Notes on Hobson et al., chapter 7

Size: px
Start display at page:

Download "Notes on Hobson et al., chapter 7"

Transcription

1 Notes on Hobson et al., chapter 7 In this chapter, we follow Einstein s steps in attempting to include the effects of gravitational forces as the consequences of geodesic motion on a (pseudo- )Riemannian manifold, now that we have learned some of the details of the latter. First and foremost, general relativity must be able to reproduce Newtonian gravity in the appropriate limit. Doing this comprises the first half or so of chapter 7. The latter part of this chapter concerns itself with the three classic tests of intrinsic curvature, and in doing so introduces the Riemann and Ricci tensors, and Ricci scalar. These three classic tests are known as noncommutativity of second covariant derivatives (on vectors and higher tensors), rotation of a vector after parallel transport around a small closed loop, and relative acceleration of neighboring geodesics (or geodesic deviation, for short). The Newtonian Limit Of course, general relativity would not be accepted by any serious physicist if it did not reproduce the well-tested predictions of Newtonian gravity in the appropriate limit! In fact, this is the route Einstein almost certainly followed in trying to relate the admittedly somewhat mathematically abstract formalism of Riemannian geometry to the physical theory of gravity. What is this Newtonian limit? Basically, it is the limit of slow velocities, where slow here means in comparison with the speed of light. So Newtonian gravity should appear in some sort of nonrelativistic limit. As we shall see, the full theory of general relativity is nonlinear in the gravitational field quantities (such as the metric and its derivatives). However, Newtonian gravity is linear: the gravity produced by several objects together equals the sum of the gravities from the individual objects. So we need to linearize things as well to get the appropriate limit. One consequence of this is that we cannot examine the regime of strong gravity in this limit, where the nonlinearities become important. So the Newtonian limit is also the weak-field limit. As with any approximation to a more exact theory, the Newtonian limit is strictly only valid in the regime where it is claimed to be. So if we extrapolate outside this limit, we find some inconsistencies. For instance, we ll see below that the value of γ = dt/dτ gets set to a constant in examining the geodesic equation for timelike geodesics which are nonrelativistic. However, this means that the special-relativistic effect of time dilation due to clock movement is being suppressed in this limit. We may still dot the proper velocity with itself using the full metric; we would find that γ has terms which depend on the velocity, as expected, so it s not really a constant! This just demonstrates that one must not examine the Newtonian limit too carefully, or such inconsistencies will appear. Thus, we ll just be taking this brief look at the Newtonian limit in this chapter, and we ll quickly move on to the full theory. 1

2 Weak gravity effects on nonrelativistic motion One of the basic assumptions in the Newtonian limit is that the metric does not differ much from the regular metric of special relativity: g µν η µν where η µν = diag(1, 1, 1, 1) in Cartesian coordinates, as we saw in Chapter 5. Of course, if this were an exact equality, we would have geodesic motion equal to that in special relativity, which states that particles move in straight lines with no gravitational effects at all! So the main problem is to find the lowest-order correction to this in some sort of expansion in the strength of the gravitational field, and in the limit of nonrelativistic speeds. Another important assumption is that the correction terms which do appear are slowly varying. Mathematically, this is expressed as g µν t This does not say that the background masses causing the gravitational field cannot move! We all know that when several large masses are in each other s gravitational fields, they must move. Instead, the equation basically asserts that the instantaneous value of the gravitational field is more important in determining the differential equation governing particle motions than the changes in the field are. So, the Newtonian limit excludes situations such as having Jupiter flying close by at nearly the speed of light! The other ingredient is that we are in the nonrelativistic domain. In terms of the four-velocity defined in chapter 5 for particles with mass, this means that u 0 >> max u i, so that the time component, u 0 = d(ct)/dτ, is much greater than each of the spacelike terms u i = dx i /dτ. If we use g µν η µν, this means that γ c γ v 3D, where γ = dt/dτ. (Careful, as the relation dt/dτ = 1/ 1 v 2 /c 2 is now only valid if we are in Minkowski space, with gµν exactly equal to η µν. Otherwise, the full metric line element is necessary to find this relation in the general case.) So we may cancel the γ factors, finding that c v 3D is the nonrelativistic limit, as expected. We expect the Newtonian gravitational force to show up from the geodesic equations in the appropriate limit, so we begin with the general proper-time parameterized geodesic equation: 0 du α dτ + Γα µνu µ u ν = 0 The only places for an effective force to appear is in the connection term, since the first term is the four-acceleration we re trying to find. The nonrelativistic limit says that this will be most important when µ = ν = 0, since then the dominant u 0 term will be multiplying Γ in both slots. We then find the nonrelativistic limit of the geodesic equation to be du α dτ + Γα 00u 0 u 0 0 2

3 (no sum over 0 here; it s not a dummy index!), or just du α dτ + Γα 00γ 2 c 2 0. Next, we examine this equation for the four possible values of α. Setting α = 0 requires us to find Γ 0 00, which vanishes! Why? Because in our coordinate basis, the formula for the connection symbols is Γ α µν = 1 2 gαβ [ g βν,µ + g µβ,ν g µν,β ] and since the metric is diagonal and all time derivatives vanish, we find that Γ 0 00 = 0 in the Newtonian limit. Plugging this back in gives dγ/dτ 0, so that γ = dt/dτ is a constant. We may then apply the chain rule to convert proper-time derivatives into ordinary time derivatives: d dτ = dt d dτ dt = γ d dt This is true regardless of whether γ changes with τ or not. However, in this case where γ is a constant, we can apply d/dτ to this equation again, finding that second derivatives with respect to τ become second derivatives with respect to t times γ 2, without any derivatives of γ appearing. Thus, spatial indices i for α in the geodesic equation become and we may cancel the γ 2 to give γ 2 d2 x i dt 2 + Γi 00γ 2 c 2 0 d 2 x i dt 2 Γi 00c 2 Again, because we have a diagonal metric and all its time derivatives approximately vanish, we find that the only term contributing to Γ i 00 is the i th derivative of g 00 : Γ i gii g 00,i with no sum on the fixed spatial index i. This term will vanish unless g 00,i is nonzero, so that term must supply the Newtonian gravitational force. Newtonian gravity is linear in the sources, so we can only keep terms to first order in the gravitational field. So we use η ii = 1 for g ii in calculating Γ i 00 here. Putting it all together then gives d 2 x i dt g 00,i c 2 The right hand side should be the acceleration due to gravity, of course. The Newtonian force due to gravity is generally mg = Φ, where Φ is the gravitational potential energy, so the right hand side should reduce to (Φ/m)/ x i, 3

4 giving g 00,i = 2Φ,i /(mc 2 ). Together with the condition that g 00 η 00, the solution is ( g Φ ) mc 2 Notation: your book writes Φ for Φ/m here; they are using the gravitational potential energy per mass for Φ, rather than the potential energy itself, which we use here. In fact, this equation is exact when the metric is stationary! The Newtonian approximation is actually in not allowing any of the other components of g µν to vary from η µν. Since gravity is attractive, the gravitational potential energy for a collection of point masses is a negative quantity: Φ = j GM j m r j (1) where the sum runs over all the masses M j which create the gravity which mass m is responding to. We also see from this that Φ/m is independent of the test mass m, as it must be if that combination appears in the expression for the metric. We can apply the metric formula for a clock at rest with a diagonal metric to find that dτ = g 00 dt, The negative value for Φ in this case tells us that 0 < g 00 < 1, so clocks at rest near one of the masses M j will tick more slowly than a clock which is infinitely far away from them all! This is precisely gravitational time dilation, which we presumed must exist when we examined accelerating coordinate systems in special relativity. To escape from the Newtonian limit and find out how to construct the full metric, we need Einstein s equation, which is the subject of the next chapter. First, we ll need to introduce the curvature tensors, as they play starring roles in Einstein s equation. The Riemann curvature tensor Classically, there are two distinct geometric notions of curvature, extrinsic and intrinsic. Extrinsic curvature is a property of how an object (or manifold) is sitting in a higher-dimensional space. For instance, a shoestring could have a very curved appearance as it makes a knot on your shoe, and the surface of a metal cylinder makes for a curved mirror which distorts reflections. Extrinsic curvature of a manifold cannot be measured by a being which lives purely on that manifold, since it depends on the higher dimensions it sits in. On the other hand, intrinsic curvature refers to properties which may always be measured from within the manifold itself. In general relativity, that is the only type of curvature which we are interested in! The reason is that we don t have any way of knowing about what goes on outside of spacetime, if spacetime were to be sitting in some higher-dimensional universe of more than 4 spacetime dimensions. So we ll always mean intrinsic curvature when speaking about curvature. 4

5 It turns out that curvature is a property of two-dimensional surfaces! No curvature exists for one-dimensional manifolds. An ant who could only move, see, and measure along the long axis of your shoestring would have no way of telling whether the way it sits in three dimensions is curved (or knotted, for that matter). For manifolds of dimensions higher than two, curvature may occur separately in each of the independent two-dimensional slices (which we ll just call surfaces ), in general. A nontechnical way of thinking about curvature of a surface is to examine whether a flat piece of paper may be placed on that surface without tearing or crinkling the piece of paper. So by this definition, the surface of a cylinder has no (intrinsic) curvature, since you can put a flat piece of paper on it without tearing or crinkling (rolling it up to match the cylinder s shape does not require either of these). By the same test, the surface of a sphere really is curved, as is the fender on a bicycle (or aerodynamic car). More technically, the three classic signatures of intrinsic curvature are: failure of covariant derivatives to commute (on components of any tensor field besides a scalar), rotation of a vector after parallel transport around a small closed curve, and relative acceleration of neighboring geodesics. Although the first two of these seem rather different (the first requires a vector or tensor field, and the second requires only a single vector at a point), they are very closely related. In fact, the relation is very similar to that of the two jobs the connection symbols Γ perform: covariant differentiation (of the components of a field) and parallel transport (of a single vector or tensor). Parallel transport is defined to keep things constant, so that the covariant derivative of the vector field formed by parallel transport is zero. (The precise definition of constant is that derivatives of the object vanish.) The third test is also closely related to the first two, for two closely spaced geodesics form a surface (spanned by the direction of the geodesic, and the direction of their separation). Breaking up this surface into tiny squares around which parallel transport is performed on each relates geodesic deviation to the other two tests. Commutation of covariant derivatives Your book defines the Riemann tensor using the commutator of second derivatives on a covector: [ µ ν ν µ ] v α = R β ανµv β which, after a short calculation, gives (this is eq. [7.13] of your text) R β ανµ = ν Γ β αµ µ Γ β αν + Γ σ αµγ β σν Γ σ ανγ β σµ from which we can see that the Riemann tensor is antisymmetric in its last two indices: R β ανµ = R β αµν. (More about this and other symmetries later.) So we may also write the above relation as [ µ ν ν µ ] v α = R β αµνv β 5

6 (Note the switching of µ and ν from the previous version, which introduced the minus sign.) A similar calculation on the components of a contravariant vector gives [ µ ν ν µ ] v α = +R α βµνv β with the same placement of µ and ν as the equation immediately above it, but now with a positive sign on the Riemann tensor. Also, note that the roles of the first two indices have switched places, as they must in order to be consistent with the tensor notation (one up and one down index for any summed dummy index), since the Riemann tensor is always contracted with the vector index (up or down). At this point, we can say something about the various indices on the Riemann tensor: the second two indices specify the plane for which curvature is being measured, and the first two indices do the actual shuffling of the vector indices. Here, the plane is really the plane made by the two directions along which covariant derivatives are being performed. Notice that if µ = ν, the Riemann tensor vanishes! This is trivially true since a a a a is clearly zero; you really do need a plane for curvature to be present. What about other tensors? The general rule follows much the same pattern that the rules for including Γ factors in covariant derivatives of tensors do: we get a sum of terms, with one positive Γ factor for each upstairs index of the tensor in turn, and one negative Γ factor for each down index. Similarly, we get a sum of the Riemann tensor with a positive sign contracted with each up index in turn, and a negative sign for each down index of the tensor (to use the µν ordering as was done in the latter equations for vectors above). This leaves no Riemann tensor terms for covariant derivatives of a scalar! This is because ( µ ν ν µ )f = 0 if f is a scalar (without indices attached). Proving this is not as trivial as one might think at first! Although the first covariant derivative of a scalar is just the ordinary derivative (so that you might think we re just restating the commutation of ordinary derivatives), the covariant derivative of a scalar is now a (co)vector! So the second covariant derivatives involve the appearance of some Γ connection factors, and it turns out that the fact that we required Γ α µν = Γ α νµ in coordinate bases provides the necessary cancellation. You are strongly urged to show this yourself using the rules for µ ; it s not difficult! Parallel transport around closed curves The Riemann tensor also appears when checking a vector for rotation after parallel transport around a small closed curve in some plane. This job of the Riemann tensor is often used to illustrate curvature, but it is seldom used in calculations in general relativity. Your book gives the equation for this job as equation (7.21), which is still a bit obscure-looking, so here is a plain explanation in words: If a vector is parallel transported around a small closed curve of area A, the vector is rotated by an amount proportional to the Riemann tensor at the point of origin, times the area A of the curve. 6

7 This immediately again shows that curvature requires at least two dimensions, or the area of the loop would vanish! Again, we see the roles played by the various indices of the Riemann tensor: the final two indices specify the plane formed by the closed loop, and the first two indices rotate the vector components. (Of course, this again generalizes to higher tensors as a sum of such terms.) Note that only rotations are allowed, and not stretching, because one of the requirements of parallel transport was that it preserves the magnitudes of vectors. Geodesic deviation The third classic test of curvature is the failure of initially parallel neighboring geodesics to remain parallel, also known as geodesic deviation for short. In essence, this is a measure of a counterexample to Euclid s famous fifth postulate of geometry: that two initially parallel lines remain parallel for all time if the lines are straight. If they do, the space is flat (Euclidean), if not, it is curved! The geodesic deviation equation is given by equation (7.24) of your book (and again repackaged as [7.25] and [7.26] together): D 2 ξ a Du 2 + dx c Ra dxd cbd ξb du du = 0. In the equation, ξ represents the vector which points from one geodesic to the next, and D/Du is the operation of covariant differentiation along a curve, defined back in chapter 3 (the tangent vector to the curve which is parameterized by u, contracted with covariant derivative along the curve). Again, we see from the index placement that the tangent to one of the curves itself and the deviation vector ξ go with the last two indices of the Riemann tensor, so they specify the plane of curvature. The other curve s tangent vector (which is equal to the first s, to lowest order) is in the slot where vector components get rotated. Relative rotation of one geodesic s tangent with respect to the other changes their separation as we move along in u, so it shows up as an acceleration of the deviation vector between the two. Since only covariant derivatives make intrinsic geometric sense, the acceleration expression involves only capital Ds (and so they have ordinary d and connection symbols when written out in full). The geodesic deviation equation is often used in general relativity, for it describes tidal forces produced by gravity! For instance, the Earth as a whole moves as though its mass were all concentrated at the center. So only the center of mass actually follows a geodesic as the Earth moves in response to the gravity of the moon and sun. Points nearer to and farther from the moon than the earth s center feel weaker and stronger lunar gravity (respectively) than the center does, so there s a relative tidal force from this. In a similar way, the interior of the Earth feels tidal stresses (except at the center of mass), which cause a slight heating. When tidal forces are stronger (such as is the case on Jupiter s moon Io), the stresses can and do actually trigger volcanism. More generally, tidal forces are the signature of a nonuniform gravitational field. A uniform gravitational field is always equivalent to a uniformly accelerating reference frame, and so becomes Minkowski spacetime in freely falling 7

8 coordinates. So tidal forces, and the Riemann tensor, roughly measure the size beyond which reference frames cease to have physics which mimics that of special relativity. Notice that the Riemann tensor has dimensions of inverse area, since each covariant derivative of a coordinate with length has dimensions of inverse length. So the size beyond which you will notice tidal forces in a plane is roughly the inverse of the components of the Riemann tensor which correspond to that plane. Symmetries of the Riemann tensor As a tensor with four indices, the Riemann tensor could have as many as n 4 independent components, in n spacetime dimensions (this is 256 for n = 4). However, it possesses a number of important symmetries, which reduce the number of independent components greatly. These symmetries are easiest to state when we examine the tensor in fully covariant (0, 4) form (or fully contravariant form, of course). We ll follow the usual course and refer to the parallel-transport job of the Riemann tensor in analyzing these, as it s easiest to talk about, even though it s the least used of the three jobs the Riemann tensor has. Antisymmetry in last two indices: R abcd = R abdc. As we mentioned before, this is because the final indices label a plane, and you need two different indices to specify a plane! So it s at least off-diagonal in these indices. The fact that we have only antisymmetric and not symmetric off-diagonal components is most easily seen when performing integration of areas, which requires an orientation of each plane. Oriented planes have an intrinsic antisymmetry, just as the area between a curve f(x) and the x axis counts as negative when f lies below the axis in integration. Antisymmetry in first two indices: R abcd = R bacd. Since the first two indices perform the rotation of tensor components, this is a property of rotation matrices! They must be off-diagonal (else they would stretch the x component of a vector pointing purely in the x direction, if for example R xxyt were nonzero, which isn t allowed since parallel transport preserves lengths). Also, symmetric off-diagonal terms perform a shearing and not a rotation of little areas, so only off-diagonal ones remain since parallel transport must also preserve relative angles between two vectors. Symmetry when swapping first two indices with last two: R abcd = R cdab. This says that if the plane of parallel transport is switched with the plane of vector rotation, the total result is identical (which is interesting)! Cyclic antisymmetry of last three indices: R abcd + R acdb + R adbc = 0. This is not an independent symmetry, but may be derived by manipulating the three symmetries already mentioned. Bianchi identity: e R abcd + c R abde + d R abec = 0. This is a (covariant) differential identity, and so is of a bit of different character than the others. The derivatives signify that we re looking at the tensor at slightly different points. In full, it says that if we take any closed 3-dimensional cube and parallel transport a vector around all 6 faces (preserving the outward orientation of each face), then we get zero total rotation! This makes perfect sense when you draw a 8

9 picture: each edge of a cube gets traversed twice under such a prescription, once in each direction, and so the net rotations all must cancel. The derivative terms arise from moving from one face to its opposite face: instead of examining the Riemann tensor at a point, we must also invoke its covariant derivatives. Symmetries of the tensor in other forms If you are wondering how to use these symmetries in the (1,3) form of the Riemann tensor or other forms, the solution is just to raise and/or lower the same index at the same time in all terms of the equation expressing the symmetry. For example, we may contract the third symmetry with the inverse metric: and so g ae R abcd = g ae R cdab R e bcd = R cd e b and so on. Contractions of the Riemann tensor Since we have four indices, we may contract over any two. This produces either zero (if done over two antisymmetric indices), or what is known as the Ricci tensor, or (after two contractions) the Ricci scalar. These tensors play a primary role in the Einstein equation which is the central equation of state in general relativity, and so we will examine them in the notes to chapter 8, where the Einstein equation is introduced. 9

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. http://preposterousuniverse.com/grnotes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been framed

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

Lecture: General Theory of Relativity

Lecture: General Theory of Relativity Chapter 8 Lecture: General Theory of Relativity We shall now employ the central ideas introduced in the previous two chapters: The metric and curvature of spacetime The principle of equivalence The principle

More information

Accelerated Observers

Accelerated Observers Accelerated Observers In the last few lectures, we ve been discussing the implications that the postulates of special relativity have on the physics of our universe. We ve seen how to compute proper times

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

A873: Cosmology Course Notes. II. General Relativity

A873: Cosmology Course Notes. II. General Relativity II. General Relativity Suggested Readings on this Section (All Optional) For a quick mathematical introduction to GR, try Chapter 1 of Peacock. For a brilliant historical treatment of relativity (special

More information

Lecture 8: Curved Spaces

Lecture 8: Curved Spaces EPGY Summer Institute Special and General Relativity 2012 Lecture 8: Curved Spaces With the necessity of curved geodesics within regions with significant energy or mass concentrations we need to understand

More information

Scott Hughes 12 May Massachusetts Institute of Technology Department of Physics Spring 2005

Scott Hughes 12 May Massachusetts Institute of Technology Department of Physics Spring 2005 Scott Hughes 12 May 2005 24.1 Gravity? Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005 Lecture 24: A (very) brief introduction to general relativity. The Coulomb interaction

More information

Basics of Special Relativity

Basics of Special Relativity Basics of Special Relativity You must understand special relativity in order to really understand general relativity. Here s a brief summary of the basic ideas and terminology of special relativity (there

More information

= (length of P) 2, (1.1)

= (length of P) 2, (1.1) I. GENERAL RELATIVITY A SUMMARY A. Pseudo-Riemannian manifolds Spacetime is a manifold that is continuous and differentiable. This means that we can define scalars, vectors, 1-forms and in general tensor

More information

2.1 The metric and and coordinate transformations

2.1 The metric and and coordinate transformations 2 Cosmology and GR The first step toward a cosmological theory, following what we called the cosmological principle is to implement the assumptions of isotropy and homogeneity withing the context of general

More information

Lecture I: Vectors, tensors, and forms in flat spacetime

Lecture I: Vectors, tensors, and forms in flat spacetime Lecture I: Vectors, tensors, and forms in flat spacetime Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: September 28, 2011) I. OVERVIEW The mathematical description of curved

More information

Vectors. January 13, 2013

Vectors. January 13, 2013 Vectors January 13, 2013 The simplest tensors are scalars, which are the measurable quantities of a theory, left invariant by symmetry transformations. By far the most common non-scalars are the vectors,

More information

The principle of equivalence and its consequences.

The principle of equivalence and its consequences. The principle of equivalence and its consequences. Asaf Pe er 1 January 28, 2014 This part of the course is based on Refs. [1], [2] and [3]. 1. Introduction We now turn our attention to the physics of

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1)

Ask class: what is the Minkowski spacetime in spherical coordinates? ds 2 = dt 2 +dr 2 +r 2 (dθ 2 +sin 2 θdφ 2 ). (1) 1 Tensor manipulations One final thing to learn about tensor manipulation is that the metric tensor is what allows you to raise and lower indices. That is, for example, v α = g αβ v β, where again we use

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Week 9: Einstein s field equations

Week 9: Einstein s field equations Week 9: Einstein s field equations Riemann tensor and curvature We are looking for an invariant characterisation of an manifold curved by gravity. As the discussion of normal coordinates showed, the first

More information

Lorentz Transformations and Special Relativity

Lorentz Transformations and Special Relativity Lorentz Transformations and Special Relativity Required reading: Zwiebach 2.,2,6 Suggested reading: Units: French 3.7-0, 4.-5, 5. (a little less technical) Schwarz & Schwarz.2-6, 3.-4 (more mathematical)

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

Geometry of the Universe: Cosmological Principle

Geometry of the Universe: Cosmological Principle Geometry of the Universe: Cosmological Principle God is an infinite sphere whose centre is everywhere and its circumference nowhere Empedocles, 5 th cent BC Homogeneous Cosmological Principle: Describes

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

4-Vector Notation. Chris Clark September 5, 2006

4-Vector Notation. Chris Clark September 5, 2006 4-Vector Notation Chris Clark September 5, 2006 1 Lorentz Transformations We will assume that the reader is familiar with the Lorentz Transformations for a boost in the x direction x = γ(x vt) ȳ = y x

More information

Curved Spacetime... A brief introduction

Curved Spacetime... A brief introduction Curved Spacetime... A brief introduction May 5, 2009 Inertial Frames and Gravity In establishing GR, Einstein was influenced by Ernst Mach. Mach s ideas about the absolute space and time: Space is simply

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

Equivalence Principles

Equivalence Principles Physics 411 Lecture 15 Equivalence Principles Lecture 15 Physics 411 Classical Mechanics II October 1st 2007 We have the machinery of tensor analysis, at least enough to discuss the physics we are in a

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

A Remark About the Geodesic Principle in General Relativity

A Remark About the Geodesic Principle in General Relativity A Remark About the Geodesic Principle in General Relativity Version 3.0 David B. Malament Department of Logic and Philosophy of Science 3151 Social Science Plaza University of California, Irvine Irvine,

More information

2 General Relativity. 2.1 Curved 2D and 3D space

2 General Relativity. 2.1 Curved 2D and 3D space 22 2 General Relativity The general theory of relativity (Einstein 1915) is the theory of gravity. General relativity ( Einstein s theory ) replaced the previous theory of gravity, Newton s theory. The

More information

Lecture: Principle of Equivalence

Lecture: Principle of Equivalence Chapter 6 Lecture: Principle of Equivalence The general theory of relativity rests upon two principles that are in fact related: The principle of equivalence The principle of general covariance 6.1 Inertial

More information

Relativistic Mechanics

Relativistic Mechanics Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion

More information

Introduction to General Relativity

Introduction to General Relativity Introduction to General Relativity 1 Recall Newtonian gravitation: Clearly not Lorentz invariant, since Laplacian appears rather than d'alembertian. No attempt to find Lorentz invariant equations that

More information

u r u r +u t u t = 1 g rr (u r ) 2 +g tt u 2 t = 1 (u r ) 2 /(1 2M/r) 1/(1 2M/r) = 1 (u r ) 2 = 2M/r.

u r u r +u t u t = 1 g rr (u r ) 2 +g tt u 2 t = 1 (u r ) 2 /(1 2M/r) 1/(1 2M/r) = 1 (u r ) 2 = 2M/r. 1 Orthonormal Tetrads, continued Here s another example, that combines local frame calculations with more global analysis. Suppose you have a particle at rest at infinity, and you drop it radially into

More information

Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Covariant Geometry - We would like to develop a mathematical framework

More information

Schwarschild Metric From Kepler s Law

Schwarschild Metric From Kepler s Law Schwarschild Metric From Kepler s Law Amit kumar Jha Department of Physics, Jamia Millia Islamia Abstract The simplest non-trivial configuration of spacetime in which gravity plays a role is for the region

More information

Lecture VIII: Linearized gravity

Lecture VIII: Linearized gravity Lecture VIII: Linearized gravity Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: November 5, 2012) I. OVERVIEW We are now ready to consider the solutions of GR for the case of

More information

Relativity Discussion

Relativity Discussion Relativity Discussion 4/19/2007 Jim Emery Einstein and his assistants, Peter Bergmann, and Valentin Bargmann, on there daily walk to the Institute for advanced Study at Princeton. Special Relativity The

More information

Chapter 11. Special Relativity

Chapter 11. Special Relativity Chapter 11 Special Relativity Note: Please also consult the fifth) problem list associated with this chapter In this chapter, Latin indices are used for space coordinates only eg, i = 1,2,3, etc), while

More information

Modern Physics notes Paul Fendley Lecture 35. Born, chapter III (most of which should be review for you), chapter VII

Modern Physics notes Paul Fendley Lecture 35. Born, chapter III (most of which should be review for you), chapter VII Modern Physics notes Paul Fendley fendley@virginia.edu Lecture 35 Curved spacetime black holes Born, chapter III (most of which should be review for you), chapter VII Fowler, Remarks on General Relativity

More information

General Relativity and Differential

General Relativity and Differential Lecture Series on... General Relativity and Differential Geometry CHAD A. MIDDLETON Department of Physics Rhodes College November 1, 2005 OUTLINE Distance in 3D Euclidean Space Distance in 4D Minkowski

More information

Classical differential geometry of two-dimensional surfaces

Classical differential geometry of two-dimensional surfaces Classical differential geometry of two-dimensional surfaces 1 Basic definitions This section gives an overview of the basic notions of differential geometry for twodimensional surfaces. It follows mainly

More information

Tensor Calculus, Part 2

Tensor Calculus, Part 2 Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 2002 Tensor Calculus, Part 2 c 2000, 2002 Edmund Bertschinger. 1 Introduction The first set of 8.962 notes, Introduction

More information

Final Physics of Schwarzschild

Final Physics of Schwarzschild Physics 4 Lecture 32 Final Physics of Schwarzschild Lecture 32 Physics 4 Classical Mechanics II November 6th, 27 We have studied a lot of properties of the Schwarzschild metric I want to finish with a

More information

General Relativity (225A) Fall 2013 Assignment 2 Solutions

General Relativity (225A) Fall 2013 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy General Relativity 5A) Fall 13 Assignment Solutions Posted October 3, 13 Due Monday, October 15, 13 1. Special relativity

More information

Properties of Traversable Wormholes in Spacetime

Properties of Traversable Wormholes in Spacetime Properties of Traversable Wormholes in Spacetime Vincent Hui Department of Physics, The College of Wooster, Wooster, Ohio 44691, USA. (Dated: May 16, 2018) In this project, the Morris-Thorne metric of

More information

Physics 325: General Relativity Spring Final Review Problem Set

Physics 325: General Relativity Spring Final Review Problem Set Physics 325: General Relativity Spring 2012 Final Review Problem Set Date: Friday 4 May 2012 Instructions: This is the third of three review problem sets in Physics 325. It will count for twice as much

More information

Number-Flux Vector and Stress-Energy Tensor

Number-Flux Vector and Stress-Energy Tensor Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 2002 Number-Flux Vector and Stress-Energy Tensor c 2000, 2002 Edmund Bertschinger. All rights reserved. 1 Introduction These

More information

Linearized Gravity Return to Linearized Field Equations

Linearized Gravity Return to Linearized Field Equations Physics 411 Lecture 28 Linearized Gravity Lecture 28 Physics 411 Classical Mechanics II November 7th, 2007 We have seen, in disguised form, the equations of linearized gravity. Now we will pick a gauge

More information

Lecture X: External fields and generation of gravitational waves

Lecture X: External fields and generation of gravitational waves Lecture X: External fields and generation of gravitational waves Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: November 12, 2012) I. OVEVIEW Having examined weak field gravity

More information

Tutorial I General Relativity

Tutorial I General Relativity Tutorial I General Relativity 1 Exercise I: The Metric Tensor To describe distances in a given space for a particular coordinate system, we need a distance recepy. The metric tensor is the translation

More information

Review of General Relativity

Review of General Relativity Lecture 3 Review of General Relativity Jolien Creighton University of Wisconsin Milwaukee July 16, 2012 Whirlwind review of differential geometry Coordinates and distances Vectors and connections Lie derivative

More information

Lecture IX: Field equations, cosmological constant, and tides

Lecture IX: Field equations, cosmological constant, and tides Lecture IX: Field equations, cosmological constant, and tides Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: October 28, 2011) I. OVERVIEW We are now ready to construct Einstein

More information

A Curvature Primer. With Applications to Cosmology. Physics , General Relativity

A Curvature Primer. With Applications to Cosmology. Physics , General Relativity With Applications to Cosmology Michael Dine Department of Physics University of California, Santa Cruz November/December, 2009 We have barely three lectures to cover about five chapters in your text. To

More information

16. Einstein and General Relativistic Spacetimes

16. Einstein and General Relativistic Spacetimes 16. Einstein and General Relativistic Spacetimes Problem: Special relativity does not account for the gravitational force. To include gravity... Geometricize it! Make it a feature of spacetime geometry.

More information

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used.

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used. UNIVERSITY OF LONDON BSc/MSci EXAMINATION May 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26 General Relativity Einstein s Theory of Gravitation Robert H. Gowdy Virginia Commonwealth University March 2007 R. H. Gowdy (VCU) General Relativity 03/06 1 / 26 What is General Relativity? General Relativity

More information

3 Parallel transport and geodesics

3 Parallel transport and geodesics 3 Parallel transport and geodesics 3.1 Differentiation along a curve As a prelude to parallel transport we consider another form of differentiation: differentiation along a curve. A curve is a parametrized

More information

Covariant Formulation of Electrodynamics

Covariant Formulation of Electrodynamics Chapter 7. Covariant Formulation of Electrodynamics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 11, and Rybicki and Lightman, Chap. 4. Starting with this chapter,

More information

Modern Physics notes Spring 2006 Paul Fendley Lecture 35

Modern Physics notes Spring 2006 Paul Fendley Lecture 35 Modern Physics notes Spring 2006 Paul Fendley fendley@virginia.edu Lecture 35 Gravity and clocks Curved spacetime Born, chapter III (most of which should be review for you), chapter VII Fowler, Remarks

More information

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018

General Relativity (j µ and T µν for point particles) van Nieuwenhuizen, Spring 2018 Consistency of conservation laws in SR and GR General Relativity j µ and for point particles van Nieuwenhuizen, Spring 2018 1 Introduction The Einstein equations for matter coupled to gravity read Einstein

More information

The spacetime of special relativity

The spacetime of special relativity 1 The spacetime of special relativity We begin our discussion of the relativistic theory of gravity by reviewing some basic notions underlying the Newtonian and special-relativistic viewpoints of space

More information

In deriving this we ve used the fact that the specific angular momentum

In deriving this we ve used the fact that the specific angular momentum Equation of Motion and Geodesics So far we ve talked about how to represent curved spacetime using a metric, and what quantities are conserved. Now let s see how test particles move in such a spacetime.

More information

Physics 411 Lecture 13. The Riemann Tensor. Lecture 13. Physics 411 Classical Mechanics II

Physics 411 Lecture 13. The Riemann Tensor. Lecture 13. Physics 411 Classical Mechanics II Physics 411 Lecture 13 The Riemann Tensor Lecture 13 Physics 411 Classical Mechanics II September 26th 2007 We have, so far, studied classical mechanics in tensor notation via the Lagrangian and Hamiltonian

More information

x α x β g α β = xα x β g αβ. (1.1)

x α x β g α β = xα x β g αβ. (1.1) Physics 445 Solution for homework 4 Fall Cornell University NOTE We use the notion where four-vectors v are denoted by an arrow, and three-vectors v will be in bold. Hartle uses the opposite notation.

More information

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Lecture - 21 Central Potential and Central Force Ready now to take up the idea

More information

Gravitation och Kosmologi Lecture Notes

Gravitation och Kosmologi Lecture Notes Gravitation och Kosmologi Lecture Notes Joseph A. Minahan c Uppsala, 2002-2012 Chapter 0 Overview This course is an introduction to Einstein s theory of general relativity. It is assumed that you are already

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

General Relativity ASTR 2110 Sarazin. Einstein s Equation

General Relativity ASTR 2110 Sarazin. Einstein s Equation General Relativity ASTR 2110 Sarazin Einstein s Equation Curvature of Spacetime 1. Principle of Equvalence: gravity acceleration locally 2. Acceleration curved path in spacetime In gravitational field,

More information

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7 Geometry of SpaceTime Einstein Theory of Gravity II Max Camenzind CB Oct-2010-D7 Textbooks on General Relativity Geometry of SpaceTime II Connection and curvature on manifolds. Sectional Curvature. Geodetic

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Vectors, metric and the connection

Vectors, metric and the connection Vectors, metric and the connection 1 Contravariant and covariant vectors 1.1 Contravariant vectors Imagine a particle moving along some path in the 2-dimensional flat x y plane. Let its trajectory be given

More information

Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) f = m i a (4.1) f = m g Φ (4.2) a = Φ. (4.4)

Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) f = m i a (4.1) f = m g Φ (4.2) a = Φ. (4.4) Chapter 4 Gravitation Problem Set #4: 4.1, 4.3, 4.5 (Due Monday Nov. 18th) 4.1 Equivalence Principle The Newton s second law states that f = m i a (4.1) where m i is the inertial mass. The Newton s law

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 35

Modern Physics notes Spring 2005 Paul Fendley Lecture 35 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 35 Gravity and clocks Curved spacetime Born, chapter III (most of which should be review for you), chapter VII Fowler, Remarks

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.8 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.8 F008 Lecture 0: CFTs in D > Lecturer:

More information

We begin our discussion of special relativity with a power point presentation, available on the website.

We begin our discussion of special relativity with a power point presentation, available on the website. Special Relativity We begin our discussion of special relativity with a power point presentation, available on the website.. Spacetime From the power point presentation, you know that spacetime is a four

More information

Einstein for Everyone Lecture 6: Introduction to General Relativity

Einstein for Everyone Lecture 6: Introduction to General Relativity Einstein for Everyone Lecture 6: Introduction to General Relativity Dr. Erik Curiel Munich Center For Mathematical Philosophy Ludwig-Maximilians-Universität 1 Introduction to General Relativity 2 Newtonian

More information

Chapter 2 Lorentz Connections and Inertia

Chapter 2 Lorentz Connections and Inertia Chapter 2 Lorentz Connections and Inertia In Special Relativity, Lorentz connections represent inertial effects present in non-inertial frames. In these frames, any relativistic equation acquires a manifestly

More information

Chapter 2 General Relativity and Black Holes

Chapter 2 General Relativity and Black Holes Chapter 2 General Relativity and Black Holes In this book, black holes frequently appear, so we will describe the simplest black hole, the Schwarzschild black hole and its physics. Roughly speaking, a

More information

Astrophysics ASTR3415. Part 2: Introduction to General Relativity

Astrophysics ASTR3415. Part 2: Introduction to General Relativity East Tennessee State University Department of Physics, Astronomy & Geology Astrophysics ASTR3415 Part 2: Introduction to General Relativity These notes provide an introduction to the theory of general

More information

Metrics and Curvature

Metrics and Curvature Metrics and Curvature How to measure curvature? Metrics Euclidian/Minkowski Curved spaces General 4 dimensional space Cosmological principle Homogeneity and isotropy: evidence Robertson-Walker metrics

More information

Unified Field Theory of Gravitation and Electricity

Unified Field Theory of Gravitation and Electricity Unified Field Theory of Gravitation and Electricity Albert Einstein translation by A. Unzicker and T. Case Session Report of the Prussian Academy of Sciences, pp. 414-419 July 25th, 1925 Among the theoretical

More information

Level sets of the lapse function in static GR

Level sets of the lapse function in static GR Level sets of the lapse function in static GR Carla Cederbaum Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen, Germany September 4, 2014 Abstract We present a novel

More information

General Relativity (225A) Fall 2013 Assignment 8 Solutions

General Relativity (225A) Fall 2013 Assignment 8 Solutions University of California at San Diego Department of Physics Prof. John McGreevy General Relativity (5A) Fall 013 Assignment 8 Solutions Posted November 13, 013 Due Monday, December, 013 In the first two

More information

Gravitation: Special Relativity

Gravitation: Special Relativity An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Physics 209 Fall 2002 Notes 5 Thomas Precession

Physics 209 Fall 2002 Notes 5 Thomas Precession Physics 209 Fall 2002 Notes 5 Thomas Precession Jackson s discussion of Thomas precession is based on Thomas s original treatment, and on the later paper by Bargmann, Michel, and Telegdi. The alternative

More information

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity.

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Minkowski spacetime Pham A. Quang Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Contents 1 Introduction 1 2 Minkowski spacetime 2 3 Lorentz transformations

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 9 10 The special theory of relativity: Four vectors and relativistic dynamics 1 Worldlines In the spacetime diagram in figure 1 we see the path of a particle (or any object) through

More information

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Spring 207 Professor: Jared Speck Class Meeting # 2: Kirchhoff s Formula and Minkowskian Geometry. Kirchhoff s Formula We are now ready

More information

Contravariant and Covariant as Transforms

Contravariant and Covariant as Transforms Contravariant and Covariant as Transforms There is a lot more behind the concepts of contravariant and covariant tensors (of any rank) than the fact that their basis vectors are mutually orthogonal to

More information

Newton s Second Law is Valid in Relativity for Proper Time

Newton s Second Law is Valid in Relativity for Proper Time Newton s Second Law is Valid in Relativity for Proper Time Steven Kenneth Kauffmann Abstract In Newtonian particle dynamics, time is invariant under inertial transformations, and speed has no upper bound.

More information

ν ηˆαˆβ The inverse transformation matrices are computed similarly:

ν ηˆαˆβ The inverse transformation matrices are computed similarly: Orthonormal Tetrads Let s now return to a subject we ve mentioned a few times: shifting to a locally Minkowski frame. In general, you want to take a metric that looks like g αβ and shift into a frame such

More information

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström A brief introduction to Semi-Riemannian geometry and general relativity Hans Ringström May 5, 2015 2 Contents 1 Scalar product spaces 1 1.1 Scalar products...................................... 1 1.2 Orthonormal

More information

Continuity Equations and the Energy-Momentum Tensor

Continuity Equations and the Energy-Momentum Tensor Physics 4 Lecture 8 Continuity Equations and the Energy-Momentum Tensor Lecture 8 Physics 4 Classical Mechanics II October 8th, 007 We have finished the definition of Lagrange density for a generic space-time

More information