Observation of Internal Photoinduced Electron and Hole. Separation in Hybrid 2-Dimentional Perovskite Films

Size: px
Start display at page:

Download "Observation of Internal Photoinduced Electron and Hole. Separation in Hybrid 2-Dimentional Perovskite Films"

Transcription

1 Supporting Information for Observation of Internal Photoinduced Electron and Hole Separation in Hybrid 2-Dimentional Perovskite Films Junxue Liu,,, Jing Leng,, Kaifeng Wu, Jun Zhang, *, Shengye Jin *, State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (ichem), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian, 11623, China. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, 66 Changjiang West Rd., Huangdao District, Qingdao, , China. Preparation of hybrid and multi-layered 2D perovskite thin films. CH 3 NH 3 I (MAI) and C 4 H 9 NH 3 I (BAI) were synthesized from the reaction of methylamine and n-butylamine with hydriodic acid (HI) (47wt% in water) at 0 C. The crude product was obtained by slowly evaporating the solvent under reduced pressure. Then the white precipitate was dissolved in ethanol and recrystallized by adding diethyl ether. The small crystals were further washed with diethyl ether several times before drying them in vacuum oven. After drying overnight, they were all sealed under nitrogen and transferred into a glove box for further use. Glass (or FTO) slides were cleaned using an ultra-sonication bath in soap water and rinsed progressively with distilled water, isopropyl alcohol and acetone, and finally treated with oxygen plasma for 20 min. (BA) 2 (MA) n1 Pb n I 3n+1 precursor solution was prepared by dissolving BAI, MAI and PbI 2 (99%) with respective stoichiometric ratio in DMF., The 2D layered perovskite thin films were fabricated via hot-casting process. 1 The sample films discussed in Figure 2, 3, S1, S5 and in Figure S3, S4 were prepared respectively by using (BA) 2 (MA) 3 Pb 4 I 13 (n = 4) and (BA) 2 (MA) 2 Pb 3 I 10 (n = 3) precursor solutions with a total Pb 2+ molar concentration of 0.45 M in anhydrous DMF. The solution was dissolved using an ultra-sonication bath before film fabrication. For the hot-casting process of (BA) 2 (MA) 3 Pb 4 I 13 film, the rinsed glass or S1

2 FTO slides were first preheated 130 C on a hot plate for 10 min right before spin-coating. These hot slides were immediately transferred to the spin-coated chunk (which is at room temperature), and 80 µl of precursor solution was dropped onto the hot slides. The spin-coater was immediately started with a spin speed of 5,000 r.p.m. for 20 s without ramp; the color of the thin film turned from pale yellow to brown in few seconds as the solvent escaped. The hot-casting process of (BA) 2 (MA) 2 Pb 3 I 10 film is similar to the (BA) 2 (MA) 3 Pb 4 I 13 film except that the substrates were preheated at 140 C. Preparation of 2D layered perovskite single crystals (single phase). The 2D layered lead iodide perovskite single crystals were synthesized following the liquid phase crystallization method reported previously. 2, 3, 4 Lead(II) iodide (99%), hydriodic acid (57 wt %, stabilizer free in water), n-butylamine (99.5%), and methylamine solution (33 wt % in ethanol) were purchased from Sigma-Aldrich and diethyl ether (BHT stabilized) was purchased from Tianjin Kemiou Chemical Reagent Co.. At 110 C, stoichiometric quantities of lead(ii) iodide, n-butylamine, and methylammonium iodide were dissolved in a minimum volume of hydriodic acid for the growth of (BAI) 2 (MAI) n1 (PbI 2 ) n, n = 1, 2, 3, 4 and 5. For each single crystal sample, plate-like bright-colored crystals with surface areas of a few square milimeters were obtained after the solution was slowly cooled to 10 C. The crystals were rinsed with cold diethyl ether and dried at 60 C under vacuum for 24 h before exfoliation. We mechanically exfoliated each crystal and transferred the flakes onto clean fused silica for TA and linear absorption measurements. Ultrafast transient absorption spectroscopy measurement. The femtosecond transient absorption setup is based on a regenerative amplified Ti:sapphire laser system from Coherent (800 nm, 35 fs, 6 mj/pulse, and 1 khz repetition rate), nonlinear frequency mixing techniques and the Helios spectrometer S2

3 (Ultrafast Systems LLC). Briefly, the 800 nm output pulse from the regenerative amplifier was split in two parts with a 50% beam splitter. The transmitted part was used to pump a TOPAS Optical Parametric Amplifier (OPA) which generates a wavelength-tunable laser pulse from 250 nm to 2.5 µm as pump beam. The reflected 800 nm beam was split again into two parts. One part with less than 10% was attenuated with a neutral density filter and focused into a 2 mm thick sapphire window to generate a white light continuum (WLC) from 420 nm to 800 nm used for probe beam. The probe beam was focused with an Al parabolic reflector onto the sample. After the sample, the probe beam was collimated and then focused into a fiber-coupled spectrometer with CMOS sensors and detected at a frequency of 1 KHz. The intensity of the pump pulse used in the experiment was controlled by a variable neutral-density filter wheel. The delay between the pump and probe pulses was controlled by a motorized delay stage. The pump pulses were chopped by a synchronized chopper at 500 Hz and the absorbance change was calculated with two adjacent probe pulses (pump-blocked and pump-unblocked). All experiments were performed at room temperature. Time-resolved photoluminescence measurement. The fluorescence lifetime measurement setup used in this study was based on the time-correlated single photon counter technology. The excitation beam was picosecond pulse diode laser with 405 nm output wavelength and 50-ps pulse width. The optical detector was single photon counting module. References: 1. Tsai, H. H.; Nie, W. Y.; Blancon, J. C.; Toumpos, C. C. S.; Asadpour, R.; Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak, S.; Pedesseau, L.; Even, J.; Alam, M. A.; Gupta, G.; Lou, J.; Ajayan, P. M.; Bedzyk, M. J.; Kanatzidis, M. G.; Mohite, A. D. Nature, 2016, 536, Mitzi, D. B. Prog. Inorg. Chem., John Wiley & Sons, Inc.: New York, 2007; pp S3

4 3. Depmeier, W.; Chapuis, G. Acta Crystallogr., Sect. B, 1979, 35, Wu, X.; Trinh, M. T.; Zhu, X. Y. J. Phys. Chem. C, 2015, 119, Figure S1. Top-view and cross-section SEM images of the (BA) 2 (MA) 3 Pb 4 I 13 (n = 4) multi-layered 2D perovskite films. The thickness of the film is ~358 nm. Figure S2. UV-Vis absorption spectra of (BA) 2 (MA) n1 Pb n I 3n+1 2D perovskite single crystals with n = 1, 2, 3, 4 and 5. S4

5 Figure S3. Top-view and cross-sectional SEM images of the (BA) 2 (MA) 2 Pb 3 I 10 (n = 3) multi-layered 2D perovskite films. The thickness of the film is ~523 nm. Figure S4. TA spectra at different delay times of a typical (BA) 2 (MA) n1 Pb n I 3n+1 2D perovskite film (~523 nm thickness, prepared as n = 3) under (a) back- and (b) frontexcitations. (c) TA kinetics probed at n = 2, 3, 4 and n bands under back-excitation. Solid lines are the fits of the kinetics by exponential function with fitting parameters listed in Table S3. (d) Comparison of the time-resolved PL and TA kinetics probed at the n band. The TA kinetics probed at n = 3, 4, 5 and n bands all show rising kinetics, whose time becomes longer as the n increases. This S5

6 observation further confirms the consecutive carrier transfer (majorly stemming from n = 2) from phase to phase. In the thicker film the different perovskites are more spatially separated than in the thin film (Figure 2 in main text), and therefore results in a slower carrier transfer time between adjacent phases. Figure S5. Comparison of TA kinetics probed at n band (with back-excitation) in (BA) 2 (MA) n1 Pb n I 3n+1 2D perovskite films before and after depositions of PCBM (electron acceptor) and Spiro-OMeTAD (hole acceptor). S6

7 Figure S6. TA spectra in Figure 3a after subtracting the PIA signal from n phase, showing clear bleach peaks that are attributed to n = 3 and 4 perovskite species.. Figure S7. PL decay of the (BA) 2 (MA) n1 Pb n I 3n+1 2D perovskite film (358 nm thickness) probed at 750 nm (emission from n band) under front-excitation at 405 nm. The solid line is the fit of the decay with an exponential function, yielding a lifetime of 680 ps. This lifetime is much faster than the intrinsic carrier lifetime (see S7

8 Figure S8b), and is consistent with the observed hole transfer time of 193 to 987 ps observed in the TA measurement (Figure 3 in the main text). Figure S8. (a) TA kinetics probed at the maximum bleach band of 2D perovskite single crystals (single phase) with n = 2 and 3. The solid lines are the exponential fits of the kinetics yielding intrinsic lifetime (averaged) of 5.4 ns for n = 3 and 14.1 ns for n = 4 crystals (at 480 nm, 0.7 µj/cm 2 /pulse). Using these intrinsic carrier lifetimes and an electron transfer time of 477 ps, the theoretical efficiency of charge separation by electron transfer (back-excitation) is calculated to be 97% from n = 3 to n phase and 92% from n = 2 to n phase in the hybrid 2D perovskite films discussed in the main text. (b) TA kinetics probed at the maximum bleach band of a perovskite film with n single phase. In order to obtain the intrinsic carrier lifetime of n phase (bleach peak at ~740 nm), we fabricated an almost pure n perovskite film by adjusting the molar ratio of BA + in the precursor mixture. The inset shows the TA spectra of the film with only single bleach band at ~740 nm. Solid line is the fit of the kinetics by exponential function, yielding the carrier lifetime of 2.3 ns. Using this intrinsic carrier lifetime and an hole transfer time of 987 ps, the theoretical efficiency of charge separation by hole transfer (front-excitation) is calculated to be 70% from n to n = 3 phase in the hybrid 2D perovskite films discussed in the main text. S8

9 Figure S9. (a) UV-vis absorption spectra of (BA) 2 (MA) n1 Pb n I 3n+1 2D perovskite films (prepared as n = 4) with the thinness of ~358 nm and < 100 nm. (b) PL spectra of the films in (a) with the same back-excitation power at 450 nm. After normalizing the absorption at the excitation wavelength of 450 nm, the relative PL quantum yield (PLQY) between two films is PLQY 100 nm /PLQY 358 nm = 6.9 (back-excitation) and 4.0 (front excitation). (c) PL spectra of the 2D perovskite film (thickness < 100 nm) and a 3D perovskite film with a similar thickness (after normalizing the absorption). The relative PLQY 100 nm (2D) / PLQY 100 nm (3D) = 1.8 (back-excitation) and 2.1 (front-excitation). S9

10 Figure S10. (a) TA spectra of the (BA) 2 (MA) n1 Pb n I 3n+1 2D perovskite film (prepared as n = 4) with the thickness of ~100 nm. The electron transfer from small-n to large-n perovskite phases is observed. (b) TA kinetics probed the maximum of n bleach band. Solid line is the fit of the kinetics with exponential function, yielding the electron transfer time of 142 ps. Table S1. Fitting parameters for the kinetics shown in Figure 2c. The kinetics are fit by an multiple-exponential function, A(t) = a 1 exp(-t/τ 1 ) + a 2 exp(-t/τ 2 ) + a 3 exp(-t/τ 3 ) - c 1 exp(-t/τ et ), where a 1,a 2, a 3 and c 1 are the amplitudes; τ 1, τ 2 and τ 3 are the decay time constants and τ et is the electron transfer time constant. τ et /ps (c 1 ) τ 1 /ps (a 1 ) τ 2 /ps (a 2 ) τ 3 /ps (a 3 ) n = ±5.8 (30.8%) ±61.1 (42.5%) ± (26.7%) n = ± 29.5 (15.2%) ± (64.8%) ± (20.0%) n = ± 80.1 (78.9%) ± (21.1%) n ± 23.5 (70.1%) ± (100%) S10

11 Table S2. Fitting parameters for the kinetics shown in Figure 3b. The kinetics are fit by an multiple-exponential function, A(t) = a 1 exp(-t/τ 1 ) -c 1 exp(-t/τ ht ), where a 1 and c 1 are the amplitudes; τ 1 is the decay time constant and τ ht is the hole transfer time constant. τ ht /ps (c 1 ) τ 1 /ps n = ± (84.3%) > n = ± 30.2 (71.9%) ± Table S3. Fitting parameters for the kinetics shown in Figure S4c. The kinetics are fit by an multiple-exponential function, A(t) = a 1 exp(-t/τ 1 ) + a 2 exp(-t/τ 2 ) - c 1 exp(-t/τ et ), where a 1,a 2 and c 1 are the amplitudes; τ 1 and τ 2 are the decay time constants and τ et is the electron transfer time constant. τ et /ps (c 1 ) τ 1 /ps (a 1 ) τ 2 /ps (a 2 ) n = ± 7.2 (35.5%) ± 42.4 (64.5%) n = ± 11.3 (12.3%) ± (45.9%) ± (54.1%) n = ± 12.4 (55.6%) ± n = ± 57.9 (82.3%) ± n ± S11

Supporting Information for. Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient

Supporting Information for. Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient Supporting Information for Long-Distance Charge Carrier Funneling in Perovskite Nanowires Enable by Built-in Halide Gradient Wenming Tian, Jing Leng, Chunyi Zhao and Shengye Jin* State Key Laboratory of

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Author(s) Citation Modulating Carrier Dynamics through Perovskite Film Engineering Lim, Swee Sien; Chong,

More information

Conjugated Organic Cations to Improve the Optoelectronic Properties of 2D/3D Perovskites

Conjugated Organic Cations to Improve the Optoelectronic Properties of 2D/3D Perovskites SUPPORTING INFORMATION Conjugated Organic Cations to Improve the Optoelectronic Properties of 2D/3D Perovskites Jesús Rodríguez-Romero, Bruno Clasen Hames, Iván Mora-Seró and Eva M. Barea* Institute of

More information

Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation

Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation Supporting Information Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation Seog Joon Yoon, 1,2 Sergiu Draguta, 2 Joseph S. Manser, 1,3 Onise Sharia, 3 William

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning, Supporting Information for Achieving High Current Density of Perovskite Solar Cells by Modulating the Dominated Facets of Room Temperature DC Magnetron Sputtered TiO 2 Electron Extraction Layer Aibin Huang,

More information

Charge Transfer from n-doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis

Charge Transfer from n-doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis Supporting Information for: Charge Transfer from n-doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis Junhui Wang, Tao Ding and Kaifeng Wu * State Key Laboratory of Molecular

More information

Supporting Information

Supporting Information Supporting Information Quantum Confinement-Tunable Ultrafast Charge Transfer at the PbS Quantum Dot and PCBM Fullerene Interface Ala a O. El-Ballouli, 1 Erkki Alarousu, 1 Marco Bernardi, 2 Shawkat M. Aly,

More information

Visualizing Carrier Diffusion in Individual Single-Crystal. Organolead Halide Perovskite Nanowires and Nanoplates

Visualizing Carrier Diffusion in Individual Single-Crystal. Organolead Halide Perovskite Nanowires and Nanoplates Supporting Information for Visualizing Carrier Diffusion in Individual Single-Crystal Organolead Halide Perovskite Nanowires and Nanoplates Wenming Tian, Chunyi Zhao,, Jing Leng, Rongrong Cui, and Shengye

More information

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots

Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots Supporting Information for Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH 3 NH 3 PbBr 0.9 I 2.1 Quantum Dots Mingyang Cha,, Peimei Da,, Jun Wang, Weiyi Wang, Zhanghai Chen,

More information

Supporting Information

Supporting Information Supporting Information Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable and Large-Area Solar Cell Experimental Section Kai Yao, Xiaofeng Wang, Yun-xiang Xu, Fan Li, Lang

More information

Supporting Information The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance

Supporting Information The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting Information The Roles of Alkyl Halide Additives in Enhancing

More information

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Supporting Information Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Xiaodong Li, a Ying-Chiao Wang, a Liping Zhu,

More information

Supporting Information: Ultrafast Excited State Transport and Decay Dynamics in Cesium Lead Mixed-Halide Perovskites

Supporting Information: Ultrafast Excited State Transport and Decay Dynamics in Cesium Lead Mixed-Halide Perovskites Supporting Information: Ultrafast Excited State Transport and Decay Dynamics in Cesium Lead MixedHalide Perovskites Casey L. Kennedy, Andrew H. Hill, Eric S. Massaro, Erik M. Grumstrup *,,. Department

More information

Supporting Information

Supporting Information Supporting Information Band Gap Tuning of CH 3 NH 3 Pb(Br 1-x Cl x ) 3 Hybrid Perovskite for Blue Electroluminescence Naresh K. Kumawat 1, Amrita Dey 1, Aravindh Kumar 2, Sreelekha P. Gopinathan 3, K.

More information

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3 Ultrafast transient absorption spectroscopy investigations of charge carrier dynamics of methyl ammonium lead bromide (CH 3 NH 3 PbBr 3 ) perovskite nanostructures Hamzeh Telfah 1 ; Abdelqader Jamhawi

More information

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells

A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Electronic Supplementary Information A One-Step Low Temperature Processing Route for Organolead Halide Perovskite Solar Cells Matthew J. Carnie, a Cecile Charbonneau, a Matthew L. Davies, b Joel Troughton,

More information

Achieving high-performance planar perovskite solar cells with

Achieving high-performance planar perovskite solar cells with Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Supporting Information for Achieving high-performance planar perovskite

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Room-Temperature Film Formation of Metal Halide Perovskites

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Photovoltaic mixed- cation lead mixed-

More information

Supporting Information

Supporting Information Supporting Information Decorating Graphene Sheets with Gold Nanoparticles Ryan Muszynski, Brian Seeger and, Prashant V. Kamat* Radiation Laboratory, Departments of Chemistry & Biochemistry and Chemical

More information

Defect Trapping States and Charge Carrier Recombination in

Defect Trapping States and Charge Carrier Recombination in Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information (ESI) for Defect Trapping States and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information In situ and real-time ToF-SIMS analysis of light-induced chemical changes

More information

Supporting Information. Femtosecond Time-Resolved Transient Absorption. Passivation Effect of PbI 2

Supporting Information. Femtosecond Time-Resolved Transient Absorption. Passivation Effect of PbI 2 Supporting Information Femtosecond Time-Resolved Transient Absorption Spectroscopy of CH 3 NH 3 PbI 3 -Perovskite Films: Evidence for Passivation Effect of PbI 2 Lili Wang a, Christopher McCleese a, Anton

More information

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response

Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response Supporting information for Efficient Grain Boundary Suture by Low-cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photo-response Jing Cao 1,*,, Congping Li 1,, Xudong

More information

Supporting Information

Supporting Information Supporting Information Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures Yun Lin 1, Yang Bai 1, Yanjun Fang 1, Zhaolai Chen 1, Shuang Yang 1, Xiaopeng Zheng 1,

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

Supporting Information

Supporting Information Supporting Information Effect of Structural Phase Transition on Charge-Carrier Lifetimes and Defects in CH 3 NH 3 SnI 3 Perovskite Elizabeth S. Parrott, Rebecca L. Milot, Thomas Stergiopoulos, Henry J.

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1400173/dc1 Supplementary Materials for Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical

More information

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 1 Low-temperature-processed inorganic perovskite solar cells via solvent engineering

More information

Electronic Supplementary Information. Ultrafast Charge Separation in Supramolecular Tetrapyrrole- Graphene Hybrids

Electronic Supplementary Information. Ultrafast Charge Separation in Supramolecular Tetrapyrrole- Graphene Hybrids Electronic Supplementary Information Ultrafast Charge Separation in Supramolecular Tetrapyrrole- Graphene Hybrids Chandra Bikram, K.C, a Sushanta Das, a Kei Ohkubo, b Shunichi Fukuzumi, b,c,* and Francis

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

A Photonic Crystal Laser from Solution Based. Organo-Lead Iodide Perovskite Thin Films

A Photonic Crystal Laser from Solution Based. Organo-Lead Iodide Perovskite Thin Films SUPPORTING INFORMATION A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films Songtao Chen 1, Kwangdong Roh 2, Joonhee Lee 1, Wee Kiang Chong 3,4, Yao Lu 5, Nripan Mathews

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13%

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13% All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency Exceeding 13% Chong Liu a,, Wenzhe Li a,, Cuiling Zhang b, Yunping Ma b, Jiandong Fan*,a, Yaohua Mai*,a,b a Institute of New Energy

More information

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the spiro-ometad from a perovskite-filled mesoporous TiO 2

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is the Partner Organisations 2017 Supporting Information NiS nanoparticles decorated MoS 2 nanosheets as efficient

More information

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A.

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Supporting Information CsPbIBr 2 Perovskite Solar Cell by Spray Assisted Deposition Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Green, Shujuan Huang, Anita W.

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Supporting Information. Synthesis, Structural and Photophysical Properties of. Pentacene Alkanethiolate Monolayer-Protected Gold

Supporting Information. Synthesis, Structural and Photophysical Properties of. Pentacene Alkanethiolate Monolayer-Protected Gold Supporting Information Synthesis, Structural and Photophysical Properties of Pentacene Alkanethiolate Monolayer-Protected Gold Nanoclusters and Nanorods: Supramolecular Intercalation and Photoinduced Electron

More information

Behavior and Energy States of Photogenerated Charge Carriers

Behavior and Energy States of Photogenerated Charge Carriers S1 Behavior and Energy States of Photogenerated Charge Carriers on Pt- or CoOx-loaded LaTiO2N Photocatalysts: Time-resolved Visible to mid-ir Absorption Study Akira Yamakata, 1,2* Masayuki Kawaguchi, 1

More information

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Supporting information for High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Zhi-Xiang Zhang, Ji-Song Yao, Lin Liang, Xiao-Wei Tong, Yi Lin, Feng-Xia Liang, *, Hong-Bin

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

Supplementary Information. Back-Contacted Hybrid Organic-Inorganic Perovskite Solar Cells

Supplementary Information. Back-Contacted Hybrid Organic-Inorganic Perovskite Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Journal of Materials Chemistry C Supplementary Information Back-Contacted

More information

planar heterojunction perovskite solar cells to 19%

planar heterojunction perovskite solar cells to 19% Supporting Information Carbon quantum dots/tio x electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19% Hao Li a, Weina Shi a, Wenchao Huang b, En-ping Yao b,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Long-term Stability of Organic-Inorganic

More information

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend

More information

Down-conversion monochrome light-emitting diodeswith the color determined

Down-conversion monochrome light-emitting diodeswith the color determined Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information (ESI) for Down-conversion monochrome

More information

Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide

Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide Supporting Information Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide Weiqiang Liao,,,# Dewei Zhao, *,, # Yue Yu, Niraj

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

All-Inorganic Perovskite Solar Cells

All-Inorganic Perovskite Solar Cells Supporting Information for: All-Inorganic Perovskite Solar Cells Jia Liang, Caixing Wang, Yanrong Wang, Zhaoran Xu, Zhipeng Lu, Yue Ma, Hongfei Zhu, Yi Hu, Chengcan Xiao, Xu Yi, Guoyin Zhu, Hongling Lv,

More information

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14% Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ~14% Kunpeng Li, Junyan Xiao, Xinxin Yu, Tongle Bu, Tianhui Li, Xi Deng, Sanwan Liu,

More information

College of Chemistry and Chemical Engineering, Shenzhen University, Shenzheng, Guangdong, P. R. China. 2

College of Chemistry and Chemical Engineering, Shenzhen University, Shenzheng, Guangdong, P. R. China. 2 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 5 Supplementary Information Remarkable Effects of Solvent and Substitution on Photo-dynamics

More information

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz Supplemental Material Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy H. Yada 1, R. Uchida 1, H. Sekine 1, T. Terashige 1, S. Tao 1, Y. Matsui 1, N. Kida

More information

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Hysteresis-free low-temperature-processed planar

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information All inorganic cesium lead halide perovskite nanocrystals for photodetector

More information

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Organo-metal halide perovskite-based solar cells with CuSCN as inorganic

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2014 69451 Weinheim, Germany A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells** Manda Xiao, Fuzhi Huang, Wenchao

More information

Photo-Induced Charge Recombination Kinetics in MAPbI 3-

Photo-Induced Charge Recombination Kinetics in MAPbI 3- Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Photo-Induced Charge Recombination Kinetics in MAPbI 3- xcl x Perovskite-like Solar Cells Using

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Highly stable, luminescent core-shell type methylammonium-octylammonium

More information

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for

Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for. High-Performance Photodetector. Supporting Information for Supporting Information for Two-Dimensional (C 4 H 9 NH 3 ) 2 PbBr 4 Perovskite Crystals for High-Performance Photodetector Zhenjun Tan,,ǁ, Yue Wu,ǁ, Hao Hong, Jianbo Yin, Jincan Zhang,, Li Lin, Mingzhan

More information

Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals

Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic Framework Microcrystals Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 Electronic Supplementary Information Dual-Wavelength Lasing from Organic Dye Encapsulated Metal-Organic

More information

Supporting Information for. Near infrared-to-blue photon upconversion by exploiting direct. S-T absorption of a molecular sensitizer

Supporting Information for. Near infrared-to-blue photon upconversion by exploiting direct. S-T absorption of a molecular sensitizer Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Supporting Information for Near infrared-to-blue photon upconversion by

More information

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics

Ultrafast Lateral Photo-Dember Effect in Graphene. Induced by Nonequilibrium Hot Carrier Dynamics 1 Ultrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics Chang-Hua Liu, You-Chia Chang, Seunghyun Lee, Yaozhong Zhang, Yafei Zhang, Theodore B. Norris,*,, and

More information

Solid State p-type Dye-Sensitized Solar Cells: Concept, Experiment and Mechanism

Solid State p-type Dye-Sensitized Solar Cells: Concept, Experiment and Mechanism Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Solid State p-type Dye-Sensitized Solar Cells: Concept,

More information

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells

Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells CORRECTION NOTICE Continuous-wave bieciton lasing at room temperature using solution-processed quantum wells Joel Q. Grim, Sotirios Christodoulou, Francesco Di Stasio, Roman Krahne, Roberto Cingolani,

More information

Electronic Supplementary Information. inverted organic solar cells, towards mass production

Electronic Supplementary Information. inverted organic solar cells, towards mass production Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Polyelectrolyte interlayers with a

More information

Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots

Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots Supporting Information Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots Byung Joon Moon, 1 Yelin Oh, 1 Dong Heon Shin, 1 Sang Jin Kim, 1 Sanghyun Lee, 1,2 Tae-Wook

More information

Identification of ultrafast processes in ZnPc by pump-probe spectroscopy

Identification of ultrafast processes in ZnPc by pump-probe spectroscopy Identification of ultrafast processes in ZnPc by pump-probe spectroscopy S Ombinda-Lemboumba 1,2,4, A du Plessis 1,2,3, C M Steenkamp 2, L R Botha 1,2 and E G Rohwer 2 1 CSIR National Laser Centre, Pretoria,

More information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via Chiral Transfer of the Conjugated

More information

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V.

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V. SUPPLEMENTARY INFORMATION for Order of magnitude enhancement of monolayer MoS photoluminescence due to near-field energy influx from nanocrystal films Tianle Guo, Siddharth Sampat, Kehao Zhang, Joshua

More information

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial

Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial Supplementary Figure 1 Transient absorption (TA) spectrum pumped at 400 nm in the FAPbI3 sample with different excitation intensities and initial carrier concentrations: (a) N0 = 4.84 10 18 cm -3 ; (c)

More information

Supporting Information:

Supporting Information: Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Supporting Information: Single Component Mn-doped Perovskite-related CsPb 2 Cl x Br 5-x Nanoplatelets

More information

Unexpected Fluorescence Quenching in a Perylenetetracarboxylate Diimide. Trimer

Unexpected Fluorescence Quenching in a Perylenetetracarboxylate Diimide. Trimer Supporting information for: Unexpected Fluorescence Quenching in a Perylenetetracarboxylate Diimide Trimer Yanfeng Wang, Hailong Chen, Haixia Wu, Xiyou Li,* Yuxiang Weng,* Department of Chemistry, Shandong

More information

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) variable light emission created via direct ultrasonic exfoliation of Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) High quantum-yield luminescent MoS 2 quantum dots

More information

Severe Morphological Deformation of Spiro- Temperature

Severe Morphological Deformation of Spiro- Temperature Supplementary Information Severe Morphological Deformation of Spiro- OMeTAD in (CH 3 NH 3 )PbI 3 Solar Cells at High Temperature Ajay Kumar Jena, Masashi Ikegami, Tsutomu Miyasaka* Toin University of Yokohama,

More information

Supporting Information. Chlorine in PbCl 2 -Derived Hybrid-Perovskite Solar Absorbers

Supporting Information. Chlorine in PbCl 2 -Derived Hybrid-Perovskite Solar Absorbers Supporting Information Chlorine in PbCl 2 -Derived Hybrid-Perovskite Solar Absorbers Vanessa L. Pool, Aryeh Gold-Parker, Michael D. McGehee and Michael F. Toney * SLAC National Accelerator Laboratory,

More information

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea Supporting Information Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells Seong Sik Shin 1,2,, Woon Seok Yang 1,3,, Eun Joo Yeom 1,4, Seon Joo Lee 1, Nam

More information

Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles. Meg Mahat and Arup Neogi

Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles. Meg Mahat and Arup Neogi Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles Meg Mahat and Arup Neogi Department of Physics, University of North Texas, Denton, Tx, 76203 ABSTRACT

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Perovskite solar cells on metal substrate with high efficiency

Perovskite solar cells on metal substrate with high efficiency Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information (ESI) for Perovskite solar cells on metal

More information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information

Supporting Information. for

Supporting Information. for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting Information for Highly Efficient Perovskite Solar Cells Based

More information

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods

Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods Supporting Information Ultrafast Dynamics and Single Particle Spectroscopy of Au-CdSe Nanorods G. Sagarzazu a, K. Inoue b, M. Saruyama b, M. Sakamoto b, T. Teranishi b, S. Masuo a and N. Tamai a a Department

More information

Highly Efficient Ruddlesden Popper Halide

Highly Efficient Ruddlesden Popper Halide Supporting Information Highly Efficient Ruddlesden Popper Halide Perovskite PA 2 MA 4 Pb I 16 Solar Cells Peirui Cheng, 1 Zhuo Xu, 1 Jianbo Li, 1 Yucheng Liu, 1 Yuanyuan Fan, 1 Liyang Yu, 2 Detlef-M. Smilgies,

More information

Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites

Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites Supporting information for: Mechanism for Broadband White-Light Emission from Two-Dimensional (11) Hybrid Perovskites Te Hu, 1,2 Matthew D. Smith, 3 Emma R. Dohner, 3 Meng-Ju Sher, 2 M. Tuan Trinh, 4 Alan

More information

Supplementary Information. PCBM doped with fluorene-based polyelectrolytes as electron transporting layer for

Supplementary Information. PCBM doped with fluorene-based polyelectrolytes as electron transporting layer for Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supplementary Information PCBM doped with fluorene-based polyelectrolytes as electron transporting

More information

Supporting Information

Supporting Information Supporting Information Visible Light-Driven BiOI-Based Janus Micromotors in Pure Water Renfeng Dong, a Yan Hu, b Yefei Wu, b Wei Gao, c Biye Ren, b* Qinglong Wang, a Yuepeng Cai a* a School of Chemistry

More information

Supporting Information: Optical Spectroscopy

Supporting Information: Optical Spectroscopy Supporting Information: Optical Spectroscopy Aminofluorination of Cyclopropanes: A Multifold Approach through a Common, Catalytically Generated Intermediate Cody Ross Pitts, Bill Ling, Joshua A. Snyder,

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Electronic Supplementary Information (ESI) Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Jie Liu, ab Qing Meng, a Xiaotao Zhang, a Xiuqiang Lu, a Ping

More information

SUPPORTING INFORMATION. Unraveling Charge Carriers Generation, Diffusion and Recombination in

SUPPORTING INFORMATION. Unraveling Charge Carriers Generation, Diffusion and Recombination in SUPPORTING INFORMATION Unraveling Charge Carriers Generation, Diffusion and Recombination in Formamidinium Lead Triiodide Perovskite Polycrystalline Thin Film Piotr Piatkowski 1, Boiko Cohen 1, Carlito

More information

Supporting Information for:

Supporting Information for: Supporting Information for: High Efficiency Low-Power Upconverting Soft Materials Jae-Hyuk Kim, Fan Deng, Felix N. Castellano,*, and Jae-Hong Kim*, School of Civil and Environmental Engineering, Georgia

More information

Supporting Information

Supporting Information Supporting Information Growth of Molecular Crystal Aggregates for Efficient Optical Waveguides Songhua Chen, Nan Chen, Yongli Yan, Taifeng Liu, Yanwen Yu, Yongjun Li, Huibiao Liu, Yongsheng Zhao and Yuliang

More information

High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter

High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter Supporting Information High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter Shuanghong Wu, 1 Masaki Aonuma, 1,2 Qisheng Zhang, 1 Shuping Huang,

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Supporting Information

Supporting Information Supporting Information Enhancing the Stability of CH 3 NH 3 PbBr 3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in Waterless Toluene Shouqiang Huang, Zhichun Li, Long

More information

Investigating charge dynamics in halide perovskitesensitized

Investigating charge dynamics in halide perovskitesensitized Electronic Supplementary Material (ESI) for Energy. This journal is The Royal Society of Chemistry 2014 Supporting information Investigating charge dynamics in halide perovskitesensitized mesostructured

More information