EDEXCEL ANALYTICAL METHODS FOR ENGINEERS H1 UNIT 2 - NQF LEVEL 4 OUTCOME 3 - CALCULUS TUTORIAL 2 MAXIMA AND MINIMA

Size: px
Start display at page:

Download "EDEXCEL ANALYTICAL METHODS FOR ENGINEERS H1 UNIT 2 - NQF LEVEL 4 OUTCOME 3 - CALCULUS TUTORIAL 2 MAXIMA AND MINIMA"

Transcription

1 EDEXCEL ANALYTICAL METHODS FOR ENGINEERS H1 UNIT - NQF LEVEL 4 OUTCOME 3 - CALCULUS TUTORIAL MAXIMA AND MINIMA The calculus: the concept of the limit and continuity; definition of the derivative; derivatives of standard functions; notion of the derivative and rates of change; differentiation of functions using the product, quotient and function of a function rules; integral calculus as the calculation of area and the inverse of differentiation; the indefinite integral and the constant of integration; standard integrals and the application of algebraic and trigonometric functions for their solution; the definite integral and area under curves Further differentiation: second order and higher derivatives; logarithmic differentiation; differentiation of inverse trigonometric functions; differential coefficients of inverse hyperbolic functions Further integration: integration by parts; integration by substitution; integration using partial fractions Applications of the calculus: eg maxima and minima; points of inflexion; rates of change of temperature; distance and time; electrical capacitance; rms values; electrical circuit analysis; ac theory; electromagnetic fields; velocity and acceleration problems; complex stress and strain; engineering structures; simple harmonic motion; centroids; volumes of solids of revolution; second moments of area; moments of inertia; rules of Pappus; radius of gyration; thermodynamic work and heat energy Engineering problems: eg stress and strain; torsion; motion; dynamic systems; oscillating systems; force systems; heat energy and thermodynamic systems; fluid flow; ac theory; electrical signals; information systems; transmission systems; electrical machines; electronics This tutorial devoted to maxima and minima should be studied if you have not covered this work previously. You should judge your progress by completing the self assessment exercises. On completion of this tutorial you should be able to do the following. Define a maximum and minimum point of a function. Define a turning point. Define a point of Inflection. Use differential calculus to determine these points. Use differential calculus to determine if a point is a maximum or minimum. Solve practical problems by applying the theory. D.J.Dunn 1

2 MAXIMA AND MINIMA 1. INTRODUCTION There are many engineering problems where a value peaks or dips. For example the power of an engine under constant throttle conditions peaks at a certain speed. Another example is a cylindrical canister to contain a certain volume. The amount of material needed can be minimised by choosing the correct diameter and length. This tutorial is about finding the critical values that make a function reach a maximum or minimum value and differential calculus is the way to do it.. MAXIMUM POINT Consider the function y = 10x x Plotting y against x from x = 0 to x = 5 gives the following graph. Figure 1 From the graph we can clearly see that there is a peak at point A and that this is the maximum value of y. The question is, what is the value of x and y at this maximum point? At point A the gradient is horizontal and hence zero so if we equate dy/ to zero we can find the point. Here is the method. y = 10x x dy/ = 10 4x Equate to zero 10 4x = 0 4x = 10 x = 10/4 =.5 and hence y = 10 x.5 x.5 = = 1.5 This result is confirmed by the graph. D.J.Dunn

3 WORKED EXAMPLE No.1 What is the largest area of a rectangular field that can be enclosed by a fence with a perimeter of 00 m? SOLUTION Let the rectangle be x m long and y m wide. The area enclosed is A = x y.. (1) The perimeter is x + y = 00 m. () We must eliminate one variable, say y, from equation (1) by substitution from equation. y = 00 - x y = 100 x... (3) Substitute (3) into (1) A = x (100 x) = 100x x Plotting A against x reveals that the maximum area is 500 m when x = 50 m. Prove this by differentiation. A = 100x x Figure da = 100 x For a max or min da/ = 0 hence 100 x = = x x = 100/ = 50 m A=100x x A = = = 500 mm D.J.Dunn 3

4 3. Minimum point Consider the function y = x - 4x Plotting y against x from x = 0 to x = 4 gives the following graph. Figure 3 From the graph we can clearly see that there is a minimum value of y at B. The question is, what is the value of x and y at this minimum point? At point B the gradient is horizontal and hence zero. If we equate dy/ to zero we can find the point. dy/ = x 4 Equate to zero x 4 = 0 4 = x x = 4/ = Substitute x = into the function to find the value of y. y = x - 4x = 8 = -4 This result is confirmed by the graph. D.J.Dunn 4

5 SELF ASSESSMENT EXERCISE No.1 1. Determine the maximum area and the lengths of the sides of a rectangle that can be enclosed by a rectangular perimeter of 8 m length.. The velocity of a missile is related to time by the equation v = t 4t. Calculate the time at which the velocity is a minimum and determine this minimum. 3. The current in a device is related to time by the equation i = 4t 8t. Find the time at which the current the minimum and determine this minimum. 4. Find the value of u that makes q a maximum when they are related by the equation q = 10u 5u +. Find this maximum value of q. D.J.Dunn 5

6 4. TURNING POINTS and POINTS of INFLECTION Consider the function y = x 3 5x +5x +. The graph for x = 0 to x = 4 is shown below. Figure 4 At point A the graph changes from up to down and at B it changes from down to up. They look like a maximum and minimum point but strictly speaking they are not as the value of y exceeds this value later on (and is smaller for negative values of y). Such points are called turning points and they may be found in the same way as a max or min point. Examining the graph we see the turning points occur at about x = 0.6 and.7 but we need to use calculus to find them precisely. The important thing to note is that at A and B the gradient of the graph is horizontal so the value of dy/ must be zero. This enables us to find the value of x and y at these points. Here is how to do it. 3 dy y = x 5x + 5x + = 3x 10x + 5 At the turning points dy/ is zero so equate to zero as follows. dy = 3x 10x = 3x 10x + 5 This is a quadratic equation and we must solve it to find the two values of x. ax + bx + c = 0 QUADRATIC EQUATION b ± b 4ac x = a In this case a = 3, b = -10 and c = 5 so solving we get b ± x = b a 4ac ( 10) ± x = ( 10) ± = ± = 6 40 D.J.Dunn 6

7 There are two possible solutions because all positive numbers have a positive and a negative square root. 40 = ± ± ± 6.34 x = = x = = = or x = = = Hence the turning points occur at x =.71 and The graph tells us which is A and B. Note that without the graph you could not be sure which is the maximum and which a minimum. We need further studies to find out how to do this. POINT OF INFLECTION A point of inflection is where the tangent at a point crosses the graph and it can be shown that at these points the second derivative is zero. For the equation y = x 3 5x +5x + plotted on figure 4, there is such a point at C. This may be determined from the second derivative. d y = 6x 10 = 0 x = 10/6 = An important point about this is that you can have a point of inflection where the gradient is zero and so they could be confused with a maximum or minimum point. SELF ASSESSMENT EXERCISE No. 1. Find the values of x where the maximum and minimum occur for the following function. Also find the point(s) of inflection. y = x 3-6x + 9x + 10 Sketch the graph and determine which is the maximum and which the minimum points. (Answers x = 1 gives a max and x = 3 is a min and x = is a point of inflection). Find the values of x where y is a maximum or minimum for the following function. Also find the point(s) of inflection. y = x 3-5x - 8x (Answers x = 4 gives a min and x = is a max x = is a point of inflection) D.J.Dunn 7

8 WORKED EXAMPLE No. A cylindrical vessel is to be made from thin metal plate to contain 15 litres (0.015 m 3 ) of liquid. Find the dimensions of the cylinder that make the surface area a minimum including the two ends. SOLUTION We need to set up two equations, one for the volume and one for the surface area. Volume = A L = πd L/ = πd L/4.. (1) Surface Area = A = wall + ends (see diagram) A = πdl + πd /4 = πdl +πd /. () Now we decide whether to first find L or D by max or min theory. Let us decide to find D. From (1) find L in terms of D x L = =...(3) πd πd 0.06 πd Substitute this into () A = πd x + πd -1 πd A = 0.06D +...(4) For a minimum area the differential coefficient da/dd = 0. Differentiate with respect to D da = 0.06D dd 0.06D = πd = D 3 + πd Equate to zero 0.06 = πd D D = ( ) 1 3 = 0.673m 0 = 0.06D 0.06 = D π 3 + πd Figure 5 We are not sure that this value gives a minimum value of Area without plotting the graph but assuming it is we can now find the value of L from (3). L = 0.67 m (i.e. equal to the diameter. Now we can find the area from () or (4). A = m D.J.Dunn 8

9 SELF ASSESSMENT EXERCISE No.3 1. A rectangular trough is to be made from a sheet of metal 5 m long and 4 m wide by cutting a square of side x m from each corner and turning up the ends and sides. Show that the volume is given by V = 4x 3-18x + 0x. Find the value of x that makes the volume a maximum. (Answer m). The power transmitted by a pulley belt system is given by the following equation. P = (Fv ρav µθ )(1 e ) P is the power v is the velocity of the belt. ρ is the density of the belt material ρ = 100 kg/m 3 A is the cross sectional area of the belt A = 800 x 10-6 m F is the maximum force in the belt F = 500 N µ is the coefficient of friction µ = 0.3 θ is the angle of contact θ = 1. radian Determine the velocity that makes the power a maximum and calculate this power. (Answers v = 60.4 m/s and P = 19.7 kw) 3. The power developed by a Pelton Wheel water turbine is given by the following equation. P = mu(v u)(1 kcos θ) P is the power m is the mass flow rate m = 40 kg/s u is the velocity of the buckets v is the velocity of the water jet v = 0 m/s k is the blade friction coefficient k = 0.98 θ is the angle of deflection θ = 165 o Determine the velocity of the bucket that will make the power a maximum and calculate the maximum power. (Answers 0 m/s and 31.1 kw) D.J.Dunn 9

10 5. DETERMINING IF A POINT IS A MAXIMA OR MINIMA Consider the equation V = 4x 3-18x + 0x from question 1 previous. The equation is plotted below (in red) and as predicted the maximum point occurs at x = Differentiating the equation we dv = 1x 36x + 0 This equation represents the gradient of the graph at any point x. If we plot this as well (in blue), we dv can see that as expected, the gradient is zero at the max and min points. Figure 6 If we differentiate a second time we shall get an equation representing the gradient of the new graph, i.e. the gradient of the gradient. When we do this we write it as follows. d V = 4x 36 Plotting this graph (in green) produces a straight line and reveals that where the original function d V was a maximum, the value of is negative and where it is a minimum, the value is positive. This is always the case and so we can determine if a point is a maximum or minimum by evaluating d V at that point. D.J.Dunn 10

11 WORKED EXAMPLE No.3 Find the turning points of the following function and determine which is the maximum and which the minimum. y = x 3 0x + 4x SOLUTION Differentiate once dy = 6x Equate to zero Solve using the quadratic equation - b ± x = 40x + 4 b 4ac a 6x 40 ± = 40x + 4 = 0 40 ± x = = or Differentiate again. d y = 1x - 40 a = 6 b = -40 c = 4 (-40) (4)(6)(4) 40 ± 1504 = ()(6) 1 d y Evaluate when x = and = Since this is positive the point x = must be a minimum. d y Evaluate with x = 0.10 and = Since this is negative, the point must be a maximum. The graphs of the functions show these answers are correct. Figure 7 D.J.Dunn 11

12 SELF ASSESSMENT EXERCISE No.4 Find the turning points of the following functions and determine which is the maximum and which is the minimum point. 1. y = x 3 1x + 10x (Answers 3.58 Min and 0.47 max). p = 4q 3 0q + q +10 (Answers Min and 0.05 max) D.J.Dunn 1

MATHEMATICS FOR ENGINEERING TUTORIAL 4 MAX AND MIN THEORY

MATHEMATICS FOR ENGINEERING TUTORIAL 4 MAX AND MIN THEORY MATHEMATICS FOR ENGINEERING TUTORIAL 4 MAX AND MIN THEORY This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning by example.

More information

Analytical Methods for Engineers

Analytical Methods for Engineers Unit 1: Analytical Methods for Engineers Unit code: A/601/1401 QCF level: 4 Credit value: 15 Aim This unit will provide the analytical knowledge and techniques needed to carry out a range of engineering

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 Learning outcomes EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 TUTORIAL 2 - LINEAR EQUATIONS AND GRAPHS On completion of this unit a learner should: 1 Know how to use algebraic

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 3 - ENERGY TUTORIAL 1 MECHANICAL WORK, ENERGY AND POWER: WORK 3 Energy Mechanical work, energy and power: work - energy relationship,

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 TUTORIAL 1 - INTEGRATION Learning outcomes EEXCEL NATIONAL CERTIFICATE UNIT MATHEMATICS FOR TECHNICIANS OUTCOME TUTORIAL 1 - INTEGRATION On completion of this unit a learner should: 1 Know how to use algebraic methods e able to

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS TUTORIAL 2 - INTEGRATION

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS TUTORIAL 2 - INTEGRATION EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - CALCULUS TUTORIAL - INTEGRATION CONTENTS Be able to apply calculus Differentiation: review of standard derivatives, differentiation

More information

MAXIMA, MINIMA AND POINTS OF INFLEXION

MAXIMA, MINIMA AND POINTS OF INFLEXION Page of 8 MAXIMA, MINIMA AND POINTS OF INFLEXION Introduction 0 M Q S f( x) P I I R I I T 5 7 a 0 b x The diagram shows the graph of y domain a x b. The points Q and S are called local maxima. The points

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 4 - CALCULUS EEXCEL NATIONAL CERTIFICATE UNIT MATHEMATICS FOR TECHNICIANS OUTCOME - CALCULUS TUTORIAL - INTEGRATION Use the elementary rules of calculus arithmetic to solve problems that involve differentiation and

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

AREAS, RADIUS OF GYRATION

AREAS, RADIUS OF GYRATION Chapter 10 MOMENTS of INERTIA for AREAS, RADIUS OF GYRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the MoI for an area by integration.

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

CALCULUS SEVENTH EDITION. Indiana Academic Standards for Calculus. correlated to the CC2

CALCULUS SEVENTH EDITION. Indiana Academic Standards for Calculus. correlated to the CC2 CALCULUS SEVENTH EDITION correlated to the Indiana Academic Standards for Calculus CC2 6/2003 2002 Introduction to Calculus, 7 th Edition 2002 by Roland E. Larson, Robert P. Hostetler, Bruce H. Edwards

More information

Applications of Differentiation

Applications of Differentiation MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Module9 7 Introduction Applications of to Matrices Differentiation y = x(x 1)(x 2) d 2

More information

Differentiation Practice Questions

Differentiation Practice Questions A. Chain, product and quotient rule 1. Differentiate with respect to x Differentiation Practice Questions 3 4x e sin x Answers:...... (Total 4 marks). Differentiate with respect to x: (x + l). 1n(3x 1).

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 2 - COMPLEX NUMBERS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 2- ALGEBRAIC TECHNIQUES TUTORIAL 2 - COMPLEX NUMBERS EDEXCEL NATIONAL CERTIFICATE UNIT 8 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME - ALGEBRAIC TECHNIQUES TUTORIAL - COMPLEX NUMBERS CONTENTS Be able to apply algebraic techniques Arithmetic progression (AP):

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 4 - LIFTING MACHINES CONTENT Be able to determine the operating characteristics of lifting

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1

EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 Learning outcomes EDEXCEL NATIONAL CERTIFICATE UNIT 4 MATHEMATICS FOR TECHNICIANS OUTCOME 1 TUTORIAL 3 - FACTORISATION AND QUADRATICS On completion of this unit a learner should: 1 Know how to use algebraic

More information

OUTCOME 1 MECHANICAL POWER TRANSMISSION SYSTEMS TUTORIAL 3 FLYWHEELS. On completion of this short tutorial you should be able to do the following.

OUTCOME 1 MECHANICAL POWER TRANSMISSION SYSTEMS TUTORIAL 3 FLYWHEELS. On completion of this short tutorial you should be able to do the following. Unit 60: Dynamics of Machines Unit code: H/60/4 QCF Level:4 Credit value:5 OUTCOME MECHANCAL POWER TRANSMSSON SYSTEMS TUTORAL 3 FLYWHEELS. Be able to determine the kinetic and dynamic parameters of mechanical

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 2 ADVANCED DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 2 ADVANCED DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL ADVANCED DIFFERENTIATION CONTENTS Function of a Function Differentiation of a Sum Differentiation of a Proct Differentiation of a Quotient Turning Points

More information

11.1 Absolute Maximum/Minimum: Definition:

11.1 Absolute Maximum/Minimum: Definition: Module 4 : Local / Global Maximum / Minimum and Curve Sketching Lecture 11 : Absolute Maximum / Minimum [Section 111] Objectives In this section you will learn the following : How to find points of absolute

More information

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) =

cos t 2 sin 2t (vi) y = cosh t sinh t (vii) y sin x 2 = x sin y 2 (viii) xy = cot(xy) (ix) 1 + x = sin(xy 2 ) (v) g(t) = MATH1003 REVISION 1. Differentiate the following functions, simplifying your answers when appropriate: (i) f(x) = (x 3 2) tan x (ii) y = (3x 5 1) 6 (iii) y 2 = x 2 3 (iv) y = ln(ln(7 + x)) e 5x3 (v) g(t)

More information

Essential Mathematics 2 Introduction to the calculus

Essential Mathematics 2 Introduction to the calculus Essential Mathematics Introduction to the calculus As you will alrea know, the calculus may be broadly separated into two major parts. The first part the Differential Calculus is concerned with finding

More information

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level

Solutionbank C1 Edexcel Modular Mathematics for AS and A-Level Heinemann Solutionbank: Core Maths C Page of Solutionbank C Exercise A, Question Find the values of x for which f ( x ) = x x is a decreasing function. f ( x ) = x x f ( x ) = x x Find f ( x ) and put

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 WORK, POWER AND ENERGY TRANSFER IN DYNAMIC ENGINEERING SYSTEMS TUTORIAL 1 - LINEAR MOTION Be able to determine

More information

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine

More information

SOLID MECHANICS FRICTION BRAKES. Explain the concepts of friction and friction devices. When you have completed this tutorial you should be able to:

SOLID MECHANICS FRICTION BRAKES. Explain the concepts of friction and friction devices. When you have completed this tutorial you should be able to: SOLID MECHANICS FRICTION BRAKES Outcome Explain the concepts of friction and friction devices. When you have completed this tutorial you should be able to: Derive and apply the formula for friction on

More information

OUTCOME 2 KINEMATICS AND DYNAMICS

OUTCOME 2 KINEMATICS AND DYNAMICS Unit 60: Dynamics of Machines Unit code: H/601/1411 QCF Level:4 Credit value:15 OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 3 GYROSCOPES 2 Be able to determine the kinetic and dynamic parameters of mechanical

More information

UNDERSTANDING ENGINEERING MATHEMATICS

UNDERSTANDING ENGINEERING MATHEMATICS UNDERSTANDING ENGINEERING MATHEMATICS JOHN BIRD WORKED SOLUTIONS TO EXERCISES 1 INTRODUCTION In Understanding Engineering Mathematic there are over 750 further problems arranged regularly throughout the

More information

AP CALCULUS AB Study Guide for Midterm Exam 2017

AP CALCULUS AB Study Guide for Midterm Exam 2017 AP CALCULUS AB Study Guide for Midterm Exam 2017 CHAPTER 1: PRECALCULUS REVIEW 1.1 Real Numbers, Functions and Graphs - Write absolute value as a piece-wise function - Write and interpret open and closed

More information

MATHEMATICS FOR ENGINEERING

MATHEMATICS FOR ENGINEERING MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL FURTHER INTEGRATION This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning

More information

Second Midterm Exam Name: Practice Problems Septmber 28, 2015

Second Midterm Exam Name: Practice Problems Septmber 28, 2015 Math 110 4. Treibergs Second Midterm Exam Name: Practice Problems Septmber 8, 015 1. Use the limit definition of derivative to compute the derivative of f(x = 1 at x = a. 1 + x Inserting the function into

More information

Varberg 8e-9e-ET Version Table of Contents Comparisons

Varberg 8e-9e-ET Version Table of Contents Comparisons Varberg 8e-9e-ET Version Table of Contents Comparisons 8th Edition 9th Edition Early Transcendentals 9 Ch Sec Title Ch Sec Title Ch Sec Title 1 PRELIMINARIES 0 PRELIMINARIES 0 PRELIMINARIES 1.1 The Real

More information

Single Variable Calculus, Early Transcendentals

Single Variable Calculus, Early Transcendentals Single Variable Calculus, Early Transcendentals 978-1-63545-100-9 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Math 2413 General Review for Calculus Last Updated 02/23/2016

Math 2413 General Review for Calculus Last Updated 02/23/2016 Math 243 General Review for Calculus Last Updated 02/23/206 Find the average velocity of the function over the given interval.. y = 6x 3-5x 2-8, [-8, ] Find the slope of the curve for the given value of

More information

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required. Revision Checklist Unit C2: Core Mathematics 2 Unit description Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; trigonometry; exponentials and logarithms; differentiation;

More information

AP Calculus BC Syllabus

AP Calculus BC Syllabus AP Calculus BC Syllabus Course Overview and Philosophy This course is designed to be the equivalent of a college-level course in single variable calculus. The primary textbook is Calculus, 7 th edition,

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. The diagram above shows the sector OA of a circle with centre O, radius 9 cm and angle 0.7 radians. Find the length of the arc A. Find the area of the sector OA. The line AC shown in the diagram above

More information

BASIC MATHS TUTORIAL 7 - MOMENTS OF AREA. This tutorial should be skipped if you are already familiar with the topic.

BASIC MATHS TUTORIAL 7 - MOMENTS OF AREA. This tutorial should be skipped if you are already familiar with the topic. BASIC MATHS TUTORIAL 7 - MOMENTS OF AREA This tutorial should be skipped if you are already familiar with the topic. In this section you will do the following. Define the centre of area. Define and calculate

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Eleven Instantaneous Centre and General Motion Part A (Introductory) 1. (Problem 5/93 from Meriam and Kraige - Dynamics) For the instant

More information

A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3

A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3 A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3 Each of the three questions is worth 9 points. The maximum possible points earned on this section

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 10 NATURAL VIBRATIONS ONE DEGREE OF FREEDOM

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 10 NATURAL VIBRATIONS ONE DEGREE OF FREEDOM ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL 0 NATURAL VIBRATIONS ONE DEGREE OF FREEDOM On completion of this tutorial you should be able to do the following. Explain the meaning of degrees

More information

Chapter 24 Review Prof. Townsend Fall 2016

Chapter 24 Review Prof. Townsend Fall 2016 Chapter 4 Review Prof. Townsend Fall 016 Sections covered: 4.1 Tangents and Normals 4.3 Curvilinear Motion 4.4 Related Rates 4.5 Using Derivatives in Curve Sketching 4.7 Applied Maximum and Minimum Problems

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN 1 Static and dynamic forces Forces: definitions of: matter, mass, weight,

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

MECHANICS OF SOLIDS TORSION - TUTORIAL 1. You should judge your progress by completing the self assessment exercises.

MECHANICS OF SOLIDS TORSION - TUTORIAL 1. You should judge your progress by completing the self assessment exercises. MECHANICS OF SOIS TORSION - TUTORIA 1 You should judge your progress by completing the self assessment exercises. On completion of this tutorial you should be able to do the following. erive the torsion

More information

CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS Objectives To introduce students to a number of topics which are fundamental to the advanced study of mathematics. Assessment Examination (72 marks) 1 hour

More information

Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS

Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb ENGINEERING MECHANICS 3 Set No - 1 I B. Tech I Semester Regular Examinations Jan./Feb. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Question Paper Consists

More information

AP Physics Review FRQ 2015

AP Physics Review FRQ 2015 AP Physics Review FRQ 2015 2015 Mech 1. A block of mass m is projected up from the bottom of an inclined ramp with an initial velocity of magnitude v 0. The ramp has negligible friction and makes an angle

More information

CALCULUS GARRET J. ETGEN SALAS AND HILLE'S. ' MiIIIIIIH. I '////I! li II ii: ONE AND SEVERAL VARIABLES SEVENTH EDITION REVISED BY \

CALCULUS GARRET J. ETGEN SALAS AND HILLE'S. ' MiIIIIIIH. I '////I! li II ii: ONE AND SEVERAL VARIABLES SEVENTH EDITION REVISED BY \ / / / ' ' ' / / ' '' ' - -'/-' yy xy xy' y- y/ /: - y/ yy y /'}' / >' // yy,y-' 'y '/' /y , I '////I! li II ii: ' MiIIIIIIH IIIIII!l ii r-i: V /- A' /; // ;.1 " SALAS AND HILLE'S

More information

Integrated Calculus II Exam 2 Solutions 3/28/3

Integrated Calculus II Exam 2 Solutions 3/28/3 Integrated Calculus II Exam 2 Solutions /28/ Question 1 Solve the following differential equation, with the initial condition y() = 2: dy = (y 1)2 t 2. Plot the solution and discuss its behavior as a function

More information

Calculus I

Calculus I Calculus I 978-1-63545-038-5 To learn more about all our offerings Visit Knewton.com/highered Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Gilbert Strang, Massachusetts Institute

More information

(c) Find the gradient of the graph of f(x) at the point where x = 1. (2) The graph of f(x) has a local maximum point, M, and a local minimum point, N.

(c) Find the gradient of the graph of f(x) at the point where x = 1. (2) The graph of f(x) has a local maximum point, M, and a local minimum point, N. Calculus Review Packet 1. Consider the function f() = 3 3 2 24 + 30. Write down f(0). Find f (). Find the gradient of the graph of f() at the point where = 1. The graph of f() has a local maimum point,

More information

Calculus Early Transcendentals

Calculus Early Transcendentals Calculus Early Transcendentals 978-1-63545-101-6 To learn more about all our offerings Visit Knewton.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Gilbert Strang, Massachusetts

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of THERMODYNAMICS NQF LEVEL 3 OUTCOME 2 -ENERGY TRANSFER

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of THERMODYNAMICS NQF LEVEL 3 OUTCOME 2 -ENERGY TRANSFER EDEXCEL NATIONAL CERTIFICATE/DIPLOMA PRINCIPLES AND APPLICATIONS of THERMODYNAMICS NQF LEEL OUTCOME -ENERGY TRANSFER TUTORIAL - CLOSED THERMODYNAMIC SYSTEMS CONTENT Be able to quantify energy transfer

More information

APPLICATION OF DERIVATIVES

APPLICATION OF DERIVATIVES 94 APPLICATION OF DERIVATIVES Chapter 6 With the Calculus as a key, Mathematics can be successfully applied to the explanation of the course of Nature. WHITEHEAD 6. Introduction In Chapter 5, we have learnt

More information

Spring Homework Part B Packet. MAT Calculus I

Spring Homework Part B Packet. MAT Calculus I Class: MAT 201-02 Spring 2015 Homework Part B Packet What you will find in this packet: Assignment Directions Class Assignments o Reminders to do your Part A problems (https://www.webassign.net) o All

More information

Modeling and Optimization (Word Problems ALL DAY) Let the first number and = the second number. The boundaries of this problem are [0, 30].

Modeling and Optimization (Word Problems ALL DAY) Let the first number and = the second number. The boundaries of this problem are [0, 30]. New Calculus 5.4 Modeling and Optimization (Word Problems ALL DAY) The sum of two non-negative numbers is 30. a) Find the numbers if the sum of their squares is as large as possible. b) Find the numbers

More information

Unit 1: Engineering Principles

Unit 1: Engineering Principles Unit 1: Engineering Principles Your exam Unit 1 will be assessed through an exam, which will be set by Pearson. You will need to use your ability to solve problems that require individual and combined

More information

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics (8MA0) Pearson Edexcel Level 3 Advanced GCE in Mathematics (9MA0)

Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics (8MA0) Pearson Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Pearson Edexcel Level 3 Advanced Subsidiary GCE in Mathematics (8MA0) Pearson Edexcel Level 3 Advanced GCE in Mathematics (9MA0) First teaching from September 2017 First certification from June 2018 2

More information

Statics: Lecture Notes for Sections 10.1,10.2,10.3 1

Statics: Lecture Notes for Sections 10.1,10.2,10.3 1 Chapter 10 MOMENTS of INERTIA for AREAS, RADIUS OF GYRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the MoI for an area by integration.

More information

AP Calculus BC Syllabus Course Overview

AP Calculus BC Syllabus Course Overview AP Calculus BC Syllabus Course Overview Textbook Anton, Bivens, and Davis. Calculus: Early Transcendentals, Combined version with Wiley PLUS. 9 th edition. Hoboken, NJ: John Wiley & Sons, Inc. 2009. Course

More information

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A.

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A. Chapter 9 [ Edit ] Chapter 9 Overview Summary View Diagnostics View Print View with Answers Due: 11:59pm on Sunday, October 30, 2016 To understand how points are awarded, read the Grading Policy for this

More information

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS Unit 2: Unit code: QCF Level: 4 Credit value: 15 Engineering Science L/601/1404 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS 1. Be able to determine the behavioural characteristics of elements of static engineering

More information

Bonus Homework and Exam Review - Math 141, Frank Thorne Due Friday, December 9 at the start of the final exam.

Bonus Homework and Exam Review - Math 141, Frank Thorne Due Friday, December 9 at the start of the final exam. Bonus Homework and Exam Review - Math 141, Frank Thorne (thornef@mailbox.sc.edu) Due Friday, December 9 at the start of the final exam. It is strongly recommended that you do as many of these problems

More information

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40 Extreme Values in an Interval AP Calculus BC 1. The absolute maximum value of x = f ( x) x x 1 on the closed interval, 4 occurs at A) 4 B) C) 1 D) 0 E). The maximum acceleration attained on the interval

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those studying

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

Greenwich Public Schools Mathematics Curriculum Objectives. Calculus

Greenwich Public Schools Mathematics Curriculum Objectives. Calculus Mathematics Curriculum Objectives Calculus June 30, 2006 NUMERICAL AND PROPORTIONAL REASONING Quantitative relationships can be expressed numerically in multiple ways in order to make connections and simplify

More information

On completion of this short tutorial you should be able to do the following. Calculate the effort and torque needed to raise and lower a load.

On completion of this short tutorial you should be able to do the following. Calculate the effort and torque needed to raise and lower a load. CITY AND GUILDS 9210 Unit 130 MECHANICS OF MACHINES AND STRENGTH OF MATERIALS OUTCOME 6 TUTORIAL 3 - SCREW DRIVES Outcome 6 Explain the concepts of friction and friction devices. The learner can: 1. Explain

More information

Burlington County Institute of Technology Curriculum Document

Burlington County Institute of Technology Curriculum Document Burlington County Institute of Technology Curriculum Document Course Title: Calculus Curriculum Area: Mathematics Credits: 5 Credits per course Board Approved: June 2017 Prepared by: Jessica Rista, John

More information

Math 302 Outcome Statements Winter 2013

Math 302 Outcome Statements Winter 2013 Math 302 Outcome Statements Winter 2013 1 Rectangular Space Coordinates; Vectors in the Three-Dimensional Space (a) Cartesian coordinates of a point (b) sphere (c) symmetry about a point, a line, and a

More information

UNIT 3 MATHEMATICAL METHODS ALGEBRA

UNIT 3 MATHEMATICAL METHODS ALGEBRA UNIT 3 MATHEMATICAL METHODS ALGEBRA Substitution of Values Rearrangement and Substitution Polynomial Expressions Expanding Expressions Expanding Expressions by Rule Perfect Squares The Difference of Two

More information

5.3. Exercises on the curve analysis of polynomial functions

5.3. Exercises on the curve analysis of polynomial functions .. Exercises on the curve analysis of polynomial functions Exercise : Curve analysis Examine the following functions on symmetry, x- and y-intercepts, extrema and inflexion points. Draw their graphs including

More information

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics   MATHS 101: Calculus I Preliminaries 2 1 2 Lectures Department of Mathematics http://www.abdullaeid.net/maths101 MATHS 101: Calculus I (University of Bahrain) Prelim 1 / 35 Pre Calculus MATHS 101: Calculus MATHS 101 is all about

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Calculus from Graphical, Numerical, and Symbolic Points of View, 2e Arnold Ostebee & Paul Zorn

Calculus from Graphical, Numerical, and Symbolic Points of View, 2e Arnold Ostebee & Paul Zorn Calculus from Graphical, Numerical, and Symbolic Points of View, 2e Arnold Ostebee & Paul Zorn Chapter 1: Functions and Derivatives: The Graphical View 1. Functions, Calculus Style 2. Graphs 3. A Field

More information

MATH Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz.

MATH Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz. MATH 1060 - Calculus of One Variable, Part I Spring 2019 Textbook: Calculus. Early Transcendentals. by Briggs, Cochran, Gillett, Schulz. 3 rd Edition Testable Skills Unit 3 Important Students should expect

More information

APPLIED MATHEMATICS HIGHER LEVEL

APPLIED MATHEMATICS HIGHER LEVEL L.42 PRE-LEAVING CERTIFICATE EXAMINATION, 203 APPLIED MATHEMATICS HIGHER LEVEL TIME : 2½ HOURS Six questions to be answered. All questions carry equal marks. A Formulae and Tables booklet may be used during

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 1 - FRAMES AND BEAMS TUTORIAL 2 - BEAMS CONTENT Be able to determine the forces acting

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS AS level Mathematics Core mathematics 2 - C2 2015-2016 Name: Page C2 workbook contents Algebra Differentiation Integration Coordinate Geometry Logarithms Geometric series Series

More information

1.) Suppose the graph of f(x) looks like this (each tick mark denotes 1 unit). x y

1.) Suppose the graph of f(x) looks like this (each tick mark denotes 1 unit). x y College Algebra Summer 2014 Exam File Exam #1 1.) Suppose the graph of f(x) looks like this (each tick mark denotes 1 unit). Graph g(x) = -0.5 f(x + 1) - 3 2.) Consider the following table of values. x

More information

Possible C2 questions from past papers P1 P3

Possible C2 questions from past papers P1 P3 Possible C2 questions from past papers P1 P3 Source of the original question is given in brackets, e.g. [P1 January 2001 Question 1]; a question which has been edited is indicated with an asterisk, e.g.

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 6 - GYROSCOPES. On completion of this tutorial you should be able to

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 6 - GYROSCOPES. On completion of this tutorial you should be able to ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 6 - GYROSCOPES This tutorial examines linear and angular motion. The work is then linked with earlier studies of materials and mechanisms

More information

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document

Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Core A-level mathematics reproduced from the QCA s Subject criteria for Mathematics document Background knowledge: (a) The arithmetic of integers (including HCFs and LCMs), of fractions, and of real numbers.

More information