Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Size: px
Start display at page:

Download "Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at"

Transcription

1 Biometrika Trust Some Remarks on Overdispersion Author(s): D. R. Cox Source: Biometrika, Vol. 70, No. 1 (Apr., 1983), pp Published by: Oxford University Press on behalf of Biometrika Trust Stable URL: Accessed: :07 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust, Oxford University Press are collaborating with JSTOR to digitize, preserve and extend access to Biometrika

2 Biometrika (1983), 70, 1, pp Printed in Great Britain Some remarks on overdispersion BY D. R. COX Department of Mathematics, Imperial College, London SUMMARY It is shown that maximum likelihood estimation of a simple model retains high efficiency in the presence of modest amounts of overdispersion. The main requirement is that the target parameter should be the moment parameter of an exponential family distribution, or more generally of a parameter for which the order n-' bias of the maximum likelihood estimate is zero. Extensions for models with explanatory variables are outlined. Some key words: Asymptotic theory; Dispersion test; Exponential distribution; Maximum likelihood; Negative binomial distribution; Pareto distribution; Poisson distribution; Quasilikelihood. 1. INTRODUCTION Analysis of data via a single-parameter family of distributions implies in particular that the variance is determined by the mean. Familiar examples are the Poisson, binomial and exponential distributions. A very common practical complication is the presence of overdispersion, or more rarely underdispersion, leading to a failure of the variance-mean relation. Overdispersion in general has two effects. One is that summary statistics have a larger variance than anticipated under the simple model. This has long been recognized and is commonly allowed for by an empirical inflation factor, either assumed from prior experience or estimated. The second effect is a possible loss of efficiency in using statistics appropriate for the single-parameter family. There are two lines of approach. One is detailed representation of the overdispersion by a specific model. The other is to examine the effect on the conventional analysis of changes from the simple model. Two fairly familiar examples are studied in?2 as a preliminary to a more general analysis. 2. Two SIMPLE EXAMPLES Suppose first that Y1,..., Y,, are independently and identically distributed in a Poisson distribution of mean 0, optimally estimated by Y = X Yi/n. Overdispersion is most simply represented by supposing that Yj has a Poisson distribution of mean Ej, where E 1, * E), are independently and identically distributed with a gamma distribution of mean, and index y, E(E@) = j,u var(es) = ((1) Then Y1,..., Y,, have a negative binomial distribution and the following conclusions hold. (i) The sample mean Y remains efficient as an estimate of,, being the maximum likelihood estimate whether y is known or unknown. (ii) If the Poisson distribution is parameterized in terms of some nonlinear function + of 0, for example = logo or e-@ or 1/0, then the Poisson-based estimate, for example

3 270 D. R. Cox log Y or e-, is not a consistent estimate of E(@D) in the corresponding overdispersed model. (iii) We have that n var (Y) =?u +2/(2) and the inflation is by a factor independent of, if and only if y oc,u. This means that in the compounding gamma distribution the variance is proportional to the mean, mimicking the Poisson distribution. To some extent the properties (i)-(iii) are special both to the Poisson distribution and to the special choice of compounding distribution. We therefore consider a second example. Suppose that Y1,..., Y,, are independently and identically exponentially distributed with mean 0 and rate p = 1/0. Again Y estimates 0. The simplest representation is to suppose the rate parameter to be a random variable P having a gamma distribution of mean A and index y: E(Pr) = (I/y)rF(?+r)/F(y). Write Iu = E(P - ) = A{(-1)}. Then E(Y) =, n var (Y) = M2 y/(y-2). (3) The individual Yj have density y{(y- l)ii}y (y + 7/A)y + -{y+ (Y-1) y}+ 1 The analogues of (i)-(iii) for the Poisson distribution are as follows. (i)' The sample mean Y is no longer fully efficient for estimating P. For known y, th maximum likelihood estimate of M has, by the usual calculations, asymptotically nvar(/i) =,u2 (y + 2)/y (4) so that the asymptotic efficiency of Y relative The parameters M and y are slightly nono unknown (4) and the asymptotic relative efficiency are increased by 0(1/y6). Recall that 1/y2 is the fourth power of the coefficient of variation of E and that if v is the variance inflation factor, so that var (YI) = v,u, then v = y/(y -2); thus the asymptotic relative efficiency is (2v -1)/v2. Even when v = 2, y = 4, representing substantial overdispersion, the asymptotic relative efficiency is 3/4. High asymptotic relative efficiency is retained for modest overdispersion. (ii)' If the exponential distribution is parameterized in terms of some nonlinear function 4 of 0, for example 4 = 1/0 or 0 = log 0, then the exponential-based for example 1/ Y or log Y, is not a consistent estimate of E((D) in the corresponding overdispersed model. (iii)' As already implicitly noted, for constant y, the variance-mean relation for the compounding distribution mimics that for the exponential distribution. For constant y, n var ( Y) = v,u2, where v is constant. 3. MORE GENERAL DISCUSSION To treat the problem in a more general way, asymptotic arguments seem necessary. The limiting operations involved are, of course, purely technical devices for deriving

4 Some remarks on overdispersion 271 approximations and care in formulation is needed. Here we consider a model with overdispersion on the borderline of detectibility, i.e. such that there is a reasonable but not overwhelming chance of detecting the overdispersion from the data. Suppose then that the initial model is that Y1,..., Y,, are independently distributed with Yj having density fj(y; 6), where 0 is a scalar parameter. Suppose next that?1,..., O the values of 0 for the n observations, are independently distributed with mean 1u and variance /<In. Note that this increases var(yy) by 0(1/In) and that this is on the borderline of detectibility in the above sense. Under suitable regularity conditions, the density of Yj in the overdispersed mo Ee {fj(y; E)} =fj(y; p)?+ I j(y P)+ 0 21Vn n,~ {jy 2) I+ n hj(y; 11) +?(n)} (5) where, with gj(y;,u) = log fj(y;,u), hj(y; P) = {agj(y; g)/agi}2+02gj(y;,i)/0a12. (6) Thus if It and 1 denote log likelihoods from respectively overdispersed and original models, then for a random vector Y T n lt(it T; Y) = 1(g; Y)+ E hj(yj; +Op(1) where = 49/; Y) + 2TV nk( p) + Op( 1), (7) nk(,u) = E{X hi(yi; Y); Ho} (8) In (8) the expectation is taken under the original model, T = 0, and at the true parameter-value g,u say. In (7), the remainder term is Op(l) for any fixed T a within 0(1/In) of its true value. Of course higher order terms in (7) could be evaluated. Now a constant difference between It and 1 would be of no consequence. Thus we consider Olt/a/,, = 0l1/a/'1 +-21Tnk'(y) + -2d.Vnk(gl) + OP( 1), ai~!a,1= /I1~n~I~L,2 dyu?~() (9) where k(u) = 2ilO+i?001 = -i300-t110 in the fairly standard notation r gj( yj; p) s a3 gj(y nirst = L E[{ a,i( }j; ) 2 Y; {1)}tJ so that irst is an average generalized information. If T is fixed or if T is a parameter independent of u, dt/d, = 0. In fact because k(,io) = 0 the term in dtidu is in any case negligible to the order considered below. To analyse the deviations of the maximum likelihood estimates 't and j from the true value of,u we expand in Taylor series. It follows from (9) that 't and A differ by an amount proportional to T and of order 1/I/n, unless k'(u) = 0. This difference is of the same order as the standard error of the maximum likelihood estimate and hence cannot be ignored. The requirement that k'(,u) = 0 is equivalent to choice of parameterization

5 272 D. R. Cox making the bias of the maximum likelihood estimate of, under the simple model zero to order n- ; see, for instance, Cox & Hinkley (1974, p. 310). When this condition hold and jt differ by Op(l/n), whether T is known or estimated. That is, simple maxi likelihood estimation retains full asymptotic efficiency when there is overdispersion on the borderline of detectibility, provided that the target parameter is correctly chosen. In particular, in full exponential family problems, the target parameter is the expectation over the compounding distribution of the moment parameter of the exponential family. These results generalize (i) and (ii) of? 2. The inflation in var (,) induced by overdispersion can in principle be examined by more detailed expansions. In the full exponential family, with 0 the moment parameter and Y the canonical statistic, 0 = Y and in the simple model n var ( Y) = v(o), say. In the overdispersed model nvar (Y) = E{v(e) + var (e)} v(,u) + var (e) {1?+ v" ()}. There is thus inflation by an approximately constant factor if var(e) oc 1v?(u) (10) The family of densities derived from (5) 4. TEST FOR OVERDISPERSION or in many ways preferably f (y; p) { 1 + sh(y; M1)j f (y; p) exp Ish( Y; M)l)}a(s, 1), (1 where a(e, /u) is a normalizing constant, represents for positive e overdispersion, and for negative e underdispersion, relative to f (y; lu). This suggests as test statistic, for e = 0 from a random sample Yl,..., Y,, Xh(Yj, t), where,0 is the maximum likelihood estimate of, when e = 0. When e = 0 the statistic has asymptotically zero mean and variance n var [{ag ( Y;II} + a2q(y* i) aq(y;!) =]J n{i40+?2i210 + i020-(i300i + i10)2/i200}, (12) where the i's can be evaluated at go. This is a rather general version of standard dispersion tests. When the parameter is the moment parameter or more generally defined as in?3, i300+i110 = 0 and the final term in (12) vanishes. 5. GENERALIZATIONS The analysis sketched in?? 2-4 can be generalized in various ways, the most important being as follows: (a) the parameter 0 may be a vector; (b) each Yj may have its own parameter-value Oj, these being related by a reg model Q\= (xj;,b), where xj is a vector of explanatory variables for the jth

6 Some remarks on overdispersion 273 individual,,b is a vector of regression coefficients, usually of dimension small compared with n and tj is a function of known form; (c) the individuals may be grouped in 'clusters' in such a way that all individuals in the same 'cluster' have a common random term. This may be combined with the kind of dependence outlined in (b). The generalization (a) is immediate. As a simple example suppose that the initial model is that Y1,..., Y,, are independently normally distributed with mean A and standard deviation K. The moment parameters of the normal distribution are the expected values of the canonical statistics (Yj, YV), that is are A and )2 + that in the overdispersed model in which (A, K) becomes a random variable (A, of standard normal estimates leads to the estimation of E(A), E(A2 + K2) = {E(A)}2 + var (A) + E(K2). Indeed it is clear that the standard estimates of mean and variance tend to E(A) and var (A) + E(K2). If in the compounding distribution, A and K are independent, it is easy to show that the cumulant generating functions are related by fy(t) = VA(t) + K2(2), where, for example, /y(t) = log E(etY). Thus observation of Y allows the estimati odd order cumulants of A and certain combinations of the even order cumulants of A and of K2, of which the sum of variances is the simplest case. The discussion of? 3 can be adapted to apply to the regression model (b). For this we use (7) with, for Yj,, replaced by ii(xj; /3) and u by u{i(xj;,b)}. We then examine, as in the relation between the gradient vectors alt/af3 and ai/3,b. The resulting maximum likelihood estimates differ by Op(1/n) if E{ahj( Yj; Mu)/Oy} = 0; no special requirement is involved for the dependence of X on il. The implication is that the use of maximum likelihood estimation as for the standard model retains high asyruptotic efficiency in the presence of modest overdispersion provided that the regression model being fitted is regarded as applying to expected values of parameters with zero n-1 bias in simple estimation. Thus, for example, fitting by maximum likelihood of a log linear model for Poisson-distributed data retains high efficiency under borderline overdispersion, provided that the log linear model determines the expected value of the observed count. That is, if the log linear model specifies a Poisson distribution for Yj with log E( Yj) = xt/, the overdispersed model should have E( Yj) = exp (x4t), wi var (Yj) > E( Yj). An overdispersed model in which Yj is considered to have a Poiss distribution with log E(Yj) = xjt + j, where dj in turn is a random variable of expectation zero, would, however, lead to the inconsistencies exemplified in (ii) and (ii)' of? 2. This discussion shows that the method of quasilikelihood (Wedderburn, 1974) is likely to have high efficiency for modest amounts of overdispersion. Generalization (c), arising from 'clustering', will not be discussed in detail. If any explanatory variables are constant within clusters, the broad conclusions above will apply. If, however, there is a need to treat differently dependencies within and dependencies between clusters, a more elaborate discussion is necessary.

7 274 D. R. COX REFERENCES Cox, D. R. & HINKLEY, D. V. (1974). Theoretical Statistics. London: Chapman and Hall. WEDDERBURN, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss- Newton method. Biometrika 61, [Received May 1982]

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust Robust Regression via Discriminant Analysis Author(s): A. C. Atkinson and D. R. Cox Source: Biometrika, Vol. 64, No. 1 (Apr., 1977), pp. 15-19 Published by: Oxford University Press on

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at A Note on the Efficiency of Least-Squares Estimates Author(s): D. R. Cox and D. V. Hinkley Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 30, No. 2 (1968), pp. 284-289

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Regression Analysis when there is Prior Information about Supplementary Variables Author(s): D. R. Cox Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 22, No. 1 (1960),

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at American Society for Quality A Note on the Graphical Analysis of Multidimensional Contingency Tables Author(s): D. R. Cox and Elizabeth Lauh Source: Technometrics, Vol. 9, No. 3 (Aug., 1967), pp. 481-488

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust Some Simple Approximate Tests for Poisson Variates Author(s): D. R. Cox Source: Biometrika, Vol. 40, No. 3/4 (Dec., 1953), pp. 354-360 Published by: Oxford University Press on behalf of

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Some Applications of Exponential Ordered Scores Author(s): D. R. Cox Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 26, No. 1 (1964), pp. 103-110 Published by: Wiley

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at On the Estimation of the Intensity Function of a Stationary Point Process Author(s): D. R. Cox Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 27, No. 2 (1965), pp. 332-337

More information

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika. Biometrika Trust Discrete Sequential Boundaries for Clinical Trials Author(s): K. K. Gordon Lan and David L. DeMets Reviewed work(s): Source: Biometrika, Vol. 70, No. 3 (Dec., 1983), pp. 659-663 Published

More information

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika. Biometrika Trust An Improved Bonferroni Procedure for Multiple Tests of Significance Author(s): R. J. Simes Source: Biometrika, Vol. 73, No. 3 (Dec., 1986), pp. 751-754 Published by: Biometrika Trust Stable

More information

LOGISTIC REGRESSION Joseph M. Hilbe

LOGISTIC REGRESSION Joseph M. Hilbe LOGISTIC REGRESSION Joseph M. Hilbe Arizona State University Logistic regression is the most common method used to model binary response data. When the response is binary, it typically takes the form of

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. 6625 Author(s): Nicholas Strauss, Jeffrey Shallit, Don Zagier Source: The American Mathematical Monthly, Vol. 99, No. 1 (Jan., 1992), pp. 66-69 Published by: Mathematical Association of America Stable

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The Variance of the Product of Random Variables Author(s): Leo A. Goodman Source: Journal of the American Statistical Association, Vol. 57, No. 297 (Mar., 1962), pp. 54-60 Published by: American Statistical

More information

Mind Association. Oxford University Press and Mind Association are collaborating with JSTOR to digitize, preserve and extend access to Mind.

Mind Association. Oxford University Press and Mind Association are collaborating with JSTOR to digitize, preserve and extend access to Mind. Mind Association Response to Colyvan Author(s): Joseph Melia Source: Mind, New Series, Vol. 111, No. 441 (Jan., 2002), pp. 75-79 Published by: Oxford University Press on behalf of the Mind Association

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. On Runs of Residues Author(s): D. H. Lehmer and Emma Lehmer Source: Proceedings of the American Mathematical Society, Vol. 13, No. 1 (Feb., 1962), pp. 102-106 Published by: American Mathematical Society

More information

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika. Biometrika Trust A Stagewise Rejective Multiple Test Procedure Based on a Modified Bonferroni Test Author(s): G. Hommel Source: Biometrika, Vol. 75, No. 2 (Jun., 1988), pp. 383-386 Published by: Biometrika

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at The Analysis of Multivariate Binary Data Author(s): D. R. Cox Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 21, No. 2 (1972), pp. 113-120 Published by: Wiley for

More information

Poisson regression: Further topics

Poisson regression: Further topics Poisson regression: Further topics April 21 Overdispersion One of the defining characteristics of Poisson regression is its lack of a scale parameter: E(Y ) = Var(Y ), and no parameter is available to

More information

International Biometric Society is collaborating with JSTOR to digitize, preserve and extend access to Biometrics.

International Biometric Society is collaborating with JSTOR to digitize, preserve and extend access to Biometrics. 400: A Method for Combining Non-Independent, One-Sided Tests of Significance Author(s): Morton B. Brown Reviewed work(s): Source: Biometrics, Vol. 31, No. 4 (Dec., 1975), pp. 987-992 Published by: International

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Fermat's Little Theorem: Proofs That Fermat Might Have Used Author(s): Bob Burn Source: The Mathematical Gazette, Vol. 86, No. 507 (Nov., 2002), pp. 415-422 Published by: The Mathematical Association Stable

More information

Semiparametric Generalized Linear Models

Semiparametric Generalized Linear Models Semiparametric Generalized Linear Models North American Stata Users Group Meeting Chicago, Illinois Paul Rathouz Department of Health Studies University of Chicago prathouz@uchicago.edu Liping Gao MS Student

More information

APPROXIMATE BAYESIAN SHRINKAGE ESTIMATION

APPROXIMATE BAYESIAN SHRINKAGE ESTIMATION Ann. Inst. Statist. Math. Vol. 46, No. 3, 497-507 (1994) APPROXIMATE BAYESIAN SHRINKAGE ESTIMATION WANG-SHU LU Department of Statistics, College of Arts and Science, University of Missouri-Columbia, 222

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. On the Bound for a Pair of Consecutive Quartic Residues of a Prime Author(s): R. G. Bierstedt and W. H. Mills Source: Proceedings of the American Mathematical Society, Vol. 14, No. 4 (Aug., 1963), pp.

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part II Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Measuring the Speed and Altitude of an Aircraft Using Similar Triangles Author(s): Hassan Sedaghat Source: SIAM Review, Vol. 33, No. 4 (Dec., 1991), pp. 650-654 Published by: Society for Industrial and

More information

FAILURE-TIME WITH DELAYED ONSET

FAILURE-TIME WITH DELAYED ONSET REVSTAT Statistical Journal Volume 13 Number 3 November 2015 227 231 FAILURE-TIME WITH DELAYED ONSET Authors: Man Yu Wong Department of Mathematics Hong Kong University of Science and Technology Hong Kong

More information

Approximating the Conway-Maxwell-Poisson normalizing constant

Approximating the Conway-Maxwell-Poisson normalizing constant Filomat 30:4 016, 953 960 DOI 10.98/FIL1604953S Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Approximating the Conway-Maxwell-Poisson

More information

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision Author(s): Kenneth O. May Source: Econometrica, Vol. 20, No. 4 (Oct., 1952), pp. 680-684 Published by: The Econometric

More information

E. DROR, W. G. DWYER AND D. M. KAN

E. DROR, W. G. DWYER AND D. M. KAN Self Homotopy Equivalences of Postnikov Conjugates Author(s): E. Dror, W. G. Dwyer, D. M. Kan Reviewed work(s): Source: Proceedings of the American Mathematical Society, Vol. 74, No. 1 (Apr., 1979), pp.

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Queues with Time-Dependent Arrival Rates: II. The Maximum Queue and the Return to Equilibrium Author(s): G. F. Newell Source: Journal of Applied Probability, Vol. 5, No. 3 (Dec., 1968), pp. 579-590 Published

More information

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1 Count models A classical, theoretical argument for the Poisson distribution is the approximation Binom(n, p) Pois(λ) for large n and small p and λ = np. This can be extended considerably to n approx Z

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust A note on the sensitivity to assumptions of a generalized linear mixed model Author(s): D. R. COX and M. Y. WONG Source: Biometrika, Vol. 97, No. 1 (MARCH 2010), pp. 209-214 Published

More information

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science. On the Translocation of Masses Author(s): L. Kantorovitch Source: Management Science, Vol. 5, No. 1 (Oct., 1958), pp. 1-4 Published by: INFORMS Stable URL: http://www.jstor.org/stable/2626967. Accessed:

More information

Poisson Regression. Ryan Godwin. ECON University of Manitoba

Poisson Regression. Ryan Godwin. ECON University of Manitoba Poisson Regression Ryan Godwin ECON 7010 - University of Manitoba Abstract. These lecture notes introduce Maximum Likelihood Estimation (MLE) of a Poisson regression model. 1 Motivating the Poisson Regression

More information

BOOTSTRAPPING WITH MODELS FOR COUNT DATA

BOOTSTRAPPING WITH MODELS FOR COUNT DATA Journal of Biopharmaceutical Statistics, 21: 1164 1176, 2011 Copyright Taylor & Francis Group, LLC ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543406.2011.607748 BOOTSTRAPPING WITH MODELS FOR

More information

Goodness-of-fit tests for the cure rate in a mixture cure model

Goodness-of-fit tests for the cure rate in a mixture cure model Biometrika (217), 13, 1, pp. 1 7 Printed in Great Britain Advance Access publication on 31 July 216 Goodness-of-fit tests for the cure rate in a mixture cure model BY U.U. MÜLLER Department of Statistics,

More information

Generalized Linear Models

Generalized Linear Models York SPIDA John Fox Notes Generalized Linear Models Copyright 2010 by John Fox Generalized Linear Models 1 1. Topics I The structure of generalized linear models I Poisson and other generalized linear

More information

A Few Special Distributions and Their Properties

A Few Special Distributions and Their Properties A Few Special Distributions and Their Properties Econ 690 Purdue University Justin L. Tobias (Purdue) Distributional Catalog 1 / 20 Special Distributions and Their Associated Properties 1 Uniform Distribution

More information

Model Selection for Semiparametric Bayesian Models with Application to Overdispersion

Model Selection for Semiparametric Bayesian Models with Application to Overdispersion Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS020) p.3863 Model Selection for Semiparametric Bayesian Models with Application to Overdispersion Jinfang Wang and

More information

The Review of Economic Studies, Ltd.

The Review of Economic Studies, Ltd. The Review of Economic Studies, Ltd. Oxford University Press http://www.jstor.org/stable/2297086. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at.

More information

Generalized Linear. Mixed Models. Methods and Applications. Modern Concepts, Walter W. Stroup. Texts in Statistical Science.

Generalized Linear. Mixed Models. Methods and Applications. Modern Concepts, Walter W. Stroup. Texts in Statistical Science. Texts in Statistical Science Generalized Linear Mixed Models Modern Concepts, Methods and Applications Walter W. Stroup CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust Nonlinear Component of Variance Models Author(s): P. J. Solomon and D. R. Cox Source: Biometrika, Vol. 79, No. 1 (Mar., 1992), pp. 1-11 Published by: Oxford University Press on behalf

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2018 Examinations Subject CT3 Probability and Mathematical Statistics Core Technical Syllabus 1 June 2017 Aim The

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at A Look at Some Data on the Old Faithful Geyser Author(s): A. Azzalini and A. W. Bowman Source: Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 39, No. 3 (1990), pp. 357-365

More information

11. Bootstrap Methods

11. Bootstrap Methods 11. Bootstrap Methods c A. Colin Cameron & Pravin K. Trivedi 2006 These transparencies were prepared in 20043. They can be used as an adjunct to Chapter 11 of our subsequent book Microeconometrics: Methods

More information

On Equi-/Over-/Underdispersion. and Related Properties of Some. Classes of Probability Distributions. Vladimir Vinogradov

On Equi-/Over-/Underdispersion. and Related Properties of Some. Classes of Probability Distributions. Vladimir Vinogradov On Equi-/Over-/Underdispersion and Related Properties of Some Classes of Probability Distributions Vladimir Vinogradov (Ohio University, on leave at the Fields Institute, University of Toronto and York

More information

,..., θ(2),..., θ(n)

,..., θ(2),..., θ(n) Likelihoods for Multivariate Binary Data Log-Linear Model We have 2 n 1 distinct probabilities, but we wish to consider formulations that allow more parsimonious descriptions as a function of covariates.

More information

Augustin: Some Basic Results on the Extension of Quasi-Likelihood Based Measurement Error Correction to Multivariate and Flexible Structural Models

Augustin: Some Basic Results on the Extension of Quasi-Likelihood Based Measurement Error Correction to Multivariate and Flexible Structural Models Augustin: Some Basic Results on the Extension of Quasi-Likelihood Based Measurement Error Correction to Multivariate and Flexible Structural Models Sonderforschungsbereich 386, Paper 196 (2000) Online

More information

STAT5044: Regression and Anova

STAT5044: Regression and Anova STAT5044: Regression and Anova Inyoung Kim 1 / 18 Outline 1 Logistic regression for Binary data 2 Poisson regression for Count data 2 / 18 GLM Let Y denote a binary response variable. Each observation

More information

11. Generalized Linear Models: An Introduction

11. Generalized Linear Models: An Introduction Sociology 740 John Fox Lecture Notes 11. Generalized Linear Models: An Introduction Copyright 2014 by John Fox Generalized Linear Models: An Introduction 1 1. Introduction I A synthesis due to Nelder and

More information

Discrete Response Multilevel Models for Repeated Measures: An Application to Voting Intentions Data

Discrete Response Multilevel Models for Repeated Measures: An Application to Voting Intentions Data Quality & Quantity 34: 323 330, 2000. 2000 Kluwer Academic Publishers. Printed in the Netherlands. 323 Note Discrete Response Multilevel Models for Repeated Measures: An Application to Voting Intentions

More information

On the General Solution of Initial Value Problems of Ordinary Differential Equations Using the Method of Iterated Integrals. 1

On the General Solution of Initial Value Problems of Ordinary Differential Equations Using the Method of Iterated Integrals. 1 On the General Solution of Initial Value Problems of Ordinary Differential Equations Using the Method of Iterated Integrals. 1 Ahsan Amin ahsanamin2999@gmail.com This First version January 2017 First Preliminary

More information

Generalized Quasi-likelihood versus Hierarchical Likelihood Inferences in Generalized Linear Mixed Models for Count Data

Generalized Quasi-likelihood versus Hierarchical Likelihood Inferences in Generalized Linear Mixed Models for Count Data Sankhyā : The Indian Journal of Statistics 2009, Volume 71-B, Part 1, pp. 55-78 c 2009, Indian Statistical Institute Generalized Quasi-likelihood versus Hierarchical Likelihood Inferences in Generalized

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The Indices of Torsion-Free Subgroups of Fuchsian Groups Author(s): R. G. Burns and Donald Solitar Source: Proceedings of the American Mathematical Society, Vol. 89, No. 3 (Nov., 1983), pp. 414-418 Published

More information

4. Distributions of Functions of Random Variables

4. Distributions of Functions of Random Variables 4. Distributions of Functions of Random Variables Setup: Consider as given the joint distribution of X 1,..., X n (i.e. consider as given f X1,...,X n and F X1,...,X n ) Consider k functions g 1 : R n

More information

Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology.

Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology. Measures of the Amount of Ecologic Association Between Species Author(s): Lee R. Dice Reviewed work(s): Source: Ecology, Vol. 26, No. 3 (Jul., 1945), pp. 297-302 Published by: Ecological Society of America

More information

DISPLAYING THE POISSON REGRESSION ANALYSIS

DISPLAYING THE POISSON REGRESSION ANALYSIS Chapter 17 Poisson Regression Chapter Table of Contents DISPLAYING THE POISSON REGRESSION ANALYSIS...264 ModelInformation...269 SummaryofFit...269 AnalysisofDeviance...269 TypeIII(Wald)Tests...269 MODIFYING

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Selecting the Better Bernoulli Treatment Using a Matched Samples Design Author(s): Ajit C. Tamhane Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 42, No. 1 (1980), pp.

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust Analysis of Variability with Large Numbers of Small Samples Author(s): D. R. Cox and P. J. Solomon Source: Biometrika, Vol. 73, No. 3 (Dec., 1986), pp. 543-554 Published by: Oxford University

More information

arxiv: v2 [stat.me] 8 Jun 2016

arxiv: v2 [stat.me] 8 Jun 2016 Orthogonality of the Mean and Error Distribution in Generalized Linear Models 1 BY ALAN HUANG 2 and PAUL J. RATHOUZ 3 University of Technology Sydney and University of Wisconsin Madison 4th August, 2013

More information

Modeling Overdispersion

Modeling Overdispersion James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Introduction 2 Introduction In this lecture we discuss the problem of overdispersion in

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 2016 MODULE 1 : Probability distributions Time allowed: Three hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

Econometric Analysis of Cross Section and Panel Data

Econometric Analysis of Cross Section and Panel Data Econometric Analysis of Cross Section and Panel Data Jeffrey M. Wooldridge / The MIT Press Cambridge, Massachusetts London, England Contents Preface Acknowledgments xvii xxiii I INTRODUCTION AND BACKGROUND

More information

ATINER's Conference Paper Series STA

ATINER's Conference Paper Series STA ATINER CONFERENCE PAPER SERIES No: LNG2014-1176 Athens Institute for Education and Research ATINER ATINER's Conference Paper Series STA2014-1255 Parametric versus Semi-parametric Mixed Models for Panel

More information

SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

More information

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III)

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III) Title: Spatial Statistics for Point Processes and Lattice Data (Part III) Lattice Data Tonglin Zhang Outline Description Research Problems Global Clustering and Local Clusters Permutation Test Spatial

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Some Simple Properties of Sums of Randoms Variable Having Long-Range Dependence Author(s): A. C. Davison and D. R. Cox Source: Proceedings of the Royal Society of London. Series A, Mathematical and Physical

More information

Longitudinal data analysis using generalized linear models

Longitudinal data analysis using generalized linear models Biomttrika (1986). 73. 1. pp. 13-22 13 I'rinlfH in flreal Britain Longitudinal data analysis using generalized linear models BY KUNG-YEE LIANG AND SCOTT L. ZEGER Department of Biostatistics, Johns Hopkins

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at The Interpretation of Interaction in Contingency Tables Author(s): E. H. Simpson Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 13, No. 2 (1951), pp. 238-241 Published

More information

Information in a Two-Stage Adaptive Optimal Design

Information in a Two-Stage Adaptive Optimal Design Information in a Two-Stage Adaptive Optimal Design Department of Statistics, University of Missouri Designed Experiments: Recent Advances in Methods and Applications DEMA 2011 Isaac Newton Institute for

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

1 Uniform Distribution. 2 Gamma Distribution. 3 Inverse Gamma Distribution. 4 Multivariate Normal Distribution. 5 Multivariate Student-t Distribution

1 Uniform Distribution. 2 Gamma Distribution. 3 Inverse Gamma Distribution. 4 Multivariate Normal Distribution. 5 Multivariate Student-t Distribution A Few Special Distributions Their Properties Econ 675 Iowa State University November 1 006 Justin L Tobias (ISU Distributional Catalog November 1 006 1 / 0 Special Distributions Their Associated Properties

More information

MODEL SELECTION BASED ON QUASI-LIKELIHOOD WITH APPLICATION TO OVERDISPERSED DATA

MODEL SELECTION BASED ON QUASI-LIKELIHOOD WITH APPLICATION TO OVERDISPERSED DATA J. Jpn. Soc. Comp. Statist., 26(2013), 53 69 DOI:10.5183/jjscs.1212002 204 MODEL SELECTION BASED ON QUASI-LIKELIHOOD WITH APPLICATION TO OVERDISPERSED DATA Yiping Tang ABSTRACT Overdispersion is a common

More information

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1 Parametric Modelling of Over-dispersed Count Data Part III / MMath (Applied Statistics) 1 Introduction Poisson regression is the de facto approach for handling count data What happens then when Poisson

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

11 Survival Analysis and Empirical Likelihood

11 Survival Analysis and Empirical Likelihood 11 Survival Analysis and Empirical Likelihood The first paper of empirical likelihood is actually about confidence intervals with the Kaplan-Meier estimator (Thomas and Grunkmeier 1979), i.e. deals with

More information

Generalized Linear Models: An Introduction

Generalized Linear Models: An Introduction Applied Statistics With R Generalized Linear Models: An Introduction John Fox WU Wien May/June 2006 2006 by John Fox Generalized Linear Models: An Introduction 1 A synthesis due to Nelder and Wedderburn,

More information

Mixture distributions in Exams MLC/3L and C/4

Mixture distributions in Exams MLC/3L and C/4 Making sense of... Mixture distributions in Exams MLC/3L and C/4 James W. Daniel Jim Daniel s Actuarial Seminars www.actuarialseminars.com February 1, 2012 c Copyright 2012 by James W. Daniel; reproduction

More information

Linear Model Under General Variance

Linear Model Under General Variance Linear Model Under General Variance We have a sample of T random variables y 1, y 2,, y T, satisfying the linear model Y = X β + e, where Y = (y 1,, y T )' is a (T 1) vector of random variables, X = (T

More information

Bias-corrected AIC for selecting variables in Poisson regression models

Bias-corrected AIC for selecting variables in Poisson regression models Bias-corrected AIC for selecting variables in Poisson regression models Ken-ichi Kamo (a), Hirokazu Yanagihara (b) and Kenichi Satoh (c) (a) Corresponding author: Department of Liberal Arts and Sciences,

More information

Pseudo-score confidence intervals for parameters in discrete statistical models

Pseudo-score confidence intervals for parameters in discrete statistical models Biometrika Advance Access published January 14, 2010 Biometrika (2009), pp. 1 8 C 2009 Biometrika Trust Printed in Great Britain doi: 10.1093/biomet/asp074 Pseudo-score confidence intervals for parameters

More information

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak.

P n. This is called the law of large numbers but it comes in two forms: Strong and Weak. Large Sample Theory Large Sample Theory is a name given to the search for approximations to the behaviour of statistical procedures which are derived by computing limits as the sample size, n, tends to

More information

The Periodogram and its Optical Analogy.

The Periodogram and its Optical Analogy. The Periodogram and Its Optical Analogy Author(s): Arthur Schuster Reviewed work(s): Source: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,

More information

Foundations of Probability and Statistics

Foundations of Probability and Statistics Foundations of Probability and Statistics William C. Rinaman Le Moyne College Syracuse, New York Saunders College Publishing Harcourt Brace College Publishers Fort Worth Philadelphia San Diego New York

More information

Adaptive modelling of conditional variance function

Adaptive modelling of conditional variance function Adaptive modelling of conditional variance function Juutilainen I. and Röning J. Intelligent Systems Group, University of Oulu, 90014 PO BOX 4500, Finland, ilmari.juutilainen@ee.oulu.fi juha.roning@ee.oulu.fi

More information

The Use of Survey Weights in Regression Modelling

The Use of Survey Weights in Regression Modelling The Use of Survey Weights in Regression Modelling Chris Skinner London School of Economics and Political Science (with Jae-Kwang Kim, Iowa State University) Colorado State University, June 2013 1 Weighting

More information

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Operations Research.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Operations Research. New Finite Pivoting Rules for the Simplex Method Author(s): Robert G. Bland Reviewed work(s): Source: Mathematics of Operations Research, Vol. 2, No. 2 (May, 1977), pp. 103-107 Published by: INFORMS Stable

More information

Likelihood Asymptotics for Changepoint Problem

Likelihood Asymptotics for Changepoint Problem Likelihood Asymptotics for Changepoint Problem K. O. Obisesan Department of Statistics University of Ibadan Nigeria email:ko.obisesan@ui.edu.ng ; obidairo@gmail.com ABSTRACT Changepoint problems are often

More information

Sample size calculations for logistic and Poisson regression models

Sample size calculations for logistic and Poisson regression models Biometrika (2), 88, 4, pp. 93 99 2 Biometrika Trust Printed in Great Britain Sample size calculations for logistic and Poisson regression models BY GWOWEN SHIEH Department of Management Science, National

More information

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA JAPANESE BEETLE DATA 6 MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA Gauge Plots TuscaroraLisa Central Madsen Fairways, 996 January 9, 7 Grubs Adult Activity Grub Counts 6 8 Organic Matter

More information

Generalized Linear Models Introduction

Generalized Linear Models Introduction Generalized Linear Models Introduction Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Linear Models For many problems, standard linear regression approaches don t work. Sometimes,

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at A Quincuncial Projection of the Sphere Author(s): C. S. Peirce Source: American Journal of Mathematics, Vol. 2, No. 4 (Dec., 1879), pp. 394-396 Published by: The Johns Hopkins University Press Stable URL:

More information

PQL Estimation Biases in Generalized Linear Mixed Models

PQL Estimation Biases in Generalized Linear Mixed Models PQL Estimation Biases in Generalized Linear Mixed Models Woncheol Jang Johan Lim March 18, 2006 Abstract The penalized quasi-likelihood (PQL) approach is the most common estimation procedure for the generalized

More information

Generalized Linear Models (GLZ)

Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) are an extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the

More information

DELTA METHOD and RESERVING

DELTA METHOD and RESERVING XXXVI th ASTIN COLLOQUIUM Zurich, 4 6 September 2005 DELTA METHOD and RESERVING C.PARTRAT, Lyon 1 university (ISFA) N.PEY, AXA Canada J.SCHILLING, GIE AXA Introduction Presentation of methods based on

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at The Falling Sliny Author(s): Robert J. Vanderbei Source: The American Mathematical Monthly, Vol. 14, No. 1 (January 017), pp. 4-6 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/10.4169/amer.math.monthly.14.1.4

More information

On Properties of QIC in Generalized. Estimating Equations. Shinpei Imori

On Properties of QIC in Generalized. Estimating Equations. Shinpei Imori On Properties of QIC in Generalized Estimating Equations Shinpei Imori Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan E-mail: imori.stat@gmail.com

More information

Week 2: Review of probability and statistics

Week 2: Review of probability and statistics Week 2: Review of probability and statistics Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ALL RIGHTS RESERVED

More information

Exponential Families

Exponential Families Exponential Families David M. Blei 1 Introduction We discuss the exponential family, a very flexible family of distributions. Most distributions that you have heard of are in the exponential family. Bernoulli,

More information