IBM Almaden Research Center,650 Harry Road Sun Jose, Calijornia and School of Mathematical Sciences Tel Aviv University Tel Aviv, Israel

Size: px
Start display at page:

Download "IBM Almaden Research Center,650 Harry Road Sun Jose, Calijornia and School of Mathematical Sciences Tel Aviv University Tel Aviv, Israel"

Transcription

1 and Nimrod Megiddo IBM Almaden Research Center,650 Harry Road Sun Jose, Calijornia and School of Mathematical Sciences Tel Aviv University Tel Aviv, Israel Submitted by Richard Tapia ABSTRACT Smale proposed a framework for applying Newton's method to the linear p gramming problem. It is shown that his method is closely related to recent inte point methods, in the sense that it also traces the path of centers, even though tracing is done outside the affine hull of the feasible domain. Also, an equivalenc the fundamental theorems is pointed out. It is well known (see [2]) that the linear programming problem and its dual Minimize ctx subject to Ax 2 b, x 2 0 Maximize bty subject to ATy < c, y 2 0 LINEAR ALGEBRA AND ITS APPLICATIONS 152: (1991) OElsevier Science Publishing Co., Inc., Avenue of the Americas, New York, NY 10010

2 which can in turn be viewed as a system of piecewise linear equa where xf = max{xj,o), x,: = min{xj, 01, x ' = (xp,..., x,+ IT, SO th and w = xf. Note that here x E Rn is not the same as the x in programming problem above. Smale [lo] proposed a "regularization" of the piecewise = q as follows. For a 2 0, denote Approximate x * by is approximated (x) + Ma,- (x). This approximation is good in the sense tends on Rn as a -t 0. Incidentally, the other claim that "for as llxll +m" [lo, p. 178, line 81 is incorrect. For example,

3 but x, does not necessarily tend to infinity when llxll does. Smale proposes to solve the linear programming problem as follows. every sufficiently large a > llqll, the zero vector lies in the domain quadratic convergence of Newton's method for solving the Starting with such an a, a solution for the linear programm problem can be obtained by following the path of solutions as a is driven to zero. Although it does not seem to be an interior point method, it turns out Smale's method is very closely related to recent interior path follow algorithms. The "path of centers" for a general linear complementarity problem [ defined to be the set of solutions of the following system: In the special case of the linear programming problem, this system defin unique path which is obtained by combining the primal and dual logarith barrier trajectories [4, 1, 7, 9, 111. Given a > 0, let us associate w any x E Rn a pair of vectors 5 = g(x) = and q = q(x) = q, then obviously q = Mg + q and 5, q > 0. Surprisingly, Sjqj = a2/4, and hence the point (g, q) lies on the path of centers wh p = a2/4. Conversely, if (5, q) is on the path of centers for a certain value p, de x = q - 5 and a = 2 6. We = - = q, Thus, theorems concerning the path of centers correspond to theor concerning the set of solutions of the = q. The main theo talks about the existence and uniqueness of the path of centers. Thi discussed below..., n) and g(x), q(x) Interestingly, for any x, tj(~)qj(~) = p (j = 1,. However, if x is not exactly on the path of centers, then q(x) # M5(x) This means that although Smale's method traces the ~ ath of centers, it not do that within the interior of the feasible domain but rather as an exte point method, although the iterates stay in the positive orthant.

4 nonempty interior (i.e., there exist x,y > 0 such that y = Mx+ path of centers exists and is unique, i.e., for every p > 0, th uniquepairx,y>o such that y=mx+qand xjyj=p for j=l The equivalent form of the theorem was independently Kojima, Mizuno, and Yoshise [5], continuing the analysis of [7 uses arguments of convex optimization. The theorem also fol more general result on complementarity problems with maxim multifunctions given by McLinden [6]. See Theorems 2 and 3 o In order to trace the solutions = q, one needs t starting point, an approximate zero2 = q for some a > 0 a point is not always available, Smale proposes to start with an zero of +,(x)= q+ aa(0). In fact, he argues that the zero approximate zero of the latter for a sufficiently large. The proof is based on Smale's "a-theorem." Now, Thus, the choice of 5 = -q = fie gives an approximate solution f However, the question of what is a sufficiently large p can '~t least in one place (p. 189, line 11) the proof relies on the special struc derived from a linear programming problem, but it is claimed that it applies to th case of a positive semidefinite M. '~n approximate zero of differentiable map F: Rn + Rn is defined to be domain of quadratic convergence of Newton's method for the equation F(x) = 0

5 REFERENCES D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programmin Affine and projective rescaling trajectories, Trans. Amer. Math. Soc., to appe R. W. Cottle and G. B. Dantzig, Complementary pivot theory of mathematic programming, Linear Algebra Appl. 1: (1968). B. C. Eaves and H. Scarf, The solution of systems of piecewise linear equatio Math. Oper. Res. 1:l-27 (1976). A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unc strained Minimization Techniques, Wiley, New York, M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class linear complementarity problems, Math. Programming 44:l-26 (1989). L. McLinden, The complementarity ~roblem for maximal monotone multifun tion~, in Variational lnequalities and Complementarity Problems (R. W. Cottle, Giannessi, and J.-L. Lions, Eds.), Wiley, New York, 1980, pp N. Megiddo, Pathways to the optimal set in linear programming, in Progress Mathematical Programming: Interior-Point and Related Methods (N. Megid Ed.), Springer-Verlag, New York, 1988, pp N. Megiddo and M. Kojima, On the existence and uniqueness of solutions nonlinear complementarity theory, Math. Programming 12: (1977). J. Renegar, A polynomial-time algorithm, based on Newton's method, for lin programming, Math. Programming 40: (1988). S. Smale, Algorithms for solving equations, in Proceedings of the Internatio Congress of Mathematicians (Berkeley, 1986), Amer. Math. Soc., Providen 1987, pp Gy. Sonnevend, An "Analytic Center" for Polyhedrons and New Classes Global Algorithms for Linear (Smooth, Convex) Programming, Inst. of Mat matics, ~tv6s Univ., Hungary, Received 16 October 1989; final manuscript accepted 22 October 1990

Abstract. A new class of continuation methods is presented which, in particular,

Abstract. A new class of continuation methods is presented which, in particular, A General Framework of Continuation Methods for Complementarity Problems Masakazu Kojima y Nimrod Megiddo z Shinji Mizuno x September 1990 Abstract. A new class of continuation methods is presented which,

More information

On well definedness of the Central Path

On well definedness of the Central Path On well definedness of the Central Path L.M.Graña Drummond B. F. Svaiter IMPA-Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, Jardim Botânico, Rio de Janeiro-RJ CEP 22460-320 Brasil

More information

BOOK REVIEWS 169. minimize (c, x) subject to Ax > b, x > 0.

BOOK REVIEWS 169. minimize (c, x) subject to Ax > b, x > 0. BOOK REVIEWS 169 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 28, Number 1, January 1993 1993 American Mathematical Society 0273-0979/93 $1.00+ $.25 per page The linear complementarity

More information

A Second-Order Path-Following Algorithm for Unconstrained Convex Optimization

A Second-Order Path-Following Algorithm for Unconstrained Convex Optimization A Second-Order Path-Following Algorithm for Unconstrained Convex Optimization Yinyu Ye Department is Management Science & Engineering and Institute of Computational & Mathematical Engineering Stanford

More information

Lecture 10. Primal-Dual Interior Point Method for LP

Lecture 10. Primal-Dual Interior Point Method for LP IE 8534 1 Lecture 10. Primal-Dual Interior Point Method for LP IE 8534 2 Consider a linear program (P ) minimize c T x subject to Ax = b x 0 and its dual (D) maximize b T y subject to A T y + s = c s 0.

More information

A Generalized Homogeneous and Self-Dual Algorithm. for Linear Programming. February 1994 (revised December 1994)

A Generalized Homogeneous and Self-Dual Algorithm. for Linear Programming. February 1994 (revised December 1994) A Generalized Homogeneous and Self-Dual Algorithm for Linear Programming Xiaojie Xu Yinyu Ye y February 994 (revised December 994) Abstract: A generalized homogeneous and self-dual (HSD) infeasible-interior-point

More information

Semidefinite Programming

Semidefinite Programming Chapter 2 Semidefinite Programming 2.0.1 Semi-definite programming (SDP) Given C M n, A i M n, i = 1, 2,..., m, and b R m, the semi-definite programming problem is to find a matrix X M n for the optimization

More information

COMPARATIVE STUDY BETWEEN LEMKE S METHOD AND THE INTERIOR POINT METHOD FOR THE MONOTONE LINEAR COMPLEMENTARY PROBLEM

COMPARATIVE STUDY BETWEEN LEMKE S METHOD AND THE INTERIOR POINT METHOD FOR THE MONOTONE LINEAR COMPLEMENTARY PROBLEM STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LIII, Number 3, September 2008 COMPARATIVE STUDY BETWEEN LEMKE S METHOD AND THE INTERIOR POINT METHOD FOR THE MONOTONE LINEAR COMPLEMENTARY PROBLEM ADNAN

More information

that nds a basis which is optimal for both the primal and the dual problems, given

that nds a basis which is optimal for both the primal and the dual problems, given On Finding Primal- and Dual-Optimal Bases Nimrod Megiddo (revised June 1990) Abstract. We show that if there exists a strongly polynomial time algorithm that nds a basis which is optimal for both the primal

More information

Optimization: Then and Now

Optimization: Then and Now Optimization: Then and Now Optimization: Then and Now Optimization: Then and Now Why would a dynamicist be interested in linear programming? Linear Programming (LP) max c T x s.t. Ax b αi T x b i for i

More information

Following The Central Trajectory Using The Monomial Method Rather Than Newton's Method

Following The Central Trajectory Using The Monomial Method Rather Than Newton's Method Following The Central Trajectory Using The Monomial Method Rather Than Newton's Method Yi-Chih Hsieh and Dennis L. Bricer Department of Industrial Engineering The University of Iowa Iowa City, IA 52242

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 8 Linear programming: interior point method Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 31 Outline Brief

More information

An interior-point trust-region polynomial algorithm for convex programming

An interior-point trust-region polynomial algorithm for convex programming An interior-point trust-region polynomial algorithm for convex programming Ye LU and Ya-xiang YUAN Abstract. An interior-point trust-region algorithm is proposed for minimization of a convex quadratic

More information

The Q Method for Symmetric Cone Programmin

The Q Method for Symmetric Cone Programmin The Q Method for Symmetric Cone Programming The Q Method for Symmetric Cone Programmin Farid Alizadeh and Yu Xia alizadeh@rutcor.rutgers.edu, xiay@optlab.mcma Large Scale Nonlinear and Semidefinite Progra

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

New Infeasible Interior Point Algorithm Based on Monomial Method

New Infeasible Interior Point Algorithm Based on Monomial Method New Infeasible Interior Point Algorithm Based on Monomial Method Yi-Chih Hsieh and Dennis L. Bricer Department of Industrial Engineering The University of Iowa, Iowa City, IA 52242 USA (January, 1995)

More information

An EP theorem for dual linear complementarity problems

An EP theorem for dual linear complementarity problems An EP theorem for dual linear complementarity problems Tibor Illés, Marianna Nagy and Tamás Terlaky Abstract The linear complementarity problem (LCP ) belongs to the class of NP-complete problems. Therefore

More information

from the primal-dual interior-point algorithm (Megiddo [16], Kojima, Mizuno, and Yoshise

from the primal-dual interior-point algorithm (Megiddo [16], Kojima, Mizuno, and Yoshise 1. Introduction The primal-dual infeasible-interior-point algorithm which we will discuss has stemmed from the primal-dual interior-point algorithm (Megiddo [16], Kojima, Mizuno, and Yoshise [7], Monteiro

More information

Interior Point Methods for Mathematical Programming

Interior Point Methods for Mathematical Programming Interior Point Methods for Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Florianópolis, Brazil EURO - 2013 Roma Our heroes Cauchy Newton Lagrange Early results Unconstrained

More information

Enlarging neighborhoods of interior-point algorithms for linear programming via least values of proximity measure functions

Enlarging neighborhoods of interior-point algorithms for linear programming via least values of proximity measure functions Enlarging neighborhoods of interior-point algorithms for linear programming via least values of proximity measure functions Y B Zhao Abstract It is well known that a wide-neighborhood interior-point algorithm

More information

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74 Title A linear programming instance with events(discrete Continuous Stru Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts Citation 数理解析研究所講究録 (1996), 945: 68-74 Issue Date 1996-04 URL http://hdl.hle.net/2433/60224

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

A Sublinear Parallel Algorithm for Stable Matching. network. This result is then applied to the stable. matching problem in Section 6.

A Sublinear Parallel Algorithm for Stable Matching. network. This result is then applied to the stable. matching problem in Section 6. A Sublinear Parallel Algorithm for Stable Matching Tomas Feder Nimrod Megiddo y Serge A. Plotkin z Parallel algorithms for various versions of the stable matching problem are presented. The algorithms

More information

Interior Point Methods in Mathematical Programming

Interior Point Methods in Mathematical Programming Interior Point Methods in Mathematical Programming Clóvis C. Gonzaga Federal University of Santa Catarina, Brazil Journées en l honneur de Pierre Huard Paris, novembre 2008 01 00 11 00 000 000 000 000

More information

On the projection onto a finitely generated cone

On the projection onto a finitely generated cone Acta Cybernetica 00 (0000) 1 15. On the projection onto a finitely generated cone Miklós Ujvári Abstract In the paper we study the properties of the projection onto a finitely generated cone. We show for

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region

A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region Eissa Nematollahi Tamás Terlaky January 5, 2008 Abstract By introducing some redundant Klee-Minty constructions,

More information

SF2822 Applied nonlinear optimization, final exam Wednesday June

SF2822 Applied nonlinear optimization, final exam Wednesday June SF2822 Applied nonlinear optimization, final exam Wednesday June 3 205 4.00 9.00 Examiner: Anders Forsgren, tel. 08-790 7 27. Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

More information

Lecture 8. Strong Duality Results. September 22, 2008

Lecture 8. Strong Duality Results. September 22, 2008 Strong Duality Results September 22, 2008 Outline Lecture 8 Slater Condition and its Variations Convex Objective with Linear Inequality Constraints Quadratic Objective over Quadratic Constraints Representation

More information

Interior-Point Methods

Interior-Point Methods Interior-Point Methods Stephen Wright University of Wisconsin-Madison Simons, Berkeley, August, 2017 Wright (UW-Madison) Interior-Point Methods August 2017 1 / 48 Outline Introduction: Problems and Fundamentals

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

An Infeasible Interior-Point Algorithm with full-newton Step for Linear Optimization

An Infeasible Interior-Point Algorithm with full-newton Step for Linear Optimization An Infeasible Interior-Point Algorithm with full-newton Step for Linear Optimization H. Mansouri M. Zangiabadi Y. Bai C. Roos Department of Mathematical Science, Shahrekord University, P.O. Box 115, Shahrekord,

More information

Lecture 5. The Dual Cone and Dual Problem

Lecture 5. The Dual Cone and Dual Problem IE 8534 1 Lecture 5. The Dual Cone and Dual Problem IE 8534 2 For a convex cone K, its dual cone is defined as K = {y x, y 0, x K}. The inner-product can be replaced by x T y if the coordinates of the

More information

A PREDICTOR-CORRECTOR PATH-FOLLOWING ALGORITHM FOR SYMMETRIC OPTIMIZATION BASED ON DARVAY'S TECHNIQUE

A PREDICTOR-CORRECTOR PATH-FOLLOWING ALGORITHM FOR SYMMETRIC OPTIMIZATION BASED ON DARVAY'S TECHNIQUE Yugoslav Journal of Operations Research 24 (2014) Number 1, 35-51 DOI: 10.2298/YJOR120904016K A PREDICTOR-CORRECTOR PATH-FOLLOWING ALGORITHM FOR SYMMETRIC OPTIMIZATION BASED ON DARVAY'S TECHNIQUE BEHROUZ

More information

Research Division. Computer and Automation Institute, Hungarian Academy of Sciences. H-1518 Budapest, P.O.Box 63. Ujvári, M. WP August, 2007

Research Division. Computer and Automation Institute, Hungarian Academy of Sciences. H-1518 Budapest, P.O.Box 63. Ujvári, M. WP August, 2007 Computer and Automation Institute, Hungarian Academy of Sciences Research Division H-1518 Budapest, P.O.Box 63. ON THE PROJECTION ONTO A FINITELY GENERATED CONE Ujvári, M. WP 2007-5 August, 2007 Laboratory

More information

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 arxiv:quant-ph/0410063v1 8 Oct 2004 Nilanjana Datta Statistical Laboratory Centre for Mathematical Sciences University of Cambridge

More information

Research Note. A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization

Research Note. A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization Iranian Journal of Operations Research Vol. 4, No. 1, 2013, pp. 88-107 Research Note A New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization B. Kheirfam We

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

Local Self-concordance of Barrier Functions Based on Kernel-functions

Local Self-concordance of Barrier Functions Based on Kernel-functions Iranian Journal of Operations Research Vol. 3, No. 2, 2012, pp. 1-23 Local Self-concordance of Barrier Functions Based on Kernel-functions Y.Q. Bai 1, G. Lesaja 2, H. Mansouri 3, C. Roos *,4, M. Zangiabadi

More information

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE

LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE LECTURE 25: REVIEW/EPILOGUE LECTURE OUTLINE CONVEX ANALYSIS AND DUALITY Basic concepts of convex analysis Basic concepts of convex optimization Geometric duality framework - MC/MC Constrained optimization

More information

Solving Obstacle Problems by Using a New Interior Point Algorithm. Abstract

Solving Obstacle Problems by Using a New Interior Point Algorithm. Abstract Solving Obstacle Problems by Using a New Interior Point Algorithm Yi-Chih Hsieh Department of Industrial Engineering National Yunlin Polytechnic Institute Huwei, Yunlin 6308 Taiwan and Dennis L. Bricer

More information

An Infeasible Interior Point Method for the Monotone Linear Complementarity Problem

An Infeasible Interior Point Method for the Monotone Linear Complementarity Problem Int. Journal of Math. Analysis, Vol. 1, 2007, no. 17, 841-849 An Infeasible Interior Point Method for the Monotone Linear Complementarity Problem Z. Kebbiche 1 and A. Keraghel Department of Mathematics,

More information

INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA

INVEX FUNCTIONS AND CONSTRAINED LOCAL MINIMA BULL. AUSRAL. MAH. SOC. VOL. 24 (1981), 357-366. 9C3 INVEX FUNCIONS AND CONSRAINED LOCAL MINIMA B.D. CRAVEN If a certain weakening of convexity holds for the objective and all constraint functions in a

More information

Introduction to Nonlinear Stochastic Programming

Introduction to Nonlinear Stochastic Programming School of Mathematics T H E U N I V E R S I T Y O H F R G E D I N B U Introduction to Nonlinear Stochastic Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio SPS

More information

Lecture 5. Theorems of Alternatives and Self-Dual Embedding

Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 1 Lecture 5. Theorems of Alternatives and Self-Dual Embedding IE 8534 2 A system of linear equations may not have a solution. It is well known that either Ax = c has a solution, or A T y = 0, c

More information

Polynomial complementarity problems

Polynomial complementarity problems Polynomial complementarity problems M. Seetharama Gowda Department of Mathematics and Statistics University of Maryland, Baltimore County Baltimore, Maryland 21250, USA gowda@umbc.edu December 2, 2016

More information

A New Class of Polynomial Primal-Dual Methods for Linear and Semidefinite Optimization

A New Class of Polynomial Primal-Dual Methods for Linear and Semidefinite Optimization A New Class of Polynomial Primal-Dual Methods for Linear and Semidefinite Optimization Jiming Peng Cornelis Roos Tamás Terlaky August 8, 000 Faculty of Information Technology and Systems, Delft University

More information

A polynomial time interior point path following algorithm for LCP based on Chen Harker Kanzow smoothing techniques

A polynomial time interior point path following algorithm for LCP based on Chen Harker Kanzow smoothing techniques Math. Program. 86: 9 03 (999) Springer-Verlag 999 Digital Object Identifier (DOI) 0.007/s007990056a Song Xu James V. Burke A polynomial time interior point path following algorithm for LCP based on Chen

More information

Yorktown Heights, New York * San Jose, California * Zurich, Switzerland

Yorktown Heights, New York * San Jose, California * Zurich, Switzerland RJ 4958 (51768) 12/16/85 Computer Science/Mathematics Research Report A NOTE ON SENSITIVITY ANALYSIS IN ALGEBRAIC ALGORITHMS Nimrod Megiddo IBM Almaden Research Center 650 Harry Road, San Jose, CA 95120-6099,

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version

Convex Optimization Theory. Chapter 5 Exercises and Solutions: Extended Version Convex Optimization Theory Chapter 5 Exercises and Solutions: Extended Version Dimitri P. Bertsekas Massachusetts Institute of Technology Athena Scientific, Belmont, Massachusetts http://www.athenasc.com

More information

An E cient A ne-scaling Algorithm for Hyperbolic Programming

An E cient A ne-scaling Algorithm for Hyperbolic Programming An E cient A ne-scaling Algorithm for Hyperbolic Programming Jim Renegar joint work with Mutiara Sondjaja 1 Euclidean space A homogeneous polynomial p : E!R is hyperbolic if there is a vector e 2E such

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Primal/Dual Decomposition Methods

Primal/Dual Decomposition Methods Primal/Dual Decomposition Methods Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Subgradients

More information

Lecture: Algorithms for LP, SOCP and SDP

Lecture: Algorithms for LP, SOCP and SDP 1/53 Lecture: Algorithms for LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Criss-cross Method for Solving the Fuzzy Linear Complementarity Problem

Criss-cross Method for Solving the Fuzzy Linear Complementarity Problem Volume 118 No. 6 2018, 287-294 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Criss-cross Method for Solving the Fuzzy Linear Complementarity Problem

More information

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Roger Behling a, Clovis Gonzaga b and Gabriel Haeser c March 21, 2013 a Department

More information

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21

Linear Programming. Operations Research. Anthony Papavasiliou 1 / 21 1 / 21 Linear Programming Operations Research Anthony Papavasiliou Contents 2 / 21 1 Primal Linear Program 2 Dual Linear Program Table of Contents 3 / 21 1 Primal Linear Program 2 Dual Linear Program Linear

More information

SCALARIZATION APPROACHES FOR GENERALIZED VECTOR VARIATIONAL INEQUALITIES

SCALARIZATION APPROACHES FOR GENERALIZED VECTOR VARIATIONAL INEQUALITIES Nonlinear Analysis Forum 12(1), pp. 119 124, 2007 SCALARIZATION APPROACHES FOR GENERALIZED VECTOR VARIATIONAL INEQUALITIES Zhi-bin Liu, Nan-jing Huang and Byung-Soo Lee Department of Applied Mathematics

More information

Optimality, Duality, Complementarity for Constrained Optimization

Optimality, Duality, Complementarity for Constrained Optimization Optimality, Duality, Complementarity for Constrained Optimization Stephen Wright University of Wisconsin-Madison May 2014 Wright (UW-Madison) Optimality, Duality, Complementarity May 2014 1 / 41 Linear

More information

A full-newton step feasible interior-point algorithm for P (κ)-lcp based on a new search direction

A full-newton step feasible interior-point algorithm for P (κ)-lcp based on a new search direction Croatian Operational Research Review 77 CRORR 706), 77 90 A full-newton step feasible interior-point algorithm for P κ)-lcp based on a new search direction Behrouz Kheirfam, and Masoumeh Haghighi Department

More information

ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS

ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS MATHEMATICS OF OPERATIONS RESEARCH Vol. 28, No. 4, November 2003, pp. 677 692 Printed in U.S.A. ON A CLASS OF NONSMOOTH COMPOSITE FUNCTIONS ALEXANDER SHAPIRO We discuss in this paper a class of nonsmooth

More information

HOMOTOPY CONTINUATION METHODS FOR NONLINEAR COMPLEMENTARITY PROBLEMS*'

HOMOTOPY CONTINUATION METHODS FOR NONLINEAR COMPLEMENTARITY PROBLEMS*' MATHEMATICS OF OPERATIONS RESEARCH Vol. 16, No. 4, November 1991 t'r~rrnred m U.S.A. HOMOTOPY CONTINUATION METHODS FOR NONLINEAR COMPLEMENTARITY PROBLEMS*' MASAKAZU KOJIMA, NIMROD MEGIDDO AND TOSHIHITO

More information

Multidimensional Geometry and its Applications

Multidimensional Geometry and its Applications PARALLEL COORDINATES : VISUAL Multidimensional Geometry and its Applications Alfred Inselberg( c 99, ) Senior Fellow San Diego SuperComputing Center, CA, USA Computer Science and Applied Mathematics Departments

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

Absolute value equations

Absolute value equations Linear Algebra and its Applications 419 (2006) 359 367 www.elsevier.com/locate/laa Absolute value equations O.L. Mangasarian, R.R. Meyer Computer Sciences Department, University of Wisconsin, 1210 West

More information

Lecture: Cone programming. Approximating the Lorentz cone.

Lecture: Cone programming. Approximating the Lorentz cone. Strong relaxations for discrete optimization problems 10/05/16 Lecture: Cone programming. Approximating the Lorentz cone. Lecturer: Yuri Faenza Scribes: Igor Malinović 1 Introduction Cone programming is

More information

A Full Newton Step Infeasible Interior Point Algorithm for Linear Optimization

A Full Newton Step Infeasible Interior Point Algorithm for Linear Optimization A Full Newton Step Infeasible Interior Point Algorithm for Linear Optimization Kees Roos e-mail: C.Roos@tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos 37th Annual Iranian Mathematics Conference Tabriz,

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 41 (2015), No. 5, pp. 1259 1269. Title: A uniform approximation method to solve absolute value equation

More information

Merit functions and error bounds for generalized variational inequalities

Merit functions and error bounds for generalized variational inequalities J. Math. Anal. Appl. 287 2003) 405 414 www.elsevier.com/locate/jmaa Merit functions and error bounds for generalized variational inequalities M.V. Solodov 1 Instituto de Matemática Pura e Aplicada, Estrada

More information

Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method

Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method Primal-Dual Interior-Point Methods for Linear Programming based on Newton s Method Robert M. Freund March, 2004 2004 Massachusetts Institute of Technology. The Problem The logarithmic barrier approach

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

Limiting behavior of the central path in semidefinite optimization

Limiting behavior of the central path in semidefinite optimization Limiting behavior of the central path in semidefinite optimization M. Halická E. de Klerk C. Roos June 11, 2002 Abstract It was recently shown in [4] that, unlike in linear optimization, the central path

More information

Interior-point algorithm for linear optimization based on a new trigonometric kernel function

Interior-point algorithm for linear optimization based on a new trigonometric kernel function Accepted Manuscript Interior-point algorithm for linear optimization based on a new trigonometric kernel function Xin Li, Mingwang Zhang PII: S0-0- DOI: http://dx.doi.org/./j.orl.0.0.0 Reference: OPERES

More information

The local equicontinuity of a maximal monotone operator

The local equicontinuity of a maximal monotone operator arxiv:1410.3328v2 [math.fa] 3 Nov 2014 The local equicontinuity of a maximal monotone operator M.D. Voisei Abstract The local equicontinuity of an operator T : X X with proper Fitzpatrick function ϕ T

More information

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems

Interior Point Methods. We ll discuss linear programming first, followed by three nonlinear problems. Algorithms for Linear Programming Problems AMSC 607 / CMSC 764 Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 4: Introduction to Interior Point Methods Dianne P. O Leary c 2008 Interior Point Methods We ll discuss

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

1 Strict local optimality in unconstrained optimization

1 Strict local optimality in unconstrained optimization ORF 53 Lecture 14 Spring 016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, April 14, 016 When in doubt on the accuracy of these notes, please cross check with the instructor s

More information

Department of Social Systems and Management. Discussion Paper Series

Department of Social Systems and Management. Discussion Paper Series Department of Social Systems and Management Discussion Paper Series No. 1262 Complementarity Problems over Symmetric Cones: A Survey of Recent Developments in Several Aspects by Akiko YOSHISE July 2010

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

A Note on Exchange Market Equilibria with Leontief s Utility: Freedom of Pricing Leads to Rationality

A Note on Exchange Market Equilibria with Leontief s Utility: Freedom of Pricing Leads to Rationality A Note on Exchange Market Equilibria with Leontief s Utility: Freedom of Pricing Leads to Rationality Yinyu Ye April 23, 2005 Abstract: We extend the analysis of [26] to handling more general utility functions:

More information

IE 5531 Practice Midterm #2

IE 5531 Practice Midterm #2 IE 5531 Practice Midterm #2 Prof. John Gunnar Carlsson November 23, 2010 Problem 1: Nonlinear programming You are a songwriter who writes Top 40 style songs for the radio. Each song you write can be described

More information

Research Article The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem

Research Article The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem Journal of Applied Mathematics Volume 2012, Article ID 219478, 15 pages doi:10.1155/2012/219478 Research Article The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Dynamic location, euclidean center problem, global optimization.

Dynamic location, euclidean center problem, global optimization. Annals of Operations Research 6(1986)3 13-3 19 N. MEGIDDO IBM Almaden Research Center, San Jose, California 95120, USA, and Tel-Aviv University, Tel-A viv, Israel Abstract A class of dynamic location problems

More information

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem

Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Iterative Convex Optimization Algorithms; Part One: Using the Baillon Haddad Theorem Charles Byrne (Charles Byrne@uml.edu) http://faculty.uml.edu/cbyrne/cbyrne.html Department of Mathematical Sciences

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Primal-Dual Interior-Point Methods

Primal-Dual Interior-Point Methods Primal-Dual Interior-Point Methods Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 Outline Today: Primal-dual interior-point method Special case: linear programming

More information

Lecture 13: Constrained optimization

Lecture 13: Constrained optimization 2010-12-03 Basic ideas A nonlinearly constrained problem must somehow be converted relaxed into a problem which we can solve (a linear/quadratic or unconstrained problem) We solve a sequence of such problems

More information

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani

Interior-point methods Optimization Geoff Gordon Ryan Tibshirani Interior-point methods 10-725 Optimization Geoff Gordon Ryan Tibshirani Analytic center Review force field interpretation Newton s method: y = 1./(Ax+b) A T Y 2 A Δx = A T y Dikin ellipsoid unit ball of

More information

Local strong convexity and local Lipschitz continuity of the gradient of convex functions

Local strong convexity and local Lipschitz continuity of the gradient of convex functions Local strong convexity and local Lipschitz continuity of the gradient of convex functions R. Goebel and R.T. Rockafellar May 23, 2007 Abstract. Given a pair of convex conjugate functions f and f, we investigate

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

On the complexity of computing the handicap of a sufficient matrix

On the complexity of computing the handicap of a sufficient matrix Math. Program., Ser. B (2011) 129:383 402 DOI 10.1007/s10107-011-0465-z FULL LENGTH PAPER On the complexity of computing the handicap of a sufficient matrix Etienne de Klerk Marianna E. -Nagy Received:

More information

A projection algorithm for strictly monotone linear complementarity problems.

A projection algorithm for strictly monotone linear complementarity problems. A projection algorithm for strictly monotone linear complementarity problems. Erik Zawadzki Department of Computer Science epz@cs.cmu.edu Geoffrey J. Gordon Machine Learning Department ggordon@cs.cmu.edu

More information

Continuous Sets and Non-Attaining Functionals in Reflexive Banach Spaces

Continuous Sets and Non-Attaining Functionals in Reflexive Banach Spaces Laboratoire d Arithmétique, Calcul formel et d Optimisation UMR CNRS 6090 Continuous Sets and Non-Attaining Functionals in Reflexive Banach Spaces Emil Ernst Michel Théra Rapport de recherche n 2004-04

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

The Squared Slacks Transformation in Nonlinear Programming

The Squared Slacks Transformation in Nonlinear Programming Technical Report No. n + P. Armand D. Orban The Squared Slacks Transformation in Nonlinear Programming August 29, 2007 Abstract. We recall the use of squared slacks used to transform inequality constraints

More information

An improved generalized Newton method for absolute value equations

An improved generalized Newton method for absolute value equations DOI 10.1186/s40064-016-2720-5 RESEARCH Open Access An improved generalized Newton method for absolute value equations Jingmei Feng 1,2* and Sanyang Liu 1 *Correspondence: fengjingmeilq@hotmail.com 1 School

More information

Extended Monotropic Programming and Duality 1

Extended Monotropic Programming and Duality 1 March 2006 (Revised February 2010) Report LIDS - 2692 Extended Monotropic Programming and Duality 1 by Dimitri P. Bertsekas 2 Abstract We consider the problem minimize f i (x i ) subject to x S, where

More information