Chapter 5. Continuous Probability Distributions

Size: px
Start display at page:

Download "Chapter 5. Continuous Probability Distributions"

Transcription

1 Chapter 5. Continuous Probability Distributions Sections 5.2, 5.3: Expected Value of Continuous Random Variables and Uniform Distribution Jiaping Wang Department of Mathematical Science 03/20/2013, Monday

2 Outline EV: Definitions and Theorem EV: Examples Uniform Distribution: Density and Distribution Functions Uniform Distribution: Mean and Variance More Examples Homework #8

3 Part 1. EV: Definitions and Theorem

4 Definition and Theorem Definition 5.3: The expected value of a continuous random variable X that has density function f(x) is given by E X = xf x dd Note: we assume the absolute convergence of all integrals so that the expectations exist. Theorem 5.1: If X is a continuous random variable with probability density f(x), and if g(x) is any real-valued function of X, then E g X = g x f x dd.

5 Variance Definition 5.4: For a random variable X with probability density function f(x), the variance of X is given by V X = E X μ 2 = x μ 2 f x dd = E X 2 μ 2. Where μ=e(x). For constants a and b, we have E(aX+b)=aE(X)+b V(aX+b)=a 2 V(X)

6 Part 2. EV: Examples

7 Example 5.4 For a given teller in a bank, let X denote the proportion of time, out of a 40-hour workweek, that he is directly serving customers. Suppose that X has a probability density function given by f x = 3x2, 0 x 1 0, ooooooooo 1. Find the mean proportion of time during a 40-hour workweek the teller directly serve customers. 2. Find the variance of the proportion of time during a 40-hour workweek the teller directly serves customers. 3. Find an interval that, for 75% of the weeks, contains the proportion of time that the teller spends directly serving customers.

8 Answer: 1. Based on the definition, E X = xx x dd = x 3x 2 dd = 3/4. Thus, on average, the teller spends 75% of his time each week directly serving customers. 2. We need to compute the E(X 2 ): E X = x 2 f x dd = x 2 3x 2 dd = Then, V(X)=E(X 2 )-E 2 (X)=0.60-(0.75) 2 = There are lots of ways to construct the interval such that the proportion of time that the teller spends directly serving customers for 75% of the weeks, for example, P(X<a)=0.12, P(X>b)=0.13, or P(X<a)=0.10, P(X>b)=0.15, for the other 25% of the weeks. We choose the half of 25% for the two sided tails, ie., P(X<a)=0.125 and P(X>b)=0.125 for some a and b. So we have P(X<a)=a 3 =0.125 a=0.5, P(X>b)=1-b 3 =0.125 b= That is, for 75% of the weeks, the teller spends between 50% and 95.6% of his time directly serving customers. 0

9 Example 5.5 The weekly demand X, in hundreds of gallons, for propane at a certain supply station has a density function given by x 4, 0 x 2 f x = 1 2, 2 < x 3 0, eeeeeeeee It takes $50 per week to maintain the supply station. Propane is purchased for $270 per hundred gallons and redistributed by the supply station for $1.75 per gallon. 1. Find the expected weekly demand. 2. Find the expected weekly profit.

10 Answer: 1. Based on the definition, E X = xx x dd = x 4 x dd + x 1 2 dd = Thus, on average, the weekly demand for propane will be 192 gallons at this supply station. 2. The propane is purchased for $270 per hundred gallons and sold for $175 per hundred gallons, yielding a profit of $95 per hundred gallons sold. The weekly profit P is given as P=95X-50, so E(P)=95E(X)-50=95(1.92)-50=

11 Tchebysheff s Theorem and Example 5.6 The Tchebysheff s theorem holds for the continuous random variable, X, ie., P( X-μ <kσ) 1-1/k 2 Example 5.6: The weekly amount X spent for chemicals by a certain firm has a mean of $1565 and a variance of $428. Within what interval should these weekly costs for chemicals be expected to lie in at least 75% of the time? Answer: To find the interval guaranteed to contain at least 75% of the probability mass for X, we need to have 1-1/k 2 =0.75 k=2. So the interval is given by [1565-2(428) 1/2, (428) 1/2 ].

12 Part 3. Uniform Distribution: Density and Distribution Functions

13 Density Function Consider a simple model for the continuous random variable X, which is equally likely to lie in an interval, say [a, b], this leads to the uniform probability distribution, the density function is given as 1 f x =, 0 x b b a 0, ooooooooo

14 Cumulative Distribution Function The distribution function for a uniformly distributed X is given by 0, x < 1 x a F x =, a x b b a 1, x > b For (c, c+d) contained within (a, b), we have P(c X c+d)=p(x c+d)-p(x c)=f(c+d)-f(c)=d/(b-a), which this probability only depends on the length d.

15 Mean and Variance E X = xx x dd = x b a a b dd = a + b 2 E X 2 = x 2 f x dd = x2 b a dd = a2 + aa + b 2 3 a b V X = E XX EE X = a2 +aa+b 2 the length of the interval [a, b]. 3 - a+b 2 2 = 1 12 b a 2 which depends only on

16 Example 5.7 A farmer living in western Nebraska has an irrigation system to provide water for crops, primarily corn, on a large farm. Although he has thought about buying a backup pump, he has not done so. If the pump fails, delivery time X for a new pump to arrive is uniformly distributed over the interval from 1 to 4 days. The pump fails. It is a critical time in the growing season in that the yield will be greatly reduced if the crop is not watered within the next 3 days. Assuming that the pump is ordered immediately and the installation time is negligible, what is the probability that the farmer will suffer major yield loss? Answer: Let T be the time until the pump is delivered. T is uniformly distributed over The interval [1, 4]. The probability of major loss is the probability that the time until Delivery exceeds 3 days. So 4 P T > 3 = 1 3 dd =

17 Part 3. More Examples

18 Additional Example 1 Let X have the density function given by 1. Find the value c. 2. Find F(x). 3. P(0 X 0.5). 4. E(X). Answer: f x dd = 1 0.2dd cc dd = c 1 0 = 1 c = , x 1 0.2x + 0.2, 1 x 0 2. F x = P X x = x + 0.6x 2 3. P(0 X 0.5)=0.25,, 0 < x 1 1, x > 1 4. E(X)=0.4

19 Additional Example 2 Let X have the density function Find E(lnX). Answer: E lll = ln x f x dd = e 1 ln x x dd = 1 2.

20 Homework #8 Page : 5.4, 5.7 Page 209: 5.22 Page : 5.28, Additional Hw1: Let X have the density function Find the E(X). Additional Hw2: The density function of X is given by (a). Find a and b. (b). Determine the cumulative distribution function F(x).

Chapter 5. Continuous Probability Distributions

Chapter 5. Continuous Probability Distributions Chapter 5. Continuous Probability Distributions Sections 5.4, 5.5: Exponential and Gamma Distributions Jiaping Wang Department of Mathematical Science 03/25/2013, Monday Outline Exponential: PDF and CDF

More information

Chapter 7. Functions of Random Variables

Chapter 7. Functions of Random Variables Chapter 7. Functions of Random Variables Sections 7.2 -- 7.4: Functions of Discrete Random Variables, Method of Distribution Functions and Method of Transformations in One Dimension Jiaping Wang Department

More information

There are two basic kinds of random variables continuous and discrete.

There are two basic kinds of random variables continuous and discrete. Summary of Lectures 5 and 6 Random Variables The random variable is usually represented by an upper case letter, say X. A measured value of the random variable is denoted by the corresponding lower case

More information

STAT 515 MIDTERM 2 EXAM November 14, 2018

STAT 515 MIDTERM 2 EXAM November 14, 2018 STAT 55 MIDTERM 2 EXAM November 4, 28 NAME: Section Number: Instructor: In problems that require reasoning, algebraic calculation, or the use of your graphing calculator, it is not sufficient just to write

More information

STA 4321/5325 Solution to Homework 5 March 3, 2017

STA 4321/5325 Solution to Homework 5 March 3, 2017 STA 4/55 Solution to Homework 5 March, 7. Suppose X is a RV with E(X and V (X 4. Find E(X +. By the formula, V (X E(X E (X E(X V (X + E (X. Therefore, in the current setting, E(X V (X + E (X 4 + 4 8. Therefore,

More information

Stat 515 Midterm Examination II April 4, 2016 (7:00 p.m. - 9:00 p.m.)

Stat 515 Midterm Examination II April 4, 2016 (7:00 p.m. - 9:00 p.m.) Name: Section: Stat 515 Midterm Examination II April 4, 2016 (7:00 p.m. - 9:00 p.m.) The total score is 120 points. Instructions: There are 10 questions. Please circle 8 problems below that you want to

More information

Chapter 5. Continuous Probability Distributions

Chapter 5. Continuous Probability Distributions Chapter 5. Continuous Probability Distributions Section 5.6: Normal Distributions Jiaping Wang Department of Mathematical Science 03/27/2013, Wednesday Outline Probability Density Function Mean and Variance

More information

STA 584 Supplementary Examples (not to be graded) Fall, 2003

STA 584 Supplementary Examples (not to be graded) Fall, 2003 Page 1 of 8 Central Michigan University Department of Mathematics STA 584 Supplementary Examples (not to be graded) Fall, 003 1. (a) If A and B are independent events, P(A) =.40 and P(B) =.70, find (i)

More information

Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February

Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February PID: Last Name, First Name: Section: Approximate time spent to complete this assignment: hour(s) Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February Readings: Chapters 16.6-16.7 and the

More information

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems

Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Chapter 8. Some Approximations to Probability Distributions: Limit Theorems Sections 8.2 -- 8.3: Convergence in Probability and in Distribution Jiaping Wang Department of Mathematical Science 04/22/2013,

More information

Generation of Discrete Random variables

Generation of Discrete Random variables Simulation Simulation is the imitation of the operation of a realworld process or system over time. The act of simulating something first requires that a model be developed; this model represents the key

More information

CH5 CH6(Sections 1 through 5) Homework Problems

CH5 CH6(Sections 1 through 5) Homework Problems 550.40 CH5 CH6(Sections 1 through 5) Homework Problems 1. Part of HW #6: CH 5 P1. Let X be a random variable with probability density function f(x) = c(1 x ) 1 < x < 1 (a) What is the value of c? (b) What

More information

Chapter 2. Probability

Chapter 2. Probability 2-1 Chapter 2 Probability 2-2 Section 2.1: Basic Ideas Definition: An experiment is a process that results in an outcome that cannot be predicted in advance with certainty. Examples: rolling a die tossing

More information

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1). 1. Find the derivative of each of the following: (a) f(x) = 3 2x 1 (b) f(x) = log 4 (x 2 x) 2. Find the slope of the tangent line to f(x) = ln 2 ln x at x = e. 3. Find the slope of the tangent line to

More information

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models L6-1 Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models Polynomial Functions Def. A polynomial function of degree n is a function of the form f(x) = a n x n + a n 1 x n 1 +... + a 1

More information

) )

) ) Graded Homework Continued #4 Due 3/31 1. Daily sales records for a computer-manufacturing firm show that it will sell 0, 1 or mainframe computer systems manufactured at an eastern plant with probabilities

More information

Chapter 4. Discrete Probability Distributions

Chapter 4. Discrete Probability Distributions Chapter 4. Discrete Probability Distributions Sections 4.9, 4.10: Moment Generating Function and Probability Generating Function Jiaping Wang Department of Mathematical Science 03/06/2013, Wednesday Outline

More information

IM1: UNIT 3. HOMEWORK PACKET

IM1: UNIT 3. HOMEWORK PACKET IM1: UNIT 3. HOMEWORK PACKET Week 1 Name: Period: Day 1: Write an equation for each situation. Then solve the equation. Show your work. 1) DVDs bought online cost $12 each, plus a shipping fee of $5. The

More information

Probability Distributions

Probability Distributions Probability Distributions Series of events Previously we have been discussing the probabilities associated with a single event: Observing a 1 on a single roll of a die Observing a K with a single card

More information

Economics th April 2011

Economics th April 2011 Economics 401 8th April 2011 Instructions: Answer 7 of the following 9 questions. All questions are of equal weight. Indicate clearly on the first page which questions you want marked. 1. Answer both parts.

More information

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29, This review includes typical exam problems. It is not designed to be comprehensive, but to be representative of topics covered

More information

A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to

A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to 224 Chapter 5 Continuous Random Variables A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to 1 B(a, b) xa 1 (1 x) b 1 x 1 and is

More information

Bell-shaped curves, variance

Bell-shaped curves, variance November 7, 2017 Pop-in lunch on Wednesday Pop-in lunch tomorrow, November 8, at high noon. Please join our group at the Faculty Club for lunch. Means If X is a random variable with PDF equal to f (x),

More information

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS

STAT/MA 416 Answers Homework 6 November 15, 2007 Solutions by Mark Daniel Ward PROBLEMS STAT/MA 4 Answers Homework November 5, 27 Solutions by Mark Daniel Ward PROBLEMS Chapter Problems 2a. The mass p, corresponds to neither of the first two balls being white, so p, 8 7 4/39. The mass p,

More information

Math 3339 Homework 6 (Sections )

Math 3339 Homework 6 (Sections ) Math 3339 Homework 6 (Sections 5. 5.4) Name: Key PeopleSoft ID: Instructions: Homework will NOT be accepted through email or in person. Homework must be submitted through CourseWare BEFORE the deadline.

More information

Sample Problems for the Final Exam

Sample Problems for the Final Exam Sample Problems for the Final Exam 1. Hydraulic landing assemblies coming from an aircraft rework facility are each inspected for defects. Historical records indicate that 8% have defects in shafts only,

More information

STAT515, Review Worksheet for Midterm 2 Spring 2019

STAT515, Review Worksheet for Midterm 2 Spring 2019 STAT55, Review Worksheet for Midterm 2 Spring 29. During a week, the proportion of time X that a machine is down for maintenance or repair has the following probability density function: 2( x, x, f(x The

More information

Final Exam Review (Section 8.3 and Review of Other Sections)

Final Exam Review (Section 8.3 and Review of Other Sections) c Kathryn Bollinger, April 29, 2014 1 Final Exam Review (Section 8.3 and Review of Other Sections) Note: This collection of questions is intended to be a brief overview of the material covered throughout

More information

Notes for Math 324, Part 19

Notes for Math 324, Part 19 48 Notes for Math 324, Part 9 Chapter 9 Multivariate distributions, covariance Often, we need to consider several random variables at the same time. We have a sample space S and r.v. s X, Y,..., which

More information

Given the table of values, determine the equation

Given the table of values, determine the equation 3.1 Properties of Quadratic Functions Recall: Standard Form f(x) = ax 2 + bx + c Factored Form f(x) = a(x r)(x s) Vertex Form f(x) = a(x h) 2 + k Given the table of values, determine the equation x y 1

More information

STA 256: Statistics and Probability I

STA 256: Statistics and Probability I Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Exercise 4.1 Let X be a random variable with p(x)

More information

Study Guide - Part 2

Study Guide - Part 2 Math 116 Spring 2015 Study Guide - Part 2 1. Which of the following describes the derivative function f (x) of a quadratic function f(x)? (A) Cubic (B) Quadratic (C) Linear (D) Constant 2. Find the derivative

More information

CIVL 7012/8012. Continuous Distributions

CIVL 7012/8012. Continuous Distributions CIVL 7012/8012 Continuous Distributions Probability Density Function P(a X b) = b ò a f (x)dx Probability Density Function Definition: and, f (x) ³ 0 ò - f (x) =1 Cumulative Distribution Function F(x)

More information

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in:

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in: STAT/MA 46 Midterm Exam 2 Thursday, October 8, 27 Name Purdue student ID ( digits) Circle the section you are enrolled in: STAT/MA 46-- STAT/MA 46-2- 9: AM :5 AM 3: PM 4:5 PM REC 4 UNIV 23. The testing

More information

STAT 430/510: Lecture 10

STAT 430/510: Lecture 10 STAT 430/510: Lecture 10 James Piette June 9, 2010 Updates HW2 is due today! Pick up your HW1 s up in stat dept. There is a box located right when you enter that is labeled "Stat 430 HW1". It ll be out

More information

MATHEMATICS METHODS. Calculator-assumed. Sample WACE Examination Marking Key

MATHEMATICS METHODS. Calculator-assumed. Sample WACE Examination Marking Key MATHEMATICS METHODS Calculator-assumed Sample WACE Examination 016 Marking Key Marking keys are an explicit statement about what the examiner expects of candidates when they respond to a question. They

More information

Review for Midterm 2

Review for Midterm 2 Review for Midterm Problem. Gasoline is restocked in a large tank once at the beginning of each week and then sold to individual customers. Let X denote the proportion of the capacity of the tank that

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue) Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Statistics S2 Advanced/Advanced Subsidiary Candidate Number Monday 26 June 2017 Afternoon Time: 1 hour

More information

This Week. Basic Problem. Instantaneous Rate of Change. Compute the tangent line to the curve y = f (x) at x = a.

This Week. Basic Problem. Instantaneous Rate of Change. Compute the tangent line to the curve y = f (x) at x = a. This Week Basic Problem Compute the tangent line to the curve y = f (x) at x = a. Read Sections 2.7,2.8 and 3.1 in Stewart Homework #2 due 11:30 Thursday evening worksheet #3 in section on Tuesday slope

More information

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0 ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x

More information

Ex 1: Identify the open intervals for which each function is increasing or decreasing.

Ex 1: Identify the open intervals for which each function is increasing or decreasing. MATH 2040 Notes: Unit 4 Page 1 5.1/5.2 Increasing and Decreasing Functions Part a Relative Extrema Ex 1: Identify the open intervals for which each In algebra we defined increasing and decreasing behavior

More information

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x 1. Let f(x) = x 3 + 7x 2 x 2. Use the fact that f( 1) = 0 to factor f completely. (2x-1)(3x+2)(x+1). 2. Find x if log 2 x = 5. x = 1/32 3. Find the vertex of the parabola given by f(x) = 2x 2 + 3x 4. (Give

More information

Test 2 VERSION A STAT 3090 Fall 2017

Test 2 VERSION A STAT 3090 Fall 2017 Multiple Choice: (Questions 1 20) Answer the following questions on the scantron provided using a #2 pencil. Bubble the response that best answers the question. Each multiple choice correct response is

More information

ANSWERS, Homework Problems, Fall 2014: Lectures Now You Try It, Supplemental problems in written homework, Even Answers. 24x + 72 (x 2 6x + 4) 4

ANSWERS, Homework Problems, Fall 2014: Lectures Now You Try It, Supplemental problems in written homework, Even Answers. 24x + 72 (x 2 6x + 4) 4 ANSWERS, Homework Problems, Fall 014: Lectures 19 35 Now You Try It, Supplemental problems in written homework, Even Answers Lecture 19 1. d [ 4 ] dx x 6x + 4) 3 = 4x + 7 x 6x + 4) 4. a) P 0) = 800 b)

More information

Probability and Statistics Chapter 5 Quiz. a. Age - Range Probability

Probability and Statistics Chapter 5 Quiz. a. Age - Range Probability Probability and Statistics Chapter 5 Quiz Name 1. Is the following list of probabilities a probability distribution? Explain your answer and be very specific. (6 points) a. Age - Range 16-19 20-23 24-27

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6684/01 Edexcel GCE Statistics S2 Bronze Level B4 Time: 1 hour 30 minutes Materials required for examination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

RELATIONS AND FUNCTIONS

RELATIONS AND FUNCTIONS RELATIONS AND FUNCTIONS Definitions A RELATION is any set of ordered pairs. A FUNCTION is a relation in which every input value is paired with exactly one output value. Example 1: Table of Values One way

More information

e) Find the average revenue when 100 units are made and sold.

e) Find the average revenue when 100 units are made and sold. Math 142 Week in Review Set of Problems Week 7 1) Find the derivative, y ', if a) y=x 5 x 3/2 e 4 b) y= 1 5 x 4 c) y=7x 2 0.5 5 x 2 d) y=x 2 1.5 x 10 x e) y= x7 5x 5 2 x 4 2) The price-demand function

More information

EDEXCEL S2 PAPERS MARK SCHEMES AVAILABLE AT:

EDEXCEL S2 PAPERS MARK SCHEMES AVAILABLE AT: EDEXCEL S2 PAPERS 2009-2007. MARK SCHEMES AVAILABLE AT: http://www.physicsandmathstutor.com/a-level-maths-papers/s2-edexcel/ JUNE 2009 1. A bag contains a large number of counters of which 15% are coloured

More information

A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to

A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to 224 Chapter 5 Continuous Random Variables A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to 1 B(a, b) xa 1 (1 x) b 1 x 1 and is

More information

Expected Values, Exponential and Gamma Distributions

Expected Values, Exponential and Gamma Distributions Expected Values, Exponential and Gamma Distributions Sections 5.2 & 5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13-3339 Cathy

More information

Name: Algebra 1 Section 3 Homework Problem Set: Introduction to Functions

Name: Algebra 1 Section 3 Homework Problem Set: Introduction to Functions Name: Algebra 1 Section 3 Homework Problem Set: Introduction to Functions Remember: To receive full credit, you must show all of your work and circle/box your final answers. If you run out of room for

More information

Introductory Statistics

Introductory Statistics Introductory Statistics OpenStax Rice University 6100 Main Street MS-375 Houston, Texas 77005 To learn more about OpenStax, visit http://openstaxcollege.org. Individual print copies and bulk orders can

More information

Chapter 1: Revie of Calculus and Probability

Chapter 1: Revie of Calculus and Probability Chapter 1: Revie of Calculus and Probability Refer to Text Book: Operations Research: Applications and Algorithms By Wayne L. Winston,Ch. 12 Operations Research: An Introduction By Hamdi Taha, Ch. 12 OR441-Dr.Khalid

More information

Expected Values, Exponential and Gamma Distributions

Expected Values, Exponential and Gamma Distributions Expected Values, Exponential and Gamma Distributions Sections 5.2-5.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 14-3339 Cathy Poliak,

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : Additional Problems MATERIAL CODE : JM08AM004 REGULATION : R03 UPDATED ON : March 05 (Scan the above QR code for the direct

More information

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3).

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3). 2. Let the supply and demand functions for sugar be given by p = S(q) = 1.4q 0.6 and p = D(q) = 2q + 3.2 where p is the

More information

Homework 1 Solutions

Homework 1 Solutions Homework Solutions Econ 50 - Stanford University - Winter Quarter 204/5 January 6, 205 Exercise : Constrained Optimization with One Variable (a) For each function, write the optimal value(s) of x on the

More information

1.4 CONCEPT QUESTIONS, page 49

1.4 CONCEPT QUESTIONS, page 49 .4 CONCEPT QUESTIONS, page 49. The intersection must lie in the first quadrant because only the parts of the demand and supply curves in the first quadrant are of interest.. a. The breakeven point P0(

More information

Beautiful homework # 4 ENGR 323 CESSNA Page 1/5

Beautiful homework # 4 ENGR 323 CESSNA Page 1/5 Beautiful homework # 4 ENGR 33 CESSNA Page 1/5 Problem 3-14 An operator records the time to complete a mechanical assembly to the nearest second with the following results. seconds 30 31 3 33 34 35 36

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 03 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA 6 MATERIAL NAME : Problem Material MATERIAL CODE : JM08AM008 (Scan the above QR code for the direct download of

More information

Math 2 Variable Manipulation Part 2 Student

Math 2 Variable Manipulation Part 2 Student Math 2 Variable Manipulation Part 2 Student 1 COMPARING EQUATIONS (EQUAL TO) When comparing two problems, set part of the equations to be the same, then set the rest of the equation to be equal and solve.

More information

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES ? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5

More information

Competitive Equilibrium

Competitive Equilibrium Competitive Equilibrium Econ 2100 Fall 2017 Lecture 16, October 26 Outline 1 Pareto Effi ciency 2 The Core 3 Planner s Problem(s) 4 Competitive (Walrasian) Equilibrium Decentralized vs. Centralized Economic

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 3. The random variable X is the number of misprints per page in the first draft of a novel. (a) State two conditions under which a Poisson distribution is a suitable

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

Math 142 Week-in-Review #4 (Sections , 4.1, and 4.2)

Math 142 Week-in-Review #4 (Sections , 4.1, and 4.2) Math 142 WIR, copyright Angie Allen, Fall 2018 1 Math 142 Week-in-Review #4 (Sections 3.1-3.3, 4.1, and 4.2) Note: This collection of questions is intended to be a brief overview of the exam material (with

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

CIVL Continuous Distributions

CIVL Continuous Distributions CIVL 3103 Continuous Distributions Learning Objectives - Continuous Distributions Define continuous distributions, and identify common distributions applicable to engineering problems. Identify the appropriate

More information

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class:

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class: 1830 UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS Pre-Class: Take notes on the videos and readings (use the space below). Work and check problem #1 in the 2.1 NOTES section.

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

3.1 Quadratic Functions and Their Models. Quadratic Functions. Graphing a Quadratic Function Using Transformations

3.1 Quadratic Functions and Their Models. Quadratic Functions. Graphing a Quadratic Function Using Transformations 3.1 Quadratic Functions and Their Models Quadratic Functions Graphing a Quadratic Function Using Transformations Graphing a Quadratic Function Using Transformations from Basic Parent Function, ) ( f Equations

More information

ASSIGNMENT ON MATRICES AND DETERMINANTS (CBSE/NCERT/OTHERSTATE BOARDS). Write the orders of AB and BA. x y 2z w 5 3

ASSIGNMENT ON MATRICES AND DETERMINANTS (CBSE/NCERT/OTHERSTATE BOARDS). Write the orders of AB and BA. x y 2z w 5 3 1 If A = [a ij ] = is a matrix given by 4 1 3 A [a ] 5 7 9 6 ij 1 15 18 5 Write the order of A and find the elements a 4, a 34 Also, show that a 3 = a 3 + a 4 If A = 1 4 3 1 4 1 5 and B = Write the orders

More information

5) Which sum is rational?

5) Which sum is rational? Unit 1 Algebra EOC 1) Which one of these is not a function? 4) Look at the expression2 8 20. Which of the following is equivalent to it? a. 2 28 b. 5 c. 8 10 d. 32 10 5) Which sum is rational? a. π + 18

More information

8 th Grade Honors Variable Manipulation Part 3 Student

8 th Grade Honors Variable Manipulation Part 3 Student 8 th Grade Honors Variable Manipulation Part 3 Student 1 MULTIPLYING BINOMIALS-FOIL To multiply binomials, use FOIL: First, Outer, Inner, Last: Example: (x + 3)(x + 4) First multiply the First terms: x

More information

Applications of differential calculus Relative maxima/minima, points of inflection

Applications of differential calculus Relative maxima/minima, points of inflection Exercises 15 Applications of differential calculus Relative maxima/minima, points of inflection Objectives - be able to determine the relative maxima/minima of a function. - be able to determine the points

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Continuous distributions

Continuous distributions CHAPTER 7 Continuous distributions 7.. Introduction A r.v. X is said to have a continuous distribution if there exists a nonnegative function f such that P(a X b) = ˆ b a f(x)dx for every a and b. distribution.)

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV An example: Assume we toss a coin 3 times and record the outcomes. Let X i be a random variable defined by { 1, if the i th outcome is Head; X i = 0, if the i th outcome is Tail; Let X be the random variable

More information

You are permitted to use your own calculator where it has been stamped as approved by the University.

You are permitted to use your own calculator where it has been stamped as approved by the University. ECONOMICS TRIPOS Part I Friday 11 June 004 9 1 Paper 3 Quantitative Methods in Economics This exam comprises four sections. Sections A and B are on Mathematics; Sections C and D are on Statistics. You

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah June 17, 2008 Liang Zhang (UofU) Applied Statistics I June 17, 2008 1 / 22 Random Variables Definition A dicrete random variable

More information

November 2000 Course 1. Society of Actuaries/Casualty Actuarial Society

November 2000 Course 1. Society of Actuaries/Casualty Actuarial Society November 2000 Course 1 Society of Actuaries/Casualty Actuarial Society 1. A recent study indicates that the annual cost of maintaining and repairing a car in a town in Ontario averages 200 with a variance

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 1 (First Group of Students) Students with first letter of surnames A F Due: February 12, 2013 1. Each student

More information

Introduction to Systems of Equations

Introduction to Systems of Equations Systems of Equations 1 Introduction to Systems of Equations Remember, we are finding a point of intersection x 2y 5 2x y 4 1. A golfer scored only 4 s and 5 s in a round of 18 holes. His score was 80.

More information

2 Functions and Their

2 Functions and Their CHAPTER Functions and Their Applications Chapter Outline Introduction The Concept of a Function Types of Functions Roots (Zeros) of a Function Some Useful Functions in Business and Economics Equilibrium

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

Discrete Distributions

Discrete Distributions Discrete Distributions Applications of the Binomial Distribution A manufacturing plant labels items as either defective or acceptable A firm bidding for contracts will either get a contract or not A marketing

More information

Name Class Date. What is the solution to the system? Solve by graphing. Check. x + y = 4. You have a second point (4, 0), which is the x-intercept.

Name Class Date. What is the solution to the system? Solve by graphing. Check. x + y = 4. You have a second point (4, 0), which is the x-intercept. 6-1 Reteaching Graphing is useful for solving a system of equations. Graph both equations and look for a point of intersection, which is the solution of that system. If there is no point of intersection,

More information

X = lifetime of transistor

X = lifetime of transistor Kelley Problem 4-57 /3 Suppose that when a transistor of a certain type is subjected to an accelerated life test, the lifetime, X (in weeks) has a gamma distribution with mean 24 weeks and standard deviation

More information

1. Is the set {f a,b (x) = ax + b a Q and b Q} of all linear functions with rational coefficients countable or uncountable?

1. Is the set {f a,b (x) = ax + b a Q and b Q} of all linear functions with rational coefficients countable or uncountable? Name: Instructions. Show all work in the space provided. Indicate clearly if you continue on the back side, and write your name at the top of the scratch sheet if you will turn it in for grading. No books

More information

Define the word inequality

Define the word inequality Warm Up: Define the word inequality Agenda: Objective- Students can solve linear inequalities in one variable, including equations with coefficients represented by letters. Define Inequalities One & Two

More information

2. A music library has 200 songs. How many 5 song playlists can be constructed in which the order of the songs matters?

2. A music library has 200 songs. How many 5 song playlists can be constructed in which the order of the songs matters? Practice roblems for final exam 1. A certain vault requires that an entry code be 8 characters. If the first 4 characters must be letters (repeated letters are allowed) and the last 4 characters are numeric

More information

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10). MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and

More information

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise.

(y 1, y 2 ) = 12 y3 1e y 1 y 2 /2, y 1 > 0, y 2 > 0 0, otherwise. 54 We are given the marginal pdfs of Y and Y You should note that Y gamma(4, Y exponential( E(Y = 4, V (Y = 4, E(Y =, and V (Y = 4 (a With U = Y Y, we have E(U = E(Y Y = E(Y E(Y = 4 = (b Because Y and

More information

1.225J J (ESD 205) Transportation Flow Systems

1.225J J (ESD 205) Transportation Flow Systems 1.225J J (ESD 25) Transportation Flow Systems Lecture 9 Simulation Models Prof. Ismail Chabini and Prof. Amedeo R. Odoni Lecture 9 Outline About this lecture: It is based on R16. Only material covered

More information

OPTIMIZATION UNDER CONSTRAINTS

OPTIMIZATION UNDER CONSTRAINTS OPTIMIZATION UNDER CONSTRAINTS Summary 1. Optimization between limits... 1 2. Exercise... 4 3. Optimization under constraints with multiple variables... 5 Suppose that in a firm s production plan, it was

More information

1. A machine produces packets of sugar. The weights in grams of thirty packets chosen at random are shown below.

1. A machine produces packets of sugar. The weights in grams of thirty packets chosen at random are shown below. No Gdc 1. A machine produces packets of sugar. The weights in grams of thirty packets chosen at random are shown below. Weight (g) 9.6 9.7 9.8 9.9 30.0 30.1 30. 30.3 Frequency 3 4 5 7 5 3 1 Find unbiased

More information

Measures of Dispersion

Measures of Dispersion Measures of Dispersion MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Introduction Recall that a measure of central tendency is a number which is typical of all

More information

Math Exam 3 Review

Math Exam 3 Review Math 142 Spring 2009 c Heather Ramsey Page 1 Math 142 - Exam 3 Review NOTE: Exam 3 covers sections 5.4-5.6, 6.1, 6.2, 6.4, 6.5, 7.1, and 7.2. This review is intended to highlight the material covered on

More information