i ad iii is rivial, ad he equivalece of iii ad iv ca be show i he same way as he equivalece of i ad ii. Remark 2.5 I follows from Proposiio 2.4 ha for all ϑ Θsf as F, almos surely, ϑ = Ṽ a ϑ + ϑ 1 Ỹ ϑ 1 Ỹ, a, b. This shows ha if we ideify idisiguishable processes, he map ϑ = ϑ, ϑ 1 i=1 i=1 Ṽ ϑ a, ϑ 1 is a bijecio from Θsf asf o L F a asf. I paricular, here exiss for all ξ, ϑ 1 L F a asf, a uique ϑ asf such ha ϑ = ϑ, ϑ 1 is i Θsf as ϑ F ad Ṽa = ξ. I Θsf asfỹ here exis so called doublig sraegies which ca creae srog arbirage eve i he sadard Samuelso or Black-Scholes model 1.3 wih H = 1 2. I was oiced by Harriso ad Pliska 1981 ha hey ca be ruled ou by puig a admissibiliy codiio o he radig sraegies. We use he admissibiliy codiio of Delbae ad Schachermayer I is more liberal ha he oe of Harriso ad Pliska 1981 bu resricive eough o exclude arbirage i he sadard Samuelso model. Defiiio 2.6 For c, we call ϑ Θsf as F c-admissible if almos surely, ϑ if Ṽ a,b Ṽ a ϑ = if ϑ 1 Ỹ c. a,b We call ϑ admissible if i is c-admissible for some c. Furhermore, we se Θ S sf,admf := { ϑ Θ S sff : ϑ is admissible } ad Θ as sf,admf := { ϑ Θ as sf F : ϑ is admissible }.

8 8 Parick Cheridio 3 Cosrucio of arbirage Theorem 3.1 Le B H be a fbm. Le T,, ν C 1, T ad σ >. The i all four cases i H 1 2, 1, Ỹ = ν + σb H,, T ii H 1 2, 1, Ỹ = exp ν + σb H,, T iii H, 1 2, Ỹ = ν + σb H,, T iv H, 1 2, Ỹ = exp ν + σb H,, T, here exiss for every cosa c > ad all N, a ϑ 1 SFỸ such ha a P ϑ 1 Ỹ = c > 1 1 ad T b if,t ϑ 1 Ỹ 1. I paricular, he sraegies ϑ = ϑ, ϑ 1 Θ S sf,adm FỸ, N, where ϑ is give by ϑ = ϑ 1 Ỹ ϑ 1 Ỹ,, T, N, form a c-flvr. I he cases iii ad iv, ϑ 1 ca be chose such ha also c ϑ 1 1. Theorem 3.2 I all four cases i-iv of Theorem 3.1 here exiss for every cosa c >, a 1 c -admissible c-arbirage ϑ ΘaS sf,adm FỸ. I he cases iii ad iv, ϑ ca be chose such ha ϑ 1 1 c. For he proofs of Theorems 3.1 ad 3.2 we eed he followig hree lemmas. Lemma 3.3 Le Z a,b be a coiuous sochasic process. If P Z b = Z a =, 3.1 ad for all ε >, here exis F Z -soppig imes a = τ... τ = b such ha 1 P 2 max Zτj+1 Z τj ε < ε, 3.2 a,b he here exiss for all M >, a β SF Z such ha a P β Z b < M < 1 M ad b if a,b β Z 1 M.

9 Arbirage i fracioal Browia moio models 9 Proof Le M >. I follows from 3.1 ad 3.2 ha here exis a ε > such ha P Z b Z a 2 < ε < M ad F Z -soppig imes a = τ... τ = b, such ha 1 P 2 ε max Zτj+1 Z τj a,b M 2 < M. 3.4 Sice Z is coiuous, 1 ξ := if a, b : 2 ε Zτj+1 Z τj M se if = b 3.5 is a F Z -soppig ime see e.g. Proposiio I.4.5 i Revuz ad Yor 1999, ad 3.4 implies P ξ < b < 1 2M. 3.6 Furhermore, β := 2 ε β Z = M + 1 M ε M + 1 M 1 Zτj Z a 1τj,τ j+11,ξ is i SF Z, ad for all a, b, 1 Z ξ Z a 2 2 Zτj+1 ξ Z τj ξ. 3.7 This ogeher wih 3.5 implies b. From 3.7, 3.6 ad 3.3 i follows ha P β Z b < M = P M + 1 M ε Z ξ Z a 2 P 1 Z ξ Z a 2 < ε P ξ < b + P 2 Zτj+1 ξ Z τj ξ < M Z b Z a 2 < ε < 1 M. This shows a, ad he lemma is proved. Lemma 3.4 Le Z a,b be a coiuous sochasic process. If for all L > here exis F Z -soppig imes a = τ... τ = b, such ha 1 P 2 Zτj+1 Z τj < L < 1 L, 3.8

10 1 Parick Cheridio he here exiss for all M >, a β SF Z such ha a P β Z b < M < 1 M, b if a,b β Z b 1 M ad c β 1 M. Proof Le M >. Sice Z is coiuous, ξ N := if { a, b : Z Z a N} we se if = b 3.9 is for all N > a F Z -soppig ime ad {ξ N < b}, as N. Therefore here exiss a N 2, such ha P ξ N < b < 1 2M. 3.1 By assumpio 3.8 here exis F Z -soppig imes a = τ... τ = b, such ha 1 P Zτj+1 Z 2 τ j < N 2 M < 1 2M I is easy o see ha β := 2 MN 2 1 Zτj Z a 1τj,τ j+11,ξn is i SF Z ad saisfies c. For all a, b, β Z = Zτj+1 ξ MN 2 N Z τj ξ N Z ξn Z a This ogeher wih 3.9 implies b. From 3.12, 3.1 ad 3.11 i follows ha P β Z b < M = P Zτj+1 ξ MN 2 N Z τj ξ N ZξN Z a 2 < M 1 P 2 Zτj+1 ξ N Z τj ξ N < M 2 N 2 + N 2 1 P ξ N < b + P 2 Zτj+1 Z τj < N 2 M < 1 M. This shows a, ad he lemma is proved.

11 Arbirage i fracioal Browia moio models 11 Lemma 3.5 Le B H be a fbm ad T, p, q >. The: a ph 1 q 1 BH j+1 T BH j p i L 1 T b ph 1+q 1 BH j+1 T BH j p i probabiliy, T i.e. for all L > here exiss a such ha for all, P ph 1+q 1 BH j+1 T BH j T p < L < 1 L Proof See Lemma 2.1 i Cheridio 21b. Proof of Theorem 3.1 By self-similariy of B H i is eough o prove Theorem 3.1 for T = 1. i H 1 2, 1, Ỹ = ν + σb H,, 1: I is clear ha Ỹ,1 saisfies 3.1. Sice he fucio ν is Lipschiz ad almos all pahs of B H,1 are Hölder coiuous of order α for every α 1 2, H, i follows ha 1 max,1 2 Ỹ j+1 Ỹ j almos surely This shows ha Ỹ,1 also saisfies 3.2. Thus, i follows from Lemma 3.3 ha for all N, here exiss a β SFỸ such ha a P β Ỹ < c < 1 ad 1 b if,1 β Ỹ 1. For every N, ξ := if { } : β Ỹ = c we se if = 1 is a F Z -soppig ime, ad for ϑ 1 := β1,ξ SF Z we have a P ϑ 1 Ỹ = c > 1 1 ad 1 b if,1 ϑ 1 Ỹ 1. ii H 1 2, 1, Ỹ = exp ν + σb H,, 1 : Ỹ,1 saisfies 3.1, ad i is clear ha 3.13 sill holds rue. Hece, Ỹ,1 also saisfies 3.2, ad he proof ca be cocluded as i case i. iii H, 1 2, Ỹ = ν + σb H,, 1: To show ha Ỹ,1 saisfies 3.8 we choose a L >. I follows from Lemma 3.5 a ha 1 1 B H j+1 B H j i L 1.

12 12 Parick Cheridio Hece, 1 2 ν j+1 ν j σb H j ν 1 σ B H j+1 B H j σb H j i L 1. I paricular, here exiss a 1 N, such ha for all 1, 1 P 2ν j+1 ν j σb H j+1 σb H j > L < 1 2L. O he oher had, Lemma 3.5 b implies ha here exiss a 2 N, such ha for all 2, 1 2 P σb H j+1 σb H j < 2L < 1 2L. Hece, for all max 1, 2, 1 2 P Ỹ j+1 Ỹ j < L 1 2 P σb H j+1 σb H j + 2ν j+1 ν j σb H j+1 σb H j < L 1 2 P σb H j+1 σb H j < 2L 1 +P 2 ν j+1 ν j σb H j+1 σb H j > L < 1 L. This shows ha Ỹ,1 saisfies 3.8. By Lemma 3.4 here exiss for all N, a β SF Z such ha a P β Ỹ < c < 1 1 b if,1 β Ỹ 1 c β 1. Havig show his, we ca cosruc ϑ 1 as i i. By c we ge ϑ 1 1.

13 Arbirage i fracioal Browia moio models 13 iv H, 1 2, Ỹ = exp ν + σb H,, 1 : Sice Ỹ,1 is posiive ad coiuous, mi,1 Ỹ >. Therefore, here exiss a ε > such ha P mi Ỹ ε < 1,1 2L. I follows from wha we have show i he proof of iii ha here exiss a N, such ha 1 2 P l Ỹ j+1 l Ỹ 1 j < ε 2 L < 1 2L. Sice for all j, we obai 1 P Ỹ j+1 Ỹ j+1 Ỹ j Ỹ j l mi Ỹ Ỹ j+1,1 2 < L l Ỹ j, 1 2 P mi Ỹ ε + P l Ỹ j+1 l Ỹ 1 j <,1 ε 2 L < 1 L. This shows ha Ỹ,1 saisfies 3.8. Thus, ϑ 1 ca be cosruced as i iii. Agai, ϑ 1 1. This complees he proof of he heorem. Proof of Theorem 3.2 Sice B H is self-similar, i is eough o prove he heorem for T = 1. We spli, 1 io he subiervals I := a = 1 2 1, b = 1 2, N. By Ỹ we deoe he resricio of Ỹ o I ad by FỸ = F Ỹ I he filraio geeraed by Ỹ. Noe ha F Ỹ F Ỹ for all N ad I. Sice B H has saioary icremes, i follows from Theorem 3.1 ha here exiss for all N, a β SFỸ such ha a P β Ỹ < c + 1 c < 1 b b if I β Ỹ 2 c. For β := β1 I, =1

14 14 Parick Cheridio { } ξ := if, 1 : β Ỹ = c we se if = 1 is a FỸ -soppig ime. I follows from a ad b ha P ξ < 1 = 1. Therefore, ϑ 1 := β1,ξ belogs o asfỹ ad ϑ, ϑ 1 wih ϑ := ϑ 1 Ỹ ϑ 1 Ỹ,, T, is a 1 c -admissible c-arbirage i ΘaS sf,adm FỸ. I he cases iii ad iv all β s ca be chose such ha β 1 c. The, ϑ 1 1 c oo, ad he heorem is proved. Remarks More geerally, coclusios a ad b of Theorem 3.1 hold wheever he discoued sock price Ỹ,T saisfies codiios 3.1 ad 3.2 of Lemma 3.3. If Ỹ,T fulfils codiio 3.8 of Lemma 3.4, he a, b ad c of Theorem 3.1 are valid. I paricular, codiio 3.2 is fulfilled by all processes wih vaishig quadraic variaio ad codiio 3.8 by all processes wih ifiie quadraic variaio. For differe geeralizaios of Lemma 3.5 see e.g. Shao 1996, Takashima 1989 or Kôo ad Maejima Shao 1996 coais resuls o p-variaio of Gaussia processes wih saioary icremes. Takashima 1989 gives sample pah properies of ergodic self-similar processes, ad i Kôo ad Maejima 1991, resuls o Hölder coiuiy of sample pahs of some self-similar sable processes ca be foud. 2 I a model X, Y,T wih srog arbirage i is possible o superreplicae a Europea call opio wih ime-t pay-off C T = Y T K +, K >, wihou iiial edowme i he followig way: A ime oe borrows moey from he moey marke accou o buy oe sock share. The oe applies a srog arbirage sraegy o geerae he amou of moey eeded o pay back he deb wihou sellig he sock share. A ime T oe ows a sock share ad has o debs. This hedges he opio. The followig example shows ha C T ca have a posiive super-replicaio price if he model X, Y,T oly admis arbirage: Le B,1 be a Browia moio ad B H,1 a fbm wih Hurs parameer H, , 1. Le ξ be a radom variable ha is idepede of B ad B H ad such ha P ξ = = P ξ = 1 = 1 2. Le r, ν ad σ >, be cosas. The, he model X = expr, Y = exp { r + ν + σ 1 ξb + ξb H },, 1, has arbirage bu o srog arbirage i Θsf,adm as FY. Is is clear ha he super-replicaio of C 1 wih a sraegy from Θsf,adm as FY coss a leas he Black-Scholes price.

15 Arbirage i fracioal Browia moio models 15 4 Exclusio of arbirage The arbirage sraegies ha we cosruced i Secio 3 ac o ever smaller ime iervals. They ca be excluded by iroducig a miimal amou of ime h > ha mus lie bewee wo cosecuive rasacios. Defiiio 4.1 Le F = F,T be a filraio ad h >. We defie 1 S h F := g 1 {} + g j 1 τj,τ j+1 SF : j, τ j+1 τ j + h ad Θ h sff := { ϑ = ϑ, ϑ 1 Θ S sf : ϑ, ϑ 1 S h F }. I he followig we will show ha oe of he models i-iv of Theorem 3.1 has a arbirage i h> Θh sf FỸ. Lemma 4.2 Le B be a Browia moio ad H, , 1. Le Z be a coiuous versio of he process sh 1 2 db s. The, for all c ad all h ad T such ha < h T, P if Z c = P sup Z c >. h,t h,t Proof Le c ad < h T. Clearly, Z has he same disribuio as Z. Hece, P if Z c = P sup Z c. h,t h,t We deoe by µ W he Wieer measure o C, T, B, where B is he σ- algebra geeraed by he cylider ses. I follows from Lévy s modulus of coiuiy for Browia moio see e.g. Theorem I.2.7 i Revuz ad Yor 1999 ha µ W ˆΩ = 1, where ˆΩ := ω ωs ω C, T : ω = ad, T, lim = s s log 1. s For every ω ˆΩ, sh 1 2 dωs ca for all, be defied as a Riema-Sieljes iegral which is coiuous i his ca be proved like Proposiio 1.3 i Cheridio 21a. Hece, we have = µ W P if Z c h,t ω ˆΩ : if h,t Le us firs assume H 1 2, 1. I his case we se m := H + { 1 2 c + T H 1 h H+ 1 2 ad A m := ω ˆΩ : 2 s H 1 2 dωs c. sup ω m 1,T },

16 16 Parick Cheridio where ω m is give by ω m := ω m,, T. By Girsaov s Theorem here exiss a probabiliy measure µ m o ˆΩ ha is equivale o µ W such ha ω m,t is a Browia moio uder µ m. I is well kow ha µ m A m >. Equivalece of µ W ad µ m implies ha also For all ω ˆΩ ad, T, µ W A m >. 4.1 s H 1 2 dωs = ωsh 1 2 sh 3 2 ds = H 1 2 ω m s s H 3 2 ds + H 1 2 = H 1 2 ω m s s H 3 H ds + m H ms s H 3 2 ds For ω A m, we obai for all h, T he followig esimaes: H 1 2 ad, by our choice of m, Hece, ω m s s H 3 2 ds H 1 2 m H+ 1 2 H I follows ha = s H 3 2 ds T H 1 2, H+ 1 2 c + T H 1 2 c + T H 1 2. h s H 1 2 dωsds T H c + T H 1 2 = c. { A m if h,t } s H 1 2 dωs c, which ogeher wih 4.1 proves he lemma for H 1 2, 1. For H, 1 2, he proof is slighly more delicae. Sice all ω ˆΩ are Hölder coiuous of order α for every α < 1 2, here exiss a cosa δ > such ha µ W A 1 2, δ >, where A {ω 1 2, δ := ˆΩ : sup ω 1,T 2 ad We se m := H h H+ 1 2 } sup ω ωs δ,s,t s 1 2 H 2 c H2δ H T H hh 1 2,

17 Arbirage i fracioal Browia moio models 17 ω m := ω m,, T ad defie µ m as before. Furhermore, we se A m 1 2, δ := { ω ˆΩ : ω m A 1 2, δ }. Sice ω m,t is a Browia moio uder µ m, µ m A m 1 2, δ = µ W A 1 2, δ >, ad herefore, µ W A m 1 2, δ >. 4.2 For ω ˆΩ ad h, T, we ca wrie s H 1 2 dωs = s H 1 2 d ωs ω = 1 2 H ω ωs s H 3 2 ds + H 1 2 ω = 1 2 H ω m ω m s s H 3 2 ds + H 1 2 ωm + m H+ 1 2 H If ω A m 1 2, δ ad h, T, we ca esimae he hree precedig erms as follows: 1 2 H ω m ω m s s H 3 2 ds 1 2 H H 1 2 ωm 1 2 hh 1 2, m H+ 1 2 H = δ s H 2 1 ds 1 2 H2δ H T H 2, H+ 1 2 c + 1 h 2 H2δ H T H hh 1 2 c H2δ H T H hh 1 2. I follows ha s H 1 2 dωs c. This ad 4.2 prove he lemma for H, 1 2.

18 18 Parick Cheridio Theorem 4.3 Le B H be a fbm wih H, , 1. Le T,, σ > ad ν :, T R be a measurable fucio such ha sup,t ν <. Cosider he wo cases If i Ỹ = ν + σb H,, T ii Ỹ = exp ν + σb H,, T 1 ϑ 1 = g 1 {} + g j 1 τj,τ j+1 h> S h FỸ ad here exiss a j {1,..., 1} wih P g j >, he i case i, P ϑ 1 Ỹ c > for all c, T ad i case ii, P ϑ 1 Ỹ < >. T Proof For oaioal simpliciy we give he proof for Ỹ = B H ad Ỹ = expb H. The geeralizaios o he cases i ad ii are obvious. To prove he heorem for Ỹ = B H we fix a h >, ad cosider a 1 ϑ 1 = g 1 {} + g j 1 τj,τ j+1 S h F BH, such ha here exiss a j {1,..., 1} wih P g j >. If he k = max {j {1,..., 1} : P g j > }, ϑ1 B H T = k g j B H τ j+1 B H τ j almos surely. Le c. I is clear ha k P g j Bτ H j+1 Bτ H j c 4.3 k 1 P g j Bτ H j+1 Bτ H j + sup g k B H τk + B H τ k c. h,t Le ω ωs ˆΩ := ω CR : ω = ad R, lim = s s log 1, s

19 Arbirage i fracioal Browia moio models 19 B he σ-algebra of subses of ˆΩ ha is geeraed by he cylider ses ad P he Wieer measure o ˆΩ, B. Wihou loss of geeraliy we ca assume ha B H is defied o ˆΩ, B, P by he improper Riema-Sieljes iegrals B H ω = s H 1 2 1{s } s H 1 2 dωs, 4.4 see Proposiio 1.3 i Cheridio 21a. We defie he filraio F ˆΩ = F ˆΩ,T by {{ := σ ω ˆΩ } } : ωs a : < s, a R. F ˆΩ I is clear ha F ˆΩ coais he filraio F BH by F BH := σ { B H s : s }. = F BH,T, which is give Therefore he F BH -soppig imes τ 1,... τ k, are also F ˆΩ-soppig imes. I he followig we spli each fucio ω ˆΩ a he ime poi τ k ω. We se ad le π 1 ωs := ωs1,τk ωs, s R, π 2 ωs := ωτ k ω + s ωτ k ω, s, Ω 1 := { π 1 ω R R : ω ˆΩ }, B 1 he σ-algebra of subses of Ω 1 ha is geeraed by he cylider ses, { Ω 2 := π 2 ω C, : ω ˆΩ } ad B 2 he σ-algebra of subses of Ω 2 ha is geeraed by he cylider ses. I ca easily be checked ha he mappig π 1 : ˆΩ, B Ω 1, B 1 is F ˆΩ τk -measurable. O he oher had, i follows from Theorem I.32 of Proer 199 ha π 2 ωs s is a Browia moio uder P which is idepede of F ˆΩ τk. I ca be see from 4.4 ha for all ω ˆΩ ad h, T, k 1 g j B H τ j+1 B H τ j where for ω 1 Ω 1, ω 2 Ω 2 ad h, T, + g k B H τk + Bτ H k ω = U π 1 ω, π 2 ω U ω 1, ω 2 := U ω 1 + g k ω 1 U 1 ω 1 + U 2 ω 2, k 1 U ω 1 := g j Bτ H j+1 Bτ H j ω 1, U 1 ω 1 := U 2 ω 2 := τk ω 1 τ k ω 1 + s H 1 2 τk ω 1 s H 1 2 dω 1 s, s H 1 2 dω2 s.

20 2 Parick Cheridio Sice U h,t is a coiuous sochasic process o Ω 1 Ω 2, B 1 B 1, he se { } A := ω 1, ω 2 Ω 1 Ω 2 : sup U ω 1, ω 2 c h,t is B 1 B 2 -measurable. I follows from Proposiio A.2.5 of Lambero ad Lapeyre 1996 ha for almos every ω ˆΩ, E 1 A π 1, π 2 F ˆΩ τk ω = φ π 1 ω, where he mappig φ : Ω 1 R is give by φω 1 := E 1 A ω 1, π 2, ω 1 Ω 1. Sice U 1 ω 1 is for all ω Ω 1 coiuous i, sup h,t U 1 ω 1 is for all ω 1 Ω 1 fiie. Therefore ad sice π 2 ω is a Browia moio uder P, i follows from Lemma 4.2 ha for fixed ω 1 Ω 1, P φω 1 = P U ω 1 + sup U ω 1, π 2 c h,t sup h,t g k ω 1 U 1 ω 1 + sup h,t g k ω 1 U 2 π 2 c Therefore, k 1 P g j Bτ H j+1 Bτ H j + sup g k B H τk + B H τ k c h,t = E 1 A π 1, π 2 = E E 1 A π 1, π 2 F ˆΩ τk = E φ π 1 >. This ad 4.3 prove he heorem i he case Ỹ = B H. If Ỹ = expb H, le us assume here exiss a h > ad a 1 ϑ 1 = g 1 {} + g j 1 τj,τ j+1 S h F BH >. such ha here exiss a j {1,..., 1} wih P g j > ad ϑ 1 Ỹ T almos surely. If l k = mi l : P g l > ad g j e BH τ B j+1 e H τ j a.s., he eiher k 1 g j e BH τ B j+1 e H τ j = almos surely, or

21 Arbirage i fracioal Browia moio models 21 k 1 P g j e BH τ B j+1 e H τ j < >. I boh cases, P C > for k 1 C := g j e BH τ B j+1 e H τ j. Wih he same mehod ha we used i he firs par of he proof oe ca deduce from Lemma 4.2 ha for almos all ω C, k 1 P g j e BH τ B j+1 e H τ j + sup g k e BH τ k + e BH τ k < h,t F ˆΩ τk ω >, which implies ha k P g j e BH τ B j+1 e H τ j < k 1 P g j e BH τ B j+1 e H τ j + sup g k e BH τ k + e BH τ k < >. h,t This coradics our assumpio ad herefore, complees he secod par of he proof. I follows from Theorem 4.3 ha if radig sraegies are resriced o he class h> Θh sf FỸ, he i case i here exis o o-rivial admissible sraegies ad i paricular o FLVR, ad i case ii here exiss o arbirage. A ispecio of he proof of Theorem 4.3 shows ha i case ii, a ϑ h> Θh sf FỸ ca oly be admissible if ϑ 1 is almos surely o-egaive. I follows from similar argumes o he oes i he proof of Theorem 4.3 ha i boh cases i ad ii he cheapes way o super-replicae a Europea call opio wih a sraegy ϑ h> Θh sf FỸ is o buy he sock. I paricular, i boh cases i ad ii of Theorem 4.3 he model X, Y,T is icomplee whe radig sraegies are resriced o h> Θh sf FỸ. Refereces 1. Cheridio, P.: Regularizig fracioal Browia moio wih a view owards sock price modellig. Diss. ETH No. 1451, dio 21a 2. Cheridio, P.: Mixed fracioal Browia moio. Beroulli 76, b 3. Culad, N.J., Kopp P.E., Williger W.: Sock price reurs ad he Joseph effec: A fracioal versio of he Black-Scholes model. Progress i Probabiliy 36,

22 22 Parick Cheridio 4. Delbae, F., Schachermayer, W.: A geeral versio of he fudameal heorem of asse pricig. Mah. A. 3, Harriso, J.M., Pliska, S.P.: Marigales ad sochasic iegrals i he heory of coiuous radig. Soch. Proc. Appl. 11, Kôo, N., Maejima, M.: Hölder coiuiy of sample pahs of some self-similar sable processes. Tokyo Joural of Mahemaics 141, Lambero, D., Lapeyre, B.: Sochasic calculus applied o fiace. Chapma & Hall Lipser, R.Sh., Shiryaev A.N.: Theory of marigales. Kluwer Acad. Publ., Dordrech Proer, P.: Sochasic iegraio ad differeial equaios. Berli: Spriger- Verlag Revuz, D., Yor, M.: Coiuous marigales ad Browia moio. Spriger Rogers, L.C.G.: Arbirage wih fracioal Browia moio. Mahemaical Fiace 7, Salopek, D.M.: Tolerace o arbirage. Sochasic Processes ad heir Applicaios 76, Samorodisky, G., Taqqu, M.S.: Sable o-gaussia radom processes. Sochasic models wih ifiie variace. Chapma & Hall, New York Shao, Q.M.: p-variaio of Gaussia processes wih saioary icremes. Sudia Sci. Mah. Hugar. 31, Shiryaev, A.N.: O arbirage ad replicaio for fracal models. Research Repor 2, MaPhySo, Deparme of Mahemaical Scieces, Uiversiy of Aarhus, Demark Takashima, K.: Sample pah properies of ergodic self-similar processes. Osaka J. Mah. 26, Williger, W., Taqqu, M.S., Teverovsky, V.: Sock marke prices ad lograge depedece. Fiace Sochas. 31, Youg, L.C.: A iequaliy of he Hölder ype, coeced wih Sieljes iegraio. Aca Mah. Swede 67,

Regularizing Fractional Brownian Motion with a View towards Stock Price Modelling

Regularizing Fractional Brownian Motion with a View towards Stock Price Modelling Diss. ET No. 45 Regularizig Fracioal Browia Moio wih a View owards Sock Price Modellig A disseraio submied o he SWISS FEDERAL INSTITUTE OF TECNOLOGY ZURIC for he degree of Docor of Mahemaics preseed by

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

Introduction to the Mathematics of Lévy Processes

Introduction to the Mathematics of Lévy Processes Iroducio o he Mahemaics of Lévy Processes Kazuhisa Masuda Deparme of Ecoomics The Graduae Ceer, The Ciy Uiversiy of New York, 365 Fifh Aveue, New York, NY 10016-4309 Email: maxmasuda@maxmasudacom hp://wwwmaxmasudacom/

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Conditional Probability and Conditional Expectation

Conditional Probability and Conditional Expectation Hadou #8 for B902308 prig 2002 lecure dae: 3/06/2002 Codiioal Probabiliy ad Codiioal Epecaio uppose X ad Y are wo radom variables The codiioal probabiliy of Y y give X is } { }, { } { X P X y Y P X y Y

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Credit portfolio optimization with replacement in defaultable asset

Credit portfolio optimization with replacement in defaultable asset SPECIAL SECION: MAHEMAICAL FINANCE Credi porfolio opimizaio wih replaceme i defaulable asse K. Suresh Kumar* ad Chada Pal Deparme of Mahemaics, Idia Isiue of echology Bombay, Mumbai 4 76, Idia I his aricle,

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

arxiv: v2 [math.pr] 18 May 2018

arxiv: v2 [math.pr] 18 May 2018 ASYMPTOTIC ARBITRAGE IN FRACTIONAL MIXED MARKETS FERNANDO CORDERO, IRENE KLEIN, AND LAVINIA PEREZ-OSTAFE arxiv:1602.02953v2 [mah.pr] 18 May 2018 Absrac. We cosider a family of mixed processes give as he

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Comparisons Between RV, ARV and WRV

Comparisons Between RV, ARV and WRV Comparisos Bewee RV, ARV ad WRV Cao Gag,Guo Migyua School of Maageme ad Ecoomics, Tiaji Uiversiy, Tiaji,30007 Absrac: Realized Volailiy (RV) have bee widely used sice i was pu forward by Aderso ad Bollerslev

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

An approximate approach to the exponential utility indifference valuation

An approximate approach to the exponential utility indifference valuation A approximae approach o he expoeial uiliy idifferece valuaio akuji Arai Faculy of Ecoomics, Keio Uiversiy, 2-15-45 Mia, Miao-ku, okyo, 18-8345, Japa e-mail: arai@ecokeioacjp) Absrac We propose, i his paper,

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

arxiv:math/ v1 [math.pr] 5 Jul 2006

arxiv:math/ v1 [math.pr] 5 Jul 2006 he Aals of Applied Probabiliy 2006, Vol. 16, No. 2, 984 1033 DOI: 10.1214/105051606000000088 c Isiue of Mahemaical Saisics, 2006 arxiv:mah/0607123v1 [mah.pr] 5 Jul 2006 ERROR ESIMAES FOR INOMIAL APPROXIMAIONS

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique MASSACHUSETTS ISTITUTE OF TECHOLOGY 6.265/5.070J Fall 203 Lecure 4 9/6/203 Applicaios of he large deviaio echique Coe.. Isurace problem 2. Queueig problem 3. Buffer overflow probabiliy Safey capial for

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

INVESTMENT PROJECT EFFICIENCY EVALUATION

INVESTMENT PROJECT EFFICIENCY EVALUATION 368 Miljeko Crjac Domiika Crjac INVESTMENT PROJECT EFFICIENCY EVALUATION Miljeko Crjac Professor Faculy of Ecoomics Drsc Domiika Crjac Faculy of Elecrical Egieerig Osijek Summary Fiacial efficiecy of ivesme

More information

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES

GAUSSIAN CHAOS AND SAMPLE PATH PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES The Aals of Probabiliy 996, Vol, No 3, 3077 GAUSSIAN CAOS AND SAMPLE PAT PROPERTIES OF ADDITIVE FUNCTIONALS OF SYMMETRIC MARKOV PROCESSES BY MICAEL B MARCUS AND JAY ROSEN Ciy College of CUNY ad College

More information

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems

Homotopy Analysis Method for Solving Fractional Sturm-Liouville Problems Ausralia Joural of Basic ad Applied Scieces, 4(1): 518-57, 1 ISSN 1991-8178 Homoopy Aalysis Mehod for Solvig Fracioal Surm-Liouville Problems 1 A Neamay, R Darzi, A Dabbaghia 1 Deparme of Mahemaics, Uiversiy

More information

Completeness of Random Exponential System in Half-strip

Completeness of Random Exponential System in Half-strip 23-24 Prepri for School of Mahemaical Scieces, Beijig Normal Uiversiy Compleeess of Radom Expoeial Sysem i Half-srip Gao ZhiQiag, Deg GuaTie ad Ke SiYu School of Mahemaical Scieces, Laboraory of Mahemaics

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Yugoslav Joural of Operaios Research 8 (2008, Number, 53-6 DOI: 02298/YUJOR080053W NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Jeff Kuo-Jug WU, Hsui-Li

More information

Inference for Stochastic Processes 4. Lévy Processes. Duke University ISDS, USA. Poisson Process. Limits of Simple Compound Poisson Processes

Inference for Stochastic Processes 4. Lévy Processes. Duke University ISDS, USA. Poisson Process. Limits of Simple Compound Poisson Processes Poisso Process Iferece for Sochasic Processes 4. Lévy Processes τ = δ j, δ j iid Ex X sup { Z + : τ }, < By ober L. Wolper Duke Uiversiy ISDS, USA [X j+ X j ] id Po [ j+ j ],... < evised: Jue 8, 5 E[e

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

The Moment Approximation of the First Passage Time for the Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier America Joural of Applied Mahemaics ad Saisics, 015, Vol. 3, No. 5, 184-189 Available olie a hp://pubs.sciepub.com/ajams/3/5/ Sciece ad Educaio Publishig DOI:10.1691/ajams-3-5- The Mome Approximaio of

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION

The Solution of the One Species Lotka-Volterra Equation Using Variational Iteration Method ABSTRACT INTRODUCTION Malaysia Joural of Mahemaical Scieces 2(2): 55-6 (28) The Soluio of he Oe Species Loka-Volerra Equaio Usig Variaioal Ieraio Mehod B. Baiha, M.S.M. Noorai, I. Hashim School of Mahemaical Scieces, Uiversii

More information

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models Oulie Parameer esimaio for discree idde Markov models Juko Murakami () ad Tomas Taylor (2). Vicoria Uiversiy of Welligo 2. Arizoa Sae Uiversiy Descripio of simple idde Markov models Maximum likeliood esimae

More information

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY ZHEN-GUO DENG ad GUO-CHENG WU 2, 3 * School of Mahemaics ad Iformaio Sciece, Guagi Uiversiy, Naig 534, PR Chia 2 Key Laboraory

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

hal , version 5-4 Oct 2012

hal , version 5-4 Oct 2012 Auhor mauscrip, published i "Advaces i Applied Probabiliy 13 3" ERROR BOUNDS FOR SMALL JUMPS OF LÉVY PROCESSES EL HADJ ALY DIA Absrac The pricig of opios i expoeial Lévy models amous o he compuaio of expecaios

More information

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3

Samuel Sindayigaya 1, Nyongesa L. Kennedy 2, Adu A.M. Wasike 3 Ieraioal Joural of Saisics ad Aalysis. ISSN 48-9959 Volume 6, Number (6, pp. -8 Research Idia Publicaios hp://www.ripublicaio.com The Populaio Mea ad is Variace i he Presece of Geocide for a Simple Birh-Deah-

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

12 Getting Started With Fourier Analysis

12 Getting Started With Fourier Analysis Commuicaios Egieerig MSc - Prelimiary Readig Geig Sared Wih Fourier Aalysis Fourier aalysis is cocered wih he represeaio of sigals i erms of he sums of sie, cosie or complex oscillaio waveforms. We ll

More information

Applying the Moment Generating Functions to the Study of Probability Distributions

Applying the Moment Generating Functions to the Study of Probability Distributions 3 Iformaica Ecoomică, r (4)/007 Applyi he Mome Geerai Fucios o he Sudy of Probabiliy Disribuios Silvia SPĂTARU Academy of Ecoomic Sudies, Buchares I his paper, we describe a ool o aid i provi heorems abou

More information

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables

Procedia - Social and Behavioral Sciences 230 ( 2016 ) Joint Probability Distribution and the Minimum of a Set of Normalized Random Variables Available olie a wwwsciecedireccom ScieceDirec Procedia - Social ad Behavioral Scieces 30 ( 016 ) 35 39 3 rd Ieraioal Coferece o New Challeges i Maageme ad Orgaizaio: Orgaizaio ad Leadership, May 016,

More information

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12 Iroducio o sellar reacio raes Nuclear reacios geerae eergy creae ew isoopes ad elemes Noaio for sellar raes: p C 3 N C(p,) 3 N The heavier arge ucleus (Lab: arge) he ligher icomig projecile (Lab: beam)

More information

Brownian Motion An Introduction to Stochastic Processes de Gruyter Graduate, Berlin 2012 ISBN:

Brownian Motion An Introduction to Stochastic Processes de Gruyter Graduate, Berlin 2012 ISBN: Browia Moio A Iroducio o Sochasic Processes de Gruyer Graduae, Berli 22 ISBN: 978 3 27889 7 Soluio Maual Reé L. Schillig & Lohar Parzsch Dresde, May 23 R.L. Schillig, L. Parzsch: Browia Moio Ackowledgeme.

More information

Institute of Actuaries of India

Institute of Actuaries of India Isiue of cuaries of Idia Subjec CT3-robabiliy ad Mahemaical Saisics May 008 Eamiaio INDICTIVE SOLUTION Iroducio The idicaive soluio has bee wrie by he Eamiers wih he aim of helig cadidaes. The soluios

More information

A Change-of-Variable Formula with Local Time on Surfaces

A Change-of-Variable Formula with Local Time on Surfaces Sém. de Probab. L, Lecure Noes i Mah. Vol. 899, Spriger, 7, (69-96) Research Repor No. 437, 4, Dep. Theore. Sais. Aarhus (3 pp) A Chage-of-Variable Formula wih Local Time o Surfaces GORAN PESKIR 3 Le =

More information

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie

RENEWAL THEORY FOR EMBEDDED REGENERATIVE SETS. BY JEAN BERTOIN Universite Pierre et Marie Curie The Aals of Probabiliy 999, Vol 27, No 3, 523535 RENEWAL TEORY FOR EMBEDDED REGENERATIVE SETS BY JEAN BERTOIN Uiversie Pierre e Marie Curie We cosider he age processes A A associaed o a moooe sequece R

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

INSTANTANEOUS INTEREST RATES AND HAZARD RATES

INSTANTANEOUS INTEREST RATES AND HAZARD RATES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number /25, pp. - INSTANTANEOUS INTEREST RATES AND HAZARD RATES Gheorghiţă ZBĂGANU Gheorghe Mihoc Caius

More information

On Stability of Quintic Functional Equations in Random Normed Spaces

On Stability of Quintic Functional Equations in Random Normed Spaces J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 3, NO.4, 07, COPYRIGHT 07 EUDOXUS PRESS, LLC O Sabiliy of Quiic Fucioal Equaios i Radom Normed Spaces Afrah A.N. Abdou, Y. J. Cho,,, Liaqa A. Kha ad S.

More information

On Another Type of Transform Called Rangaig Transform

On Another Type of Transform Called Rangaig Transform Ieraioal Joural of Parial Differeial Equaios ad Applicaios, 7, Vol 5, No, 4-48 Available olie a hp://pubssciepubcom/ijpdea/5//6 Sciece ad Educaio Publishig DOI:69/ijpdea-5--6 O Aoher Type of Trasform Called

More information

arxiv: v1 [math.pr] 16 Dec 2018

arxiv: v1 [math.pr] 16 Dec 2018 218, 1 17 () arxiv:1812.7383v1 [mah.pr] 16 Dec 218 Refleced BSDEs wih wo compleely separaed barriers ad regulaed rajecories i geeral filraio. Baadi Brahim ad Oukie Youssef Ib Tofaïl Uiversiy, Deparme of

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Paper 3A3 The Equations of Fluid Flow and Their Numerical Solution Handout 1

Paper 3A3 The Equations of Fluid Flow and Their Numerical Solution Handout 1 Paper 3A3 The Equaios of Fluid Flow ad Their Numerical Soluio Hadou Iroducio A grea ma fluid flow problems are ow solved b use of Compuaioal Fluid Damics (CFD) packages. Oe of he major obsacles o he good

More information

Time Dependent Queuing

Time Dependent Queuing Time Depede Queuig Mark S. Daski Deparme of IE/MS, Norhweser Uiversiy Evaso, IL 628 Sprig, 26 Oulie Will look a M/M/s sysem Numerically iegraio of Chapma- Kolmogorov equaios Iroducio o Time Depede Queue

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information