Q = α n AR2/3 h S1/2 0. bd 2d + b d if b d. 0 = ft1/3 /s

Size: px
Start display at page:

Download "Q = α n AR2/3 h S1/2 0. bd 2d + b d if b d. 0 = ft1/3 /s"

Transcription

1 CEE 330 Open Channel Flow, Nov., Review Open Channel Flow Gravity friction balance. In general we take an energy equation approach. y Uniform Flow x = 0 z = S 0L = h f where we could find h f from the Darcy-Weisbach friction facter and f(re Dh, ǫ/d h ) 8.9 Examples Fall Creek Flow S , n = from table 0. in text, assuming somewhere between clean and straight and sluggish with deep pools values, b = 50, d =.39 from USGS gage on web, 05:30 EST. What is Q? R h = A P = Q = α n AR/3 h S/ 0 bd d + b d if b d therefore Q = α n bd5/3 S / 0 =.486 ft/3 /s (50 ft)(.39 ft) 5/ Q = 40 CFS Actual value from calibrated flow gage was 69 CFS. Just using ball park estimates we were in the right range. To be more accurate we would need a survey of the river slope (likely greater than 0.00) and the wetted perimeter, perhaps also a bit greater than our 50 estimate). We could get these more accurately from a USGS topographic map but to be truly accurate we would send a survey team out to measure directly in the field. Second example - Given Q, find d

2 7 If d b straightforward the equation is explicit and we just solve for d directly by substitution into Manning s equation. However, let s not make this assumption and let s consider a trapezoidal shaped channel with the geometry shown below and Q = 69 CFS, S 0 = 0.00, and n = 0.035: ( ) 0 + b A = d Using Pythagoras theorem we can write (b 0 P = 0 + ) + d and Therefore A = b = 0 + d 5. ( 0 + d 5 ) d. Therefore: P = 0 + ( d 5 ) + d. Q = α n A 5/3 P /3S/ 0 =.486 ft/3 /s [( ) ] 0 + d 5 5/3. d ] (d ) / = 69 ft 3 /s 5 + d [ 0 + Ouch - what to do? We can solve this iteratively by guessing a d and then fiddling until we find Q = 69 CFS. Alternatively, we can use an equation solver to find the result. I.

3 CEE 330 Open Channel Flow, Nov., used the function fzero in Matlab which is a nonlinear root finder and found the zeroes to the expression: residual = Q α n A 5/3 P /3S/ 0 with an initial guess of d=3 ft. The result is d =.8 ft. 8.0 Energy Equation - Revisited Our last work with the energy equation left us with: V g + z = V g + z + h L But we can write h L = S f L. Defining ξ = z y we have ξ = ξ + S 0 L and V g + y + S 0 L = V g + y + S f L hence V g + y = V g + y + (S f S 0 )L 8.0. Specific Energy Define E = y + V g which is known as the specific energy.

4 74 The specific energy is seen to be the height of the EGL above the bed. Let q = Q/b = V y where b is the width of the channel. We can express the specific energy as E = y + q gy We see that this curve is a cubic in y let s look at the shape of this plot: 5 4 y/y c E/y c Let s look at the minimum in E. We can find its location (which we will denote y c, the critical depth) by solving E y = 0 = q gy 3 c ( ) q /3 ( Q y c = = g b g ) /3 Now we can define the minimum in the specific energy curve (E min ) ( ) q /3 E min = E(y c ) = + q g g q4/3 g /3 = q/3 q/3 + g/3 q /3 g = 3 /3 g = 3 /3 y c Defining q = V y = V c y c we can substitute into our definition of y c c y c yc 3 = q g = V g V c = gy c V c = gy c Recall from Lab #3 and dimensional analysis that Fr = V gy Fr c = V c gyc = gyc gyc = Hence at the inflection point in the specific energy curve we have Fr =, y = y c, E = E min = 3 y C

5 CEE 330 Open Channel Flow, Nov., thus the inflection point separates supercritical flow from sub-critical flow (recall Lab #3 for the definitions of super- and sub-critical flow). The upper portion of the specific energy curve is known as the subcritical branch (deeper, slower flows at a given energy) while the lower branch is known as the supercritical branch) shallower, faster flows at a given energy). 8. Example - Flow Over a Sill (Bump) Consider the following constant width channel: If we take the bed to be horizontal (S 0 = 0) away from the sill and the flow to be frictionless (S f = 0) then the Bernoulli form of the specific energy equation gives us (where q is a constant of the flow since the flow width is constant): Rearranging to be a polynomial in y E = E + h = y + q gy we find: + h y 3 + ( h E )y + q g = 0 The coefficient terms to the polynomial are all known (E is the left-hand side boundary condition and hence y and q and thus E are all known for a well specified problem). Clearly this equation has three roots. It turns out that for h not too large it has 3 real roots, one of which is negative (and hence is not physically possibly as a negative water depth does not make sense), leaving two real positive roots that are viable flow depths. Let s consider the range of possibilities for this flow.

6 76 a) Initial Flow Subcritical Upstream and Downstream (e.g., Fr < and Fr 3 < ) b) Initial Flow Supercritical Upstream and Downstream (e.g., Fr > and Fr 3 > ) c) Initial Flow Subcritical Upstream and Supercritical Downstream (e.g., Fr < and Fr 3 > ) The specific energy plot for each flow looks like:

7 CEE 330 Open Channel Flow, Nov., y/y c E/y c 8. Example - Flow though a Contraction Consider the following channel of constant bottom elevation with vertical banks: As in our sill example we take the bed to be horizontal (S 0 = 0) and the flow to be frictionless (S f = 0). However, now q is no longer constant throughout the flow as b = b(x) q = Q/b = q(x). We consider the same three cases:

8 78 a) Fr < and Fr 3 < b) Fr > and Fr 3 > c) Fr < and Fr 3 > The specific energy plot for each flow looks like:

9 CEE 330 Open Channel Flow, Nov., y/y c E/y c

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time).

We will assume straight channels with simple geometries (prismatic channels) and steady state flow (in time). 56 Review Drag & Lift Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! 8. Open-Channel Flow Pipe/duct flow closed, full,

More information

CEE 3310 Open Channel Flow, Nov. 26,

CEE 3310 Open Channel Flow, Nov. 26, CEE 3310 Open Channel Flow, Nov. 6, 018 175 8.10 Review Open Channel Flow Gravity friction balance. y Uniform Flow x = 0 z = S 0L = h f y Rapidly Varied Flow x 1 y Gradually Varied Flow x 1 In general

More information

CEE 3310 Open Channel Flow,, Nov. 18,

CEE 3310 Open Channel Flow,, Nov. 18, CEE 3310 Open Channel Flow,, Nov. 18, 2016 165 8.1 Review Drag & Lit Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! C D

More information

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h.

P = 2Rθ. The previous Manning formulas are used to predict V o and Q for uniform flow when the above expressions are substituted for A, P, and R h. Uniform Flow in a Partly Full, Circular Pipe Fig. 10.6 shows a partly full, circular pipe with uniform flow. Since frictional resistance increases with wetted perimeter, but volume flow rate increases

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

Open Channel Flow Part 2. Ch 10 Young, notes, handouts

Open Channel Flow Part 2. Ch 10 Young, notes, handouts Open Channel Flow Part 2 Ch 10 Young, notes, handouts Uniform Channel Flow Many situations have a good approximation d(v,y,q)/dx=0 Uniform flow Look at extended Bernoulli equation Friction slope exactly

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow.

P10.5 Water flows down a rectangular channel that is 4 ft wide and 3 ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow. P10.5 Water flows down a rectangular channel that is 4 ft wide and ft deep. The flow rate is 15,000 gal/min. Estimate the Froude number of the flow. Solution: Convert the flow rate from 15,000 gal/min

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Open-Channel Flow Uniform Flow (See CERM Ch. 19) Characterized by constant depth volume, and cross section. It can be steady or unsteady Non-uniform Flow *Not on

More information

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by:

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by: CEE 10 Open Channel Flow, Dec. 1, 010 18 8.16 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y = 1 + y 1 1 + 8Fr 1 8.17 Rapidly Varied Flows

More information

Open-channel hydraulics

Open-channel hydraulics Open-channel hydraulics STEADY FLOW IN OPEN CHANNELS constant discharge, other geometric and flow characteristics depended only on position Uniform flow Non-uniform flow S; y; v const. i i 0 i E y 1 y

More information

Hydraulics Part: Open Channel Flow

Hydraulics Part: Open Channel Flow Hydraulics Part: Open Channel Flow Tutorial solutions -by Dr. K.N. Dulal Uniform flow 1. Show that discharge through a channel with steady flow is given by where A 1 and A 2 are the sectional areas of

More information

VARIED FLOW IN OPEN CHANNELS

VARIED FLOW IN OPEN CHANNELS Chapter 15 Open Channels vs. Closed Conduits VARIED FLOW IN OPEN CHANNELS Fluid Mechanics, Spring Term 2011 In a closed conduit there can be a pressure gradient that drives the flow. An open channel has

More information

conservation of linear momentum 1+8Fr = 1+ Sufficiently short that energy loss due to channel friction is negligible h L = 0 Bernoulli s equation.

conservation of linear momentum 1+8Fr = 1+ Sufficiently short that energy loss due to channel friction is negligible h L = 0 Bernoulli s equation. 174 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y y 1 = 1+ 1+8Fr 1 8.1 Rapidly Varied Flows Weirs 8.1.1 Broad-Crested Weir Consider the

More information

Beaver Creek Corridor Design and Analysis. By: Alex Previte

Beaver Creek Corridor Design and Analysis. By: Alex Previte Beaver Creek Corridor Design and Analysis By: Alex Previte Overview Introduction Key concepts Model Development Design Accuracy Conclusion Refresh v = Beaver Creek Site = Wittenberg Introduction Low head

More information

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow

OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification

More information

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW

CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW CE 6403 APPLIED HYDRAULIC ENGINEERING UNIT - II GRADUALLY VARIED FLOW Dynamic equations of gradually varied and spatially varied flows - Water surface flow profile classifications: Hydraulic Slope, Hydraulic

More information

Open Channel Flow I - The Manning Equation and Uniform Flow COURSE CONTENT

Open Channel Flow I - The Manning Equation and Uniform Flow COURSE CONTENT Open Channel Flow I - The Manning Equation and Uniform Flow Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction Flow of a liquid may take place either as open channel flow or pressure flow. Pressure

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Gradually Varied Flow I+II. Hydromechanics VVR090

Gradually Varied Flow I+II. Hydromechanics VVR090 Gradually Varied Flow I+II Hydromechanics VVR090 Gradually Varied Flow Depth of flow varies with longitudinal distance. Occurs upstream and downstream control sections. Governing equation: dy dx So Sf

More information

53:071 Principles of Hydraulics Laboratory Experiment #3 ANALYSIS OF OPEN-CHANNEL FLOW TRANSITIONS USING THE SPECIFIC ENERGY DIAGRAM

53:071 Principles of Hydraulics Laboratory Experiment #3 ANALYSIS OF OPEN-CHANNEL FLOW TRANSITIONS USING THE SPECIFIC ENERGY DIAGRAM 53:071 Principles of Hydraulics Laboratory Experiment #3 ANALYSIS OF OPEN-CHANNEL FLOW TRANSITIONS USING THE SPECIFIC ENERGY DIAGRAM Principle Adaptation of the Bernoulli equation to open-channel flows

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 5 Channel Transitions Lecture - 1 Channel Transitions Part 1 Welcome back

More information

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW Derivation of uniform flow equation Dimensional analysis Computation of normal depth UNIFORM FLOW 1. Uniform flow is the flow condition obtained from a

More information

Lab 7: Nonuniform Flow and Open Channel Transitions

Lab 7: Nonuniform Flow and Open Channel Transitions CE 3620: Water Resources Engineering Spring 2015 Lab 7: Nonuniform Flow and Open Channel Transitions BACKGROUND An open channel transition may be defined as a change either in the direction, slope, or

More information

Experiment 7 Energy Loss in a Hydraulic Jump

Experiment 7 Energy Loss in a Hydraulic Jump Experiment 7 Energ Loss in a Hdraulic Jump n Purpose: The purpose of this experiment is to examine the transition from supercritical (rapid) flow to subcritical (slow) flow in an open channel and to analze

More information

Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow

Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow Archives of Hydro-Engineering and Environmental Mechanics Vol. 61 (2014), No. 3 4, pp. 89 109 DOI: 10.1515/heem-2015-0006 IBW PAN, ISSN 1231 3726 Comparison of Average Energy Slope Estimation Formulas

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Urban Drainage: Hydraulics. Solutions to problem sheet 2: Flows in open channels DEPRTMENT OF CIVIL ND ENVIRONMENTL ENGINEERING Urban Drainage: Hydraulics Solutions to problem sheet 2: Flows in open channels 1. rectangular channel of 1 m width carries water at a rate 0.1 m 3 /s. Plot

More information

Basic Hydraulics. Rabi H. Mohtar ABE 325

Basic Hydraulics. Rabi H. Mohtar ABE 325 Basic Hydraulics Rabi H. Mohtar ABE 35 The river continues on its way to the sea, broken the wheel of the mill or not. Khalil Gibran The forces on moving body of fluid mass are:. Inertial due to mass (ρ

More information

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number

LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number LECTURE 9: Open channel flow: Uniform flow, best hydraulic sections, energy principles, Froude number Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Open channel

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

CIE4491 Lecture. Hydraulic design

CIE4491 Lecture. Hydraulic design CIE4491 Lecture. Hydraulic design Marie-claire ten Veldhuis 19-9-013 Delft University of Technology Challenge the future Hydraulic design of urban stormwater systems Focus on sewer pipes Pressurized and

More information

3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH

3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH 3.2 CRITICAL DEPTH IN NONRECTANGULAR CHANNELS AND OCCUR- RENCE OF CRITICAL DEPTH Critical Depth in Non-Rectangular Channels Consider an irregular channel: da w dd dd d Specific energy is defined as: E

More information

Block 3 Open channel flow

Block 3 Open channel flow Numerical Hydraulics Block 3 Open channel flow Markus Holzner Contents of the course Block 1 The equations Block Computation of pressure surges Block 3 Open channel flow (flow in rivers) Block 4 Numerical

More information

Open Channel Hydraulics I - Uniform Flow

Open Channel Hydraulics I - Uniform Flow PDHonline Course H138 (2 PDH) Open Channel Hydraulics I - Uniform Flow Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax:

More information

NPTEL Quiz Hydraulics

NPTEL Quiz Hydraulics Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic

More information

1. Open Channel Hydraulics

1. Open Channel Hydraulics Open Channel Flow. Open Channel Hydraulics.... Definition and differences between pipe flow and open channel flow.... Types of flow.... Properties of open channels...4.4 Fundamental equations... 5.4. The

More information

1.060 Engineering Mechanics II Spring Problem Set 8

1.060 Engineering Mechanics II Spring Problem Set 8 1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 Geomorphology Geology 450/750 Spring 2004 Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 This exercise is intended to give you experience using field data you collected

More information

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES

ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for

More information

EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS

EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS Tenth International Water Technology Conference, IWTC1 6, Alexandria, Egypt 19 EXPERIMENTAL STUDY OF BACKWATER RISE DUE TO BRIDGE PIERS AS FLOW OBSTRUCTIONS Kassem Salah El-Alfy Associate Prof., Irrigation

More information

28.2 Classification of Jumps

28.2 Classification of Jumps 28.2 Classification of Jumps As mentioned earlier, the supercritical flow Froude number influences the characteristics of the hydraulic jump. Bradley and Peterka, after extensive experimental investigations,

More information

Hydromechanics: Course Summary

Hydromechanics: Course Summary Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection

More information

Viscous Flow in Ducts

Viscous Flow in Ducts Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

More information

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati

Flood routing. Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Flood routing Prof. (Dr.) Rajib Kumar Bhattacharjya Indian Institute of Technology Guwahati Guwahati, Assam Email: rkbc@iitg.ernet.in Web: www.iitg.ernet.in/rkbc Visiting Faculty NIT Meghalaya Q (m 3 /sec)

More information

Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April.

Guo, James C.Y. (1999). Critical Flow Section in a Collector Channel, ASCE J. of Hydraulic Engineering, Vol 125, No. 4, April. Guo, James C.Y. (1999). "Critical Flow Section in a Collector Channel," ASCE J. of Hydraulic Engineering, Vol 15, No. 4, April. CRITICAL FLOW SECTION IN A COLLECTOR CHANNEL By James C.Y. Guo, PhD, P.E.

More information

UPPER COSUMNES RIVER FLOOD MAPPING

UPPER COSUMNES RIVER FLOOD MAPPING UPPER COSUMNES RIVER FLOOD MAPPING DRAFT BASIC DATA NARRATIVE FLOOD INSURANCE STUDY SACRAMENTO COUTY, CALIFORNIA Community No. 060262 November 2008 Prepared By: CIVIL ENGINEERING SOLUTIONS, INC. 1325 Howe

More information

Geology 550 Spring 2005 LAB 3: HYDRAULICS OF PRAIRIE CREEK

Geology 550 Spring 2005 LAB 3: HYDRAULICS OF PRAIRIE CREEK Geology 550 Spring 2005 LAB 3: HYDRAULICS OF PRAIRIE CREEK Objectives: 1. To examine the distribution of velocity in a stream channel 2. To characterize the state of flow using dimensionless variables

More information

L. Pratt and J. Whitehead 6/25/ Parabolic Bottom

L. Pratt and J. Whitehead 6/25/ Parabolic Bottom 2.8 Parabolic Bottom Up to this point we have dealt strictly with channels with rectangular crosssections. The only allowable variation of bottom elevation has been in the longitudinal (y) direction. Although

More information

NON UNIFORM FLOW IN OPEN CHANNEL

NON UNIFORM FLOW IN OPEN CHANNEL For updated version, please click on http://ocw.ump.edu.my HYDRAULICS NON - UNIFORM FLOW IN OPEN CHANNEL TOPIC 3.3 by Nadiatul Adilah Ahmad Abdul Ghani Faculty of Civil Engineering and Earth Resources

More information

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Tom Molls 1, Gary Brunner 2, & Alejandro Sanchez 2 1. David Ford Consulting Engineers, Inc., Sacramento, CA 2. USACE Hydrologic Engineering

More information

Lecture 13 An introduction to hydraulics

Lecture 13 An introduction to hydraulics Lecture 3 An introduction to hydraulics Hydraulics is the branch of physics that handles the movement of water. In order to understand how sediment moves in a river, we re going to need to understand how

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

ECOHYDRAULICS. Introduction to 2D Modeling

ECOHYDRAULICS. Introduction to 2D Modeling Introduction to 2D Modeling No one believes a model, except the person who wrote it; Everyone believes data, except the person who collected it. unknown wise scientist Two dimensional (depth averaged)

More information

Hydraulics for Urban Storm Drainage

Hydraulics for Urban Storm Drainage Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes 8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

More information

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK

OPEN CHANNEL FLOW. Computer Applications. Numerical Methods and. Roland Jeppson. CRC Press UNIVERSITATSB'BUOTHEK TECHNISCHE. INFORMATlONSBiBUOTHEK OPEN CHANNEL FLOW Numerical Methods and Computer Applications Roland Jeppson TECHNISCHE INFORMATlONSBiBUOTHEK UNIVERSITATSB'BUOTHEK HANNOVER Si. i. CRC Press Taylor &.Francis Group Boca Raton London New

More information

Uniform Flow in Open Channels

Uniform Flow in Open Channels 1 UNIT 2 Uniform Flow in Open Channels Lecture-01 Introduction & Definition Open-channel flow, a branch of hydraulics, is a type of liquid flow within a conduit with a free surface, known as a channel.

More information

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water Department of Hydro Sciences, Institute for Urban Water Management Urban Water 1 Global water aspects Introduction to urban water management 3 Basics for systems description 4 Water transport 5 Matter

More information

Chapter 4: Non uniform flow in open channels

Chapter 4: Non uniform flow in open channels Chapter 4: Non uniform flow in open channels Learning outcomes By the end of this lesson, students should be able to: Relate the concept of specific energy and momentum equations in the effect of change

More information

Dr. Muhammad Ali Shamim ; Internal 652

Dr. Muhammad Ali Shamim ; Internal 652 Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051-904765; Internal 65 Channel Tranistions A channel transition is defined as change in channel cross section e.g. change in channel width and/or channel

More information

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY

STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience

More information

L. Pratt and J. Whitehead 7/14/ Parabolic Bottom

L. Pratt and J. Whitehead 7/14/ Parabolic Bottom 2.8 Parabolic Bottom Up to this point we have dealt strictly with channels with rectangular crosssections. The only allowable variation of bottom elevation has been in the longitudinal (y) direction. Although

More information

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

The University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely. Aide Mémoire Suject: Useful formulas for flow in rivers and channels The University cannot take responsiility for any misprints or errors in the presented formulas. Please use them carefully and wisely.

More information

What? River response to base level rise. The morphodynamic system. Why? Channel-forming discharge. Flow. u = What s in a name. Flow Sediment transport

What? River response to base level rise. The morphodynamic system. Why? Channel-forming discharge. Flow. u = What s in a name. Flow Sediment transport River response to base level rise and other boundary conditions Dr. Maarten Kleinhans Summer course climate change and fluvial systems Course materials of Prof. Gary Parker Flow Sediment transport What?

More information

12d Model. Civil and Surveying Software. Version 7. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer

12d Model. Civil and Surveying Software. Version 7. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer 1d Model Civil and Surveying Sotware Version 7 Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 9 December 005 Revised: 10 January 006 8 February 007

More information

Discharge. Discharge (Streamflow) is: Q = Velocity (L T -1 ) x Area (L 2 ) Units: L 3 T -1 e.g., m 3 s -1. Velocity. Area

Discharge. Discharge (Streamflow) is: Q = Velocity (L T -1 ) x Area (L 2 ) Units: L 3 T -1 e.g., m 3 s -1. Velocity. Area Discharge Discharge (Streamflow) is: Q = Velocity (L T -1 ) x Area (L 2 ) Units: L 3 T -1 e.g., m 3 s -1 Velocity Area Where is the average velocity?? 3 Source: Brooks et al., Hydrology and the Management

More information

Open Channel Flow - General. Hydromechanics VVR090

Open Channel Flow - General. Hydromechanics VVR090 Open Channel Flow - General Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Jan 2014, Feb 2015 SYNOPSIS 1. Introduction and Applications 2. The History of Open Channel Flow 3. Flow Classification

More information

Uniform Channel Flow Basic Concepts Hydromechanics VVR090

Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform Channel Flow Basic Concepts Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Feb 2014 SYNOPSIS 1. Definition of Uniform Flow 2. Momentum Equation for Uniform Flow 3. Resistance equations

More information

H3: Transition to Steady State Tidal Circulation

H3: Transition to Steady State Tidal Circulation May 7, Chapter 6 H3: Transition to Steady State Tidal Circulation Contents 6. Problem Specification............................. 6-6. Background................................... 6-6.3 Contra Costa Water

More information

YELLOWSTONE RIVER FLOOD STUDY REPORT TEXT

YELLOWSTONE RIVER FLOOD STUDY REPORT TEXT YELLOWSTONE RIVER FLOOD STUDY REPORT TEXT TECHNICAL REPORT Prepared for: City of Livingston 411 East Callender Livingston, MT 59047 Prepared by: Clear Creek Hydrology, Inc. 1627 West Main Street, #294

More information

New Website: M P E il Add. Mr. Peterson s Address:

New Website:   M P E il Add. Mr. Peterson s  Address: Brad Peterson, P.E. New Website: http://njut009fall.weebly.com M P E il Add Mr. Peterson s Email Address: bradpeterson@engineer.com If 6 m 3 of oil weighs 47 kn calculate its If 6 m 3 of oil weighs 47

More information

Riverine Modeling Proof of Concept

Riverine Modeling Proof of Concept Technical Team Meeting Riverine Modeling Proof of Concept Version 2 HEC-RAS Open-water Flow Routing Model April 15-17, 2014 Prepared by R2 Resource Consultants, Brailey Hydrologic, Geovera, Tetra Tech,

More information

Minimizing & Maximizing Functions

Minimizing & Maximizing Functions Minimizing & Maximizing Functions Nonlinear functions may have zero to many minima and maxima. Example: find the minimum of y = 3x 2 2x + 1 Minima & maxima occur in functions where the slope changes sign

More information

Water Flow in Open Channels

Water Flow in Open Channels The Islamic Universit of Gaza Facult of Engineering Civil Engineering Department Hdraulics - ECIV 33 Chapter 6 Water Flow in Open Channels Introduction An open channel is a duct in which the liquid flows

More information

Review of pipe flow: Friction & Minor Losses

Review of pipe flow: Friction & Minor Losses ENVE 204 Lecture -1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers

More information

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water. Design Manual Chapter - Stormwater D - Storm Sewer Design D- Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm

More information

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 42 Flows with a Free Surface Part II Good morning. I welcome you to this session

More information

Long-Throated Flumes. 6. Hydraulic Theory and Computations for. 6.1 Continuity Equation

Long-Throated Flumes. 6. Hydraulic Theory and Computations for. 6.1 Continuity Equation 6. Hydraulic Theory and Computations for Long-Throated Flumes The purpose of this chapter is to explain the fimdamental principles involved in analytically modeling the flow through weirs and flumes, so

More information

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flow Lecture - 1 Introduction to Uniform Flow Good morning everyone,

More information

The Long Profile Characteristics. Why does a river meander in its middle and lower course?

The Long Profile Characteristics. Why does a river meander in its middle and lower course? QU: How are Meanders formed? AIM: To describe and explain meander formation and identify the difference between GCSE and A/S knowledge and expectations. ST: Get the key rivers terms from the pictures.

More information

THE SECANT METHOD. q(x) = a 0 + a 1 x. with

THE SECANT METHOD. q(x) = a 0 + a 1 x. with THE SECANT METHOD Newton s method was based on using the line tangent to the curve of y = f (x), with the point of tangency (x 0, f (x 0 )). When x 0 α, the graph of the tangent line is approximately the

More information

HEC-RAS v5.0: 2-D applications

HEC-RAS v5.0: 2-D applications HEC-RAS v5.0: 2-D applications Tom Molls, Will Sicke, Holly Canada, Mike Konieczki, Ric McCallan David Ford Consulting Engineers, Inc. Sacramento, CA September 10, 2015: Palm Springs FMA conference What

More information

United States Army Corps of Engineers Engineering Manual EM

United States Army Corps of Engineers Engineering Manual EM United States Army Corps of Engineers Engineering Manual EM 1110-2-1601 1 Chapter 2 Open Channel Hydraulic Theory 2 Open Channel Hydraulic Theory Physical Hydraulic Elements Hydraulic Design Aspects Flow

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

Advanced Hydraulics Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 3 Varied Flows Lecture - 7 Gradually Varied Flow Computations Part 1 (Refer Slide

More information

Flow in Open Channel Flow Conditions

Flow in Open Channel Flow Conditions Civil Engineering Hydraulics Flow The graduate with a Science degree asks, "Why does it work?" The graduate with an Engineering degree asks, "How does it work?" The graduate with an Accounting degree asks,

More information

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey

More information

Chapter (3) Water Flow in Pipes

Chapter (3) Water Flow in Pipes Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study

More information

Open Channel Flow - General. Open Channel Flow

Open Channel Flow - General. Open Channel Flow Open Channel Flow - General Hydromechanics VVR090 Open Channel Flow Open channel: a conduit for flow which has a free surface Free surface: interface between two fluids of different density Characteristics

More information

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10

FLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10 Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity

More information

CHAPTER FOUR Flow Measurement and Control

CHAPTER FOUR Flow Measurement and Control CHAPTER FOUR Flow Measurement and Control 4.1 INTRODUCTION Proper treatment plant operation requires knowledge of the rate at which flow enters the plant and controlling the flow between unit processes.

More information

Advanced Hydraulics Prof. Dr. Suresh. A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh. A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh. A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flows Lecture - 4 Uniform Flow in Compound Sections Concept of

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

Lecture Notes - Sediment Transport The flow problem Overview

Lecture Notes - Sediment Transport The flow problem Overview Lecture Notes - Sediment Transport The flow problem Overview In the last lecture, we emerged with a transport model in which the rate of transport q s depends on the shear stress τ. Recall that, for the

More information

Lecture 10: River Channels

Lecture 10: River Channels GEOG415 Lecture 10: River Channels 10-1 Importance of channel characteristics Prediction of flow was the sole purpose of hydrology, and still is a very important aspect of hydrology. - Water balance gives

More information

5/4/2017 Fountain Creek. Gage Analysis. Homework 6. Clifton, Cundiff, Pour, Queen, and Zey CIVE 717

5/4/2017 Fountain Creek. Gage Analysis. Homework 6. Clifton, Cundiff, Pour, Queen, and Zey CIVE 717 5/4/2017 Fountain Creek Gage Analysis Homework 6 Clifton, Cundiff, Pour, Queen, and Zey CIVE 717 Introduction: The CIVE 717 class members, Nate Clifton, Susan Cundiff, Ali Reza Nowrooz Pour, Robbie Queen

More information

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure:

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure: Chapter Seven Horizontal, steady-state flow of an ideal gas This case is presented for compressible gases, and their properties, especially density, vary appreciably with pressure. The conditions of the

More information

UNIT IV. Flow through Orifice and Mouthpieces and Flow through Notchs and Weirs

UNIT IV. Flow through Orifice and Mouthpieces and Flow through Notchs and Weirs SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM(15A01305) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech -

More information

Lecture 12: Transcritical flow over an obstacle

Lecture 12: Transcritical flow over an obstacle Lecture 12: Transcritical flow over an obstacle Lecturer: Roger Grimshaw. Write-up: Erinna Chen June 22, 2009 1 Introduction The flow of a fluid over an obstacle is a classical and fundamental problem

More information

An overview of the Hydraulics of Water Distribution Networks

An overview of the Hydraulics of Water Distribution Networks An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline

More information