Variations on Quantum Ergodic Theorems. Michael Taylor

Size: px
Start display at page:

Download "Variations on Quantum Ergodic Theorems. Michael Taylor"

Transcription

1

2 Notes available on my website, under Downloadable Lecture Notes 8. Seminar talks and AMS talks See also 4. Spectral theory 7. Quantum mechanics connections

3 Basic quantization: a function on phase space is taken to an operator on a Hilbert space H. Euclidean case. H = L 2 (R n ). Position: x j Q j, Q j f = x j f. Momentum: p j P j, P j f = (1/i) f / x j. Laplace operator: p 2. Quantization of motion in a force field + V (x). Quantization of free motion on a Riemannian manifold M. H = L 2 (M). Use Laplace-Beltrami operator, i.e., ) f = g 1/2 j (g 1/2 g jk k f.

4 Classical free motion on M: geodesic flow dx j dt = E ξ j, dξ j dt = E x j E(x, ξ) = g jk ξ j ξ k = symbol of. Get flow on cotangent bundle T M, preserving level sets of E(x, ξ). Hence get flow. G t : S M S M The flow G t preserves a natural Liouville measure ds on S M. We normalize this so that S M ds = 1.

5 Basic problem: relate dynamical properties of the geodesic flow G t to spectral properties of. Assume M is a compact Riemannian manifold. L 2 (M) has an orthonormal basis {φ k : k N} of eigenfunctions of : φ k = λ 2 k φ k, λ k +. Weyl law: λ k (Ck) 1/n, as k, where n = dim M, and C = Γ(n/2 + 1)(4π) n/2 /Vol M. Here and below, normalize the metric on M so that Vol M = 1. Mean equidistribution of eigenfunctions: 1 N N φ k (x) 2 1, k=1 uniformly in x M, as N. One tool for these results: heat kernel asymptotics.

6 Question: when can lots of eigenfunctions concentrate on some subset of M? Example: Unit sphere S n in R n+1. Theorem (Shnirelman, 1974) Assume the flow G t on S M is ergodic. Then there is a subset N N, of density 0, such that for all b C(M), lim b(x) φ k (x) 2 dv (x) = b(x) dv (x). k,k / N M M

7 Further phase space localization brings in a quantization of C (S M), Quantizations include op : C (S M) OPS 0 (M) L(L 2 (M)). Kohn-Nirenberg quantization, op KN, Weyl quantization, op W, Friedrichs quantization, op F. These differ by maps from C (S M) to OPS 1 (M), a space of compact operators on L 2 (M). Special property of op F : a C (S M), a 0 = op F (a) 0. Constructions involve oscillatory integrals. See, e.g., [T1].

8 Kohn-Nirenberg quantization on R n a(x, D)u(x) = (2π) n/2 a(x, ξ)û(ξ)e ix ξ dξ, R n û(ξ) = (2π) n/2 u(y)e iyξ dy. R n

9 Theorem (Colin de Verdière, 1985) Assume the flow G t on S M is ergodic. Then there is a subset N N, of density 0, such that for all a C (S M), lim (Aφ k, φ k ) L 2 = a, k,k / N where A = op(a), a = S M a ds. Ingredients in the proof. Weyl law lim N 1 N N (Aφ k, φ k ) L 2 = a. k=1 (Does not require ergodicity of G t.)

10 Egorov theorem op(a G t ) U t AU t OPS 1 (M), where U t = e it. Mean ergodic theorem a T Pa in L 2 (S M, ds), as T, given a L 2 (S M), a T = 1 T T 0 a G t dt, P = orthogonal projection of L 2 (S M) onto G t -invariant elements.

11 Theorem (Schrader-Taylor 1989, Taylor 2015) Do not assume the flow G t on S M is ergodic. There is a subset N N, of density 0, such that if a C(S M), A = op F (a), then More generally, Pa = a = Pa C(S M) lim (Aφ k, φ k ) L 2 = a. k,k / N = lim k,k / N (Aφ k, φ k ) L 2 (op F (Pa)φ k, φ k ) L 2 = 0. First part proved in [ST], for a C (S M). Rest done in [T2]. Example Take M = T n, flat torus (so G t is integrable). Then Pa = a for a = a(x), i.e., for Af (x) = a(x)f (x).

12 This theorem uses the fact that, thanks to positivity a 0 = op F (a) 0, op F has a unique continuous extension from C (S M) to still satisfying such positivity. op F : C(S M) L(L 2 (M)), Example M is an inner tube, a non-flat torus of revolution in R 3. As shown in [T2], P : C(S M) C(S M), but P does not map C (S M) to C (S M), or even to the space of Hölder continuous functions on S M.

13 Quantization of discontinuous symbols ([T3]) The map op F has a unique extension from C(S M) to satisfying op F : L (S M) L(L 2 (M)), a ν a weak in L (S M) = op F (a ν ) op F (a) in the weak operator topology. Special case: op F : R(S M) L(L 2 (M)), where R(S M) is the space of bounded functions on S M that are Riemann integrable.

14 Theorem ([T3]) Assume the flow G t on S M is ergodic. Then there is a subset N N of density 0 such that lim (Aφ k, φ k ) L 2 = a ds, k,k / N S M whenever a R(S M), A = op F (a). Elementary special case: b(x) φ k (x) 2 dv (x) = lim k,k / N M M b(x) dv (x), provided b R(M).

15 Theorem ([T3]) Do not assume the flow G t on S M is ergodic. There is a subset N N, of density 0, such that lim (Aφ k, φ k ) L 2 (A p φ k, φ k ) L 2 = 0, k,k / N whenever A = op F (a), A p = op F (Pa), with a C(S M), Pa R(S M).

16 Local (in phase space) equidistribution result. (See also [Riv], [Gal].) Theorem ([T3]) Assume G t acts ergodically on an open set U S M. Then there is a subset N N, of density 0, such that if a, b R(S M) are supported on a compact subset of U, then U a ds = U b ds = lim k,k / N (Aφ k, φ k ) L 2 (Bφ k, φ k ) L 2 = 0, for A = op F (a), B = op F (b).

17 Concentration of eigenfunctions on S 2 G t periodic of period 2π. Take Λ = , Spec Λ = {k Z : k 0}. Rotation about x 3 -axis, R(t) = e itx. k-eigenspace V k, dim V k = 2k + 1. Eigenfunctions φ kl, l k. Λφ kl = kφ kl, X φ kl = lφ kl.

18 Pa(x, ξ) = 1 2π a(g t (x, ξ)) dt. 2π 0 Take Au(x) = a(x)u(x), a C (S 2 ), rotationally symmetric. Π(A) = 1 2π e itλ Ae itλ dt, 2π 0 commutes with Λ and X. (Λ, X ) simple spectrum Π(A) = F (Λ, X ). Task: analyze F.

19 Egorov theorem Π(A) op F (Pa) OPS 1 (S 2 ). Proposition. (Via [T1], Chapter 12.) for op F (Pa) = F 0 (Λ, X ) mod OPS 1 (S 2 ), F 0 (1, λ) = Pa(x 0, (λ, 1 λ 2 )) = g(λ), x 0 on equator of S 2. Hence Π(A) F 0 (Λ, X ) OPS 1 (S 2 ). Corollary. For rotationally symmetric a C (S 2 ), S 2 a(x) φ kl (x) 2 ds(x) = (Aφ kl, φ kl ) = (Π(A)φ kl, φ kl ) ( l ) = g + O(k 1 ). k

20 Apply the corollary to a vanishing on x 3 β, with β (0, 1). Conclusion. The orthonormal eigenfunctions φ kl concentrate on the strip x 3 β, for l k 1 β 2.

21 References [CV] Y. Colin de Verdière, Ergodicité et fonctions propre du laplacian, Comm. Math. Phys. 102 (1985), [Gal] J. Galkowski, Quantum ergodicity for a class of mixed systems, J. of Spectral Theory 4 (2014), [Riv] G. Riviere, Remarks on quantum ergodicity, J. Mod. Dyn. 7 (2013), [ST] R. Schrader and M. Taylor, Semiclassical asymptotics, gauge fields, and quantum chaos, J. Funct. Anal. 83 (1989), [Sn] A. Shnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk. 29 (1974),

22 [T1] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, [T2] M. Taylor, Variations on quantum ergodic theorems, Potential Anal. 43 (2015), [T3] M. Taylor, Quantization of discontinuous symbols and quantum ergodic theorems, Preprint, [Ze] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), [ZZ] S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys. 175 (1996),

Quantum Ergodicity for a Class of Mixed Systems

Quantum Ergodicity for a Class of Mixed Systems Quantum Ergodicity for a Class of Mixed Systems Jeffrey Galkowski University of California, Berkeley February 13, 2013 General Setup Let (M, g) be a smooth compact manifold with or without boundary. We

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

Variations on Quantum Ergodic Theorems

Variations on Quantum Ergodic Theorems Variations on Quantum Ergodic Theorems Michael Taylor Abstract We derive some quantum ergodic theorems, related to microlocal behavior of eigenfunctions of a positive, self-adjoint, elliptic pseudodifferential

More information

Recent developments in mathematical Quantum Chaos, I

Recent developments in mathematical Quantum Chaos, I Recent developments in mathematical Quantum Chaos, I Steve Zelditch Johns Hopkins and Northwestern Harvard, November 21, 2009 Quantum chaos of eigenfunction Let {ϕ j } be an orthonormal basis of eigenfunctions

More information

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg Quantum ergodicity Nalini Anantharaman Université de Strasbourg 22 août 2016 I. Quantum ergodicity on manifolds. II. QE on (discrete) graphs : regular graphs. III. QE on graphs : other models, perspectives.

More information

Microlocal limits of plane waves

Microlocal limits of plane waves Microlocal limits of plane waves Semyon Dyatlov University of California, Berkeley July 4, 2012 joint work with Colin Guillarmou (ENS) Semyon Dyatlov (UC Berkeley) Microlocal limits of plane waves July

More information

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi Arithmetic quantum chaos and random wave conjecture 9th Mathematical Physics Meeting Goran Djankovi University of Belgrade Faculty of Mathematics 18. 9. 2017. Goran Djankovi Random wave conjecture 18.

More information

Chaos, Quantum Mechanics and Number Theory

Chaos, Quantum Mechanics and Number Theory Chaos, Quantum Mechanics and Number Theory Peter Sarnak Mahler Lectures 2011 Hamiltonian Mechanics (x, ξ) generalized coordinates: x space coordinate, ξ phase coordinate. H(x, ξ), Hamiltonian Hamilton

More information

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces Etienne Le Masson (Joint work with Tuomas Sahlsten) School of Mathematics University of Bristol, UK August 26, 2016 Hyperbolic

More information

0. Introduction. Suppose that M is a compact Riemannian manifold. The Laplace operator is given in local coordinates by f = g 1/2

0. Introduction. Suppose that M is a compact Riemannian manifold. The Laplace operator is given in local coordinates by f = g 1/2 ASIAN J. MATH. c 2006 International Press Vol. 10, No. 1, pp. 115 126, March 2006 004 EIGENFUNCTIONS OF THE LAPLACIAN ON COMPACT RIEMANNIAN MANIFOLDS HAROLD DONNELLY Key words. Mathematical physics, quantum

More information

What is quantum unique ergodicity?

What is quantum unique ergodicity? What is quantum unique ergodicity? Andrew Hassell 1 Abstract A (somewhat) nontechnical presentation of the topic of quantum unique ergodicity (QUE) is attempted. I define classical ergodicity and unique

More information

arxiv: v2 [math.sp] 2 Sep 2015

arxiv: v2 [math.sp] 2 Sep 2015 SEMICLASSICAL ANALYSIS AND SYMMETRY REDUCTION II. EQUIVARIANT QUANTUM ERGODICITY FOR INVARIANT SCHRÖDINGER OPERATORS ON COMPACT MANIFOLDS BENJAMIN KÜSTER AND PABLO RAMACHER arxiv:508.0738v2 [math.sp] 2

More information

A gentle introduction to Quantum Ergodicity

A gentle introduction to Quantum Ergodicity A gentle introduction to Quantum Ergodicity Tuomas Sahlsten University of Bristol, UK 7 March 2017 Arithmetic study group, Durham, UK Joint work with Etienne Le Masson (Bristol) Supported by the EU: Horizon

More information

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS OGNJEN MILATOVIC Abstract. We consider H V = M +V, where (M, g) is a Riemannian manifold (not necessarily

More information

Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary

Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary Xiangjin Xu Department of athematics Johns Hopkins University Baltimore, D 21218 Abstract The purpose of this paper is

More information

Dispersive Equations and Hyperbolic Orbits

Dispersive Equations and Hyperbolic Orbits Dispersive Equations and Hyperbolic Orbits H. Christianson Department of Mathematics University of California, Berkeley 4/16/07 The Johns Hopkins University Outline 1 Introduction 3 Applications 2 Main

More information

Focal points and sup-norms of eigenfunctions

Focal points and sup-norms of eigenfunctions Focal points and sup-norms of eigenfunctions Chris Sogge (Johns Hopkins University) Joint work with Steve Zelditch (Northwestern University)) Chris Sogge Focal points and sup-norms of eigenfunctions 1

More information

The spectral zeta function

The spectral zeta function The spectral zeta function Bernd Ammann June 4, 215 Abstract In this talk we introduce spectral zeta functions. The spectral zeta function of the Laplace-Beltrami operator was already introduced by Minakshisundaram

More information

LOCALIZED EIGENFUNCTIONS: HERE YOU SEE THEM, THERE YOU

LOCALIZED EIGENFUNCTIONS: HERE YOU SEE THEM, THERE YOU LOCALIZED EIGENFUNCTIONS: HERE YOU SEE THEM, THERE YOU DON T STEVEN M. HEILMAN AND ROBERT S. STRICHARTZ The Laplacian Δ ( 2 x + 2 2 y in the plane) is one 2 of the most basic operators in all of mathematical

More information

The Berry-Tabor conjecture

The Berry-Tabor conjecture The Berry-Tabor conjecture Jens Marklof Abstract. One of the central observations of quantum chaology is that statistical properties of quantum spectra exhibit surprisingly universal features, which seem

More information

Spectral theory, geometry and dynamical systems

Spectral theory, geometry and dynamical systems Spectral theory, geometry and dynamical systems Dmitry Jakobson 8th January 2010 M is n-dimensional compact connected manifold, n 2. g is a Riemannian metric on M: for any U, V T x M, their inner product

More information

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration:

RIEMANNIAN GEOMETRY COMPACT METRIC SPACES. Jean BELLISSARD 1. Collaboration: RIEMANNIAN GEOMETRY of COMPACT METRIC SPACES Jean BELLISSARD 1 Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) 1 e-mail:

More information

YAIZA CANZANI AND BORIS HANIN

YAIZA CANZANI AND BORIS HANIN C SCALING ASYMPTOTICS FOR THE SPECTRAL PROJECTOR OF THE LAPLACIAN YAIZA CANZANI AND BORIS HANIN Abstract. This article concerns new off-diagonal estimates on the remainder and its derivatives in the pointwise

More information

Focal points and sup-norms of eigenfunctions

Focal points and sup-norms of eigenfunctions Focal points and sup-norms of eigenfunctions Chris Sogge (Johns Hopkins University) Joint work with Steve Zelditch (Northwestern University)) Chris Sogge Focal points and sup-norms of eigenfunctions 1

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

LAPLACIANS COMPACT METRIC SPACES. Sponsoring. Jean BELLISSARD a. Collaboration:

LAPLACIANS COMPACT METRIC SPACES. Sponsoring. Jean BELLISSARD a. Collaboration: LAPLACIANS on Sponsoring COMPACT METRIC SPACES Jean BELLISSARD a Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics Collaboration: I. PALMER (Georgia Tech, Atlanta) a e-mail:

More information

Spectra, dynamical systems, and geometry. Fields Medal Symposium, Fields Institute, Toronto. Tuesday, October 1, 2013

Spectra, dynamical systems, and geometry. Fields Medal Symposium, Fields Institute, Toronto. Tuesday, October 1, 2013 Spectra, dynamical systems, and geometry Fields Medal Symposium, Fields Institute, Toronto Tuesday, October 1, 2013 Dmitry Jakobson April 16, 2014 M = S 1 = R/(2πZ) - a circle. f (x) - a periodic function,

More information

POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO

POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO POINTWISE BOUNDS ON QUASIMODES OF SEMICLASSICAL SCHRÖDINGER OPERATORS IN DIMENSION TWO HART F. SMITH AND MACIEJ ZWORSKI Abstract. We prove optimal pointwise bounds on quasimodes of semiclassical Schrödinger

More information

Nodal lines of Laplace eigenfunctions

Nodal lines of Laplace eigenfunctions Nodal lines of Laplace eigenfunctions Spectral Analysis in Geometry and Number Theory on the occasion of Toshikazu Sunada s 60th birthday Friday, August 10, 2007 Steve Zelditch Department of Mathematics

More information

Eigenvalue clusters for magnetic Laplacians in 2D

Eigenvalue clusters for magnetic Laplacians in 2D Eigenvalue clusters for magnetic Laplacians in 2D San Vũ Ngọc Univ. Rennes 1 Conference in honor of Johannes Sjöstrand CIRM, Luminy, September 2013 joint work with Nicolas Raymond (Rennes) and Frédéric

More information

Asymptotics of polynomials and eigenfunctions

Asymptotics of polynomials and eigenfunctions ICM 2002 Vol. III 1 3 Asymptotics of polynomials and eigenfunctions S. Zelditch Abstract We review some recent results on asymptotic properties of polynomials of large degree, of general holomorphic sections

More information

Fractal uncertainty principle and quantum chaos

Fractal uncertainty principle and quantum chaos Fractal uncertainty principle and quantum chaos Semyon Dyatlov (UC Berkeley/MIT) July 23, 2018 Semyon Dyatlov FUP and eigenfunctions July 23, 2018 1 / 11 Overview This talk presents two recent results

More information

ESI Lectures on Semiclassical Analysis and Quantum Ergodicity 2012

ESI Lectures on Semiclassical Analysis and Quantum Ergodicity 2012 ESI Lectures on Semiclassical Analysis and Quantum Ergodicity 2012 Andrew Hassell Department of Mathematics Australian National University ESI, Vienna, July August 2012 Outline Introduction Semiclassical

More information

LECTURE NOTES ON QUANTUM CHAOS COURSE , MIT, APRIL 2016, VERSION 2

LECTURE NOTES ON QUANTUM CHAOS COURSE , MIT, APRIL 2016, VERSION 2 LECTUE NOTES ON QUANTUM CHAOS COUSE 18.158, MIT, APIL 2016, VESION 2 SEMYON DYATLOV Abstract. We give an overview of te quantum ergodicity result. 1. Quantum ergodicity in te pysical space 1.1. Concentration

More information

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas Index theory on singular manifolds I p. 1/4 Index theory on singular manifolds I Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas Paul Loya Index theory on singular manifolds I

More information

SEMICLASSICAL LAGRANGIAN DISTRIBUTIONS

SEMICLASSICAL LAGRANGIAN DISTRIBUTIONS SEMICLASSICAL LAGRANGIAN DISTRIBUTIONS SEMYON DYATLOV Abstract. These are (rather sloppy) notes for the talk given in UC Berkeley in March 2012, attempting to explain the global theory of semiclassical

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Quantum symbolic dynamics

Quantum symbolic dynamics Quantum symbolic dynamics Stéphane Nonnenmacher Institut de Physique Théorique, Saclay Quantum chaos: routes to RMT and beyond Banff, 26 Feb. 2008 What do we know about chaotic eigenstates? Hamiltonian

More information

SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS. 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for:

SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS. 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for: SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS YURI LIMA 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for: [ ] 2 1 Hyperbolic toral automorphisms, e.g. f A

More information

Quasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions

Quasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions Quasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions Alex H. Barnett Courant Institute, New York University, 251 Mercer St, New York, NY 10012 barnett@cims.nyu.edu July 3, 2004 Abstract

More information

Research Statement. Xiangjin Xu. 1. My thesis work

Research Statement. Xiangjin Xu. 1. My thesis work Research Statement Xiangjin Xu My main research interest is twofold. First I am interested in Harmonic Analysis on manifolds. More precisely, in my thesis, I studied the L estimates and gradient estimates

More information

Localized Eigenfunctions: Here You See Them, There You Don t

Localized Eigenfunctions: Here You See Them, There You Don t Localized Eigenfunctions: Here You See Them, There You Don t Steven M. Heilman and Robert S. Strichartz 2 x 2 + 2 y 2 The Laplacian ( in the plane) is one of the most basic operators in all of mathematical

More information

Geometric and spectral characterization of Zoll manifolds, invariant measures and quantum limits

Geometric and spectral characterization of Zoll manifolds, invariant measures and quantum limits Geometric and spectral characterization of Zoll manifolds, invariant measures and quantum limits Emmanuel Humbert Yannick Privat Emmanuel Trélat Abstract We provide new geometric and spectral characterizations

More information

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS SHOO SETO Abstract. These are the notes to an expository talk I plan to give at MGSC on Kähler Geometry aimed for beginning graduate students in hopes to motivate

More information

NONCOMMUTATIVE. GEOMETRY of FRACTALS

NONCOMMUTATIVE. GEOMETRY of FRACTALS AMS Memphis Oct 18, 2015 1 NONCOMMUTATIVE Sponsoring GEOMETRY of FRACTALS Jean BELLISSARD Georgia Institute of Technology, Atlanta School of Mathematics & School of Physics e-mail: jeanbel@math.gatech.edu

More information

SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY

SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY M. F. ATIYAH, V. K. PATODI AND I. M. SINGER 1 Main Theorems If A is a positive self-adjoint elliptic (linear) differential operator on a compact manifold then

More information

Expansions and eigenfrequencies for damped wave equations

Expansions and eigenfrequencies for damped wave equations Journées Équations aux dérivées partielles Plestin-les-grèves, 5 8 juin 2002 GDR 1151 (CNRS) Expansions and eigenfrequencies for damped wave equations Michael Hitrik Abstract We study eigenfrequencies

More information

THE SEMICLASSICAL THEORY OF DISCONTINUOUS SYSTEMS AND RAY-SPLITTING BILLIARDS

THE SEMICLASSICAL THEORY OF DISCONTINUOUS SYSTEMS AND RAY-SPLITTING BILLIARDS THE SEMICLASSICAL THEORY OF DISCONTINUOUS SYSTEMS AND RAY-SPLITTING BILLIARDS DMITRY JAKOBSON, YURI SAFAROV, AND ALEXANDER STROHMAIER Abstract. We analyze the semiclassical limit of spectral theory on

More information

Radial balanced metrics on the unit disk

Radial balanced metrics on the unit disk Radial balanced metrics on the unit disk Antonio Greco and Andrea Loi Dipartimento di Matematica e Informatica Università di Cagliari Via Ospedale 7, 0914 Cagliari Italy e-mail : greco@unica.it, loi@unica.it

More information

Ergodicity of quantum eigenfunctions in classically chaotic systems

Ergodicity of quantum eigenfunctions in classically chaotic systems Ergodicity of quantum eigenfunctions in classically chaotic systems Mar 1, 24 Alex Barnett barnett@cims.nyu.edu Courant Institute work in collaboration with Peter Sarnak, Courant/Princeton p.1 Classical

More information

Fractional order operators on bounded domains

Fractional order operators on bounded domains on bounded domains Gerd Grubb Copenhagen University Geometry seminar, Stanford University September 23, 2015 1. Fractional-order pseudodifferential operators A prominent example of a fractional-order pseudodifferential

More information

Sharp Gårding inequality on compact Lie groups.

Sharp Gårding inequality on compact Lie groups. 15-19.10.2012, ESI, Wien, Phase space methods for pseudo-differential operators Ville Turunen, Aalto University, Finland (ville.turunen@aalto.fi) M. Ruzhansky, V. Turunen: Sharp Gårding inequality on compact

More information

Fractal Weyl Laws and Wave Decay for General Trapping

Fractal Weyl Laws and Wave Decay for General Trapping Fractal Weyl Laws and Wave Decay for General Trapping Jeffrey Galkowski McGill University July 26, 2017 Joint w/ Semyon Dyatlov The Plan The setting and a brief review of scattering resonances Heuristic

More information

Fluctuation statistics for quantum star graphs

Fluctuation statistics for quantum star graphs Contemporary Mathematics Fluctuation statistics for quantum star graphs J.P. Keating Abstract. Star graphs are examples of quantum graphs in which the spectral and eigenfunction statistics can be determined

More information

The Gaussian free field, Gibbs measures and NLS on planar domains

The Gaussian free field, Gibbs measures and NLS on planar domains The Gaussian free field, Gibbs measures and on planar domains N. Burq, joint with L. Thomann (Nantes) and N. Tzvetkov (Cergy) Université Paris Sud, Laboratoire de Mathématiques d Orsay, CNRS UMR 8628 LAGA,

More information

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt MA526 Homework 4 Group 4 April 26, 26 Qn 6.2 Show that H is not bounded as a map: L L. Deduce from this that H is not bounded as a map L L. Let {ϕ n } be an approximation of the identity s.t. ϕ C, sptϕ

More information

Research Statement. Jayadev S. Athreya. November 7, 2005

Research Statement. Jayadev S. Athreya. November 7, 2005 Research Statement Jayadev S. Athreya November 7, 2005 1 Introduction My primary area of research is the study of dynamics on moduli spaces. The first part of my thesis is on the recurrence behavior of

More information

Classical differential geometry of two-dimensional surfaces

Classical differential geometry of two-dimensional surfaces Classical differential geometry of two-dimensional surfaces 1 Basic definitions This section gives an overview of the basic notions of differential geometry for twodimensional surfaces. It follows mainly

More information

New Proof of Hörmander multiplier Theorem on compact manifolds without boundary

New Proof of Hörmander multiplier Theorem on compact manifolds without boundary New Proof of Hörmander multiplier Theorem on compact manifolds without boundary Xiangjin Xu Department of athematics Johns Hopkins University Baltimore, D, 21218, USA xxu@math.jhu.edu Abstract On compact

More information

The oblique derivative problem for general elliptic systems in Lipschitz domains

The oblique derivative problem for general elliptic systems in Lipschitz domains M. MITREA The oblique derivative problem for general elliptic systems in Lipschitz domains Let M be a smooth, oriented, connected, compact, boundaryless manifold of real dimension m, and let T M and T

More information

THE POISSON TRANSFORM ON A COMPACT REAL ANALYTIC RIEMANNIAN MANIFOLD

THE POISSON TRANSFORM ON A COMPACT REAL ANALYTIC RIEMANNIAN MANIFOLD THE POISSON TRANSFORM ON A COMPACT REAL ANALYTIC RIEMANNIAN MANIFOLD MATTHEW B. STENZEL Abstract. We study the transform mapping an L 2 function f on a compact, real analytic Riemannian manifold X to the

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

Intrinsic spectral geometry of the Kerr-Newman event horizon

Intrinsic spectral geometry of the Kerr-Newman event horizon JOURNAL OF MATHEMATICAL PHYSICS 47, 033503 2006 Intrinsic spectral geometry of the Kerr-Newman event horizon Martin Engman a and Ricardo Cordero-Soto Departamento de Cencias y Tecnología, Universidad Metropolitana,

More information

Control from an Interior Hypersurface

Control from an Interior Hypersurface Control from an Interior Hypersurface Matthieu Léautaud École Polytechnique Joint with Jeffrey Galkowski Murramarang, microlocal analysis on the beach March, 23. 2018 Outline General questions Eigenfunctions

More information

CHARACTERIZATIONS OF PSEUDODIFFERENTIAL OPERATORS ON THE CIRCLE

CHARACTERIZATIONS OF PSEUDODIFFERENTIAL OPERATORS ON THE CIRCLE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 5, May 1997, Pages 1407 1412 S 0002-9939(97)04016-1 CHARACTERIZATIONS OF PSEUDODIFFERENTIAL OPERATORS ON THE CIRCLE SEVERINO T. MELO

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Continued fractions and geodesics on the modular surface

Continued fractions and geodesics on the modular surface Continued fractions and geodesics on the modular surface Chris Johnson Clemson University September 8, 203 Outline The modular surface Continued fractions Symbolic coding References Some hyperbolic geometry

More information

HEAT KERNEL EXPANSIONS IN THE CASE OF CONIC SINGULARITIES

HEAT KERNEL EXPANSIONS IN THE CASE OF CONIC SINGULARITIES HEAT KERNEL EXPANSIONS IN THE CASE OF CONIC SINGULARITIES ROBERT SEELEY January 29, 2003 Abstract For positive elliptic differential operators, the asymptotic expansion of the heat trace tr(e t ) and its

More information

Lecture 4: Harmonic forms

Lecture 4: Harmonic forms Lecture 4: Harmonic forms Jonathan Evans 29th September 2010 Jonathan Evans () Lecture 4: Harmonic forms 29th September 2010 1 / 15 Jonathan Evans () Lecture 4: Harmonic forms 29th September 2010 2 / 15

More information

Definition and basic properties of heat kernels I, An introduction

Definition and basic properties of heat kernels I, An introduction Definition and basic properties of heat kernels I, An introduction Zhiqin Lu, Department of Mathematics, UC Irvine, Irvine CA 92697 April 23, 2010 In this lecture, we will answer the following questions:

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION

CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION HANS CHRISTIANSON Abstract. This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation.

More information

Heat Kernel Asymptotics on Manifolds

Heat Kernel Asymptotics on Manifolds Heat Kernel Asymptotics on Manifolds Ivan Avramidi New Mexico Tech Motivation Evolution Eqs (Heat transfer, Diffusion) Quantum Theory and Statistical Physics (Partition Function, Correlation Functions)

More information

The Schrödinger propagator for scattering metrics

The Schrödinger propagator for scattering metrics The Schrödinger propagator for scattering metrics Andrew Hassell (Australian National University) joint work with Jared Wunsch (Northwestern) MSRI, May 5-9, 2003 http://arxiv.org/math.ap/0301341 1 Schrödinger

More information

Introduction to Spectral Geometry

Introduction to Spectral Geometry Chapter 1 Introduction to Spectral Geometry From P.-S. Laplace to E. Beltrami The Laplace operator was first introduced by P.-S. Laplace (1749 1827) for describing celestial mechanics (the notation is

More information

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock WEYL S LEMMA, ONE OF MANY Daniel W Stroock Abstract This note is a brief, and somewhat biased, account of the evolution of what people working in PDE s call Weyl s Lemma about the regularity of solutions

More information

Random dynamical systems with microstructure

Random dynamical systems with microstructure Random dynamical systems with microstructure Renato Feres Washington University, St. Louis ESI, July 2011 1/37 Acknowledgements Different aspects of this work are joint with: Tim Chumley (Central limit

More information

Introduction to Pseudodifferential Operators

Introduction to Pseudodifferential Operators Introduction to Pseudodifferential Operators Mengxuan Yang Directed by Prof. Dean Baskin May, 206. Introductions and Motivations Classical Mechanics & Quantum Mechanics In classical mechanics, the status

More information

PSEUDOHOLOMORPHICITY OF CLOSED MINIMAL SURFACES IN CONSTANTLY CURVED 4-SPACES

PSEUDOHOLOMORPHICITY OF CLOSED MINIMAL SURFACES IN CONSTANTLY CURVED 4-SPACES proceedings of the american mathematical society Volume 110, Number 4, December 1990 PSEUDOHOLOMORPHICITY OF CLOSED MINIMAL SURFACES IN CONSTANTLY CURVED 4-SPACES CHI-MING YAU (Communicated by Jonathan

More information

Spectral Theory on Hyperbolic Surfaces

Spectral Theory on Hyperbolic Surfaces Spectral Theory on Hyperbolic Surfaces David Borthwick Emory University July, 2010 Outline Hyperbolic geometry Fuchsian groups Spectral theory Selberg trace formula Arithmetic surfaces I. Hyperbolic Geometry

More information

The Laplacian ( ) Matthias Vestner Dr. Emanuele Rodolà Room , Informatik IX

The Laplacian ( ) Matthias Vestner Dr. Emanuele Rodolà Room , Informatik IX The Laplacian (26.05.2014) Matthias Vestner Dr. Emanuele Rodolà {vestner,rodola}@in.tum.de Room 02.09.058, Informatik IX Seminar «The metric approach to shape matching» Alfonso Ros Wednesday, May 28th

More information

Some problems involving fractional order operators

Some problems involving fractional order operators Some problems involving fractional order operators Universitat Politècnica de Catalunya December 9th, 2009 Definition ( ) γ Infinitesimal generator of a Levy process Pseudo-differential operator, principal

More information

Strichartz estimates for the Schrödinger equation on polygonal domains

Strichartz estimates for the Schrödinger equation on polygonal domains estimates for the Schrödinger equation on Joint work with Matt Blair (UNM), G. Austin Ford (Northwestern U) and Sebastian Herr (U Bonn and U Düsseldorf)... With a discussion of previous work with Andrew

More information

Behaviour of Eigenfunction Subsequences for Delta-Perturbed 2D Quantum Systems

Behaviour of Eigenfunction Subsequences for Delta-Perturbed 2D Quantum Systems Loughborough University Institutional Repository Behaviour of Eigenfunction Subsequences for Delta-Perturbed 2D Quantum Systems This item was submitted to Loughborough University's Institutional Repository

More information

The heat equation for the Hermite operator on the Heisenberg group

The heat equation for the Hermite operator on the Heisenberg group Hokkaido Mathematical Journal Vol. 34 (2005) p. 393 404 The heat equation for the Hermite operator on the Heisenberg group M. W. Wong (Received August 5, 2003) Abstract. We give a formula for the one-parameter

More information

Applications of measure rigidity: from number theory to statistical mechanics

Applications of measure rigidity: from number theory to statistical mechanics Applications of measure rigidity: from number theory to statistical mechanics Simons Lectures, Stony Brook October 2013 Jens Marklof University of Bristol http://www.maths.bristol.ac.uk supported by Royal

More information

ASYMPTOTIC BEHAVIOR OF GENERALIZED EIGENFUNCTIONS IN N-BODY SCATTERING

ASYMPTOTIC BEHAVIOR OF GENERALIZED EIGENFUNCTIONS IN N-BODY SCATTERING ASYMPTOTIC BEHAVIOR OF GENERALIZED EIGENFUNCTIONS IN N-BODY SCATTERING ANDRAS VASY Abstract. In this paper an asymptotic expansion is proved for locally (at infinity) outgoing functions on asymptotically

More information

Universität Regensburg Mathematik

Universität Regensburg Mathematik Universität Regensburg Mathematik Harmonic spinors and local deformations of the metric Bernd Ammann, Mattias Dahl, and Emmanuel Humbert Preprint Nr. 03/2010 HARMONIC SPINORS AND LOCAL DEFORMATIONS OF

More information

Eigenvalue Asymptotics for Fractional Laplacians

Eigenvalue Asymptotics for Fractional Laplacians Eigenvalue Asymptotics for Fractional Laplacians Partial Differential Equations and Analysis Seminar Mathematical Sciences Institute, Australian National University Victor Ivrii Department of Mathematics,

More information

Gradient estimates for the eigenfunctions on compact manifolds with boundary and Hörmander multiplier Theorem

Gradient estimates for the eigenfunctions on compact manifolds with boundary and Hörmander multiplier Theorem Gradient estimates for the eigenfunctions on compact manifolds with boundary and Hörmander multiplier Theorem Xiangjin Xu Department of athematics, Johns Hopkins University Baltimore, D, 21218, USA Fax:

More information

arxiv:gr-qc/ v1 7 Nov 2000

arxiv:gr-qc/ v1 7 Nov 2000 ON CYCLICALLY SYMMETRICAL SPACETIMES arxiv:gr-qc/0011023v1 7 Nov 2000 A. BARNES Computer Science, Aston University, Birmingham, B4 7ET, UK E-mail: barnesa@aston.ac.uk In a recent paper Carot et al. considered

More information

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n.

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n. Elliptic Regularity Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n. 1 Review of Hodge Theory In this note I outline the proof of the following Fundamental

More information

Optimal shape and placement of actuators or sensors for PDE models

Optimal shape and placement of actuators or sensors for PDE models Optimal shape and placement of actuators or sensors for PDE models Y. Privat, E. Trélat, E. uazua Univ. Paris 6 (Labo. J.-L. Lions) et Institut Universitaire de France Rutgers University - Camden, March

More information

Bouncing Ball Modes and Quantum Chaos

Bouncing Ball Modes and Quantum Chaos SIAM EVIEW Vol. 47,No. 1,pp. 43 49 c 25 Society for Industrial and Applied Mathematics Bouncing Ball Modes and Quantum Chaos Nicolas Burq Maciej Zworski Abstract. Quantum ergodicity for classically chaotic

More information

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor RANDOM FIELDS AND GEOMETRY from the book of the same name by Robert Adler and Jonathan Taylor IE&M, Technion, Israel, Statistics, Stanford, US. ie.technion.ac.il/adler.phtml www-stat.stanford.edu/ jtaylor

More information

Spectral theory of first order elliptic systems

Spectral theory of first order elliptic systems Spectral theory of first order elliptic systems Dmitri Vassiliev (University College London) 24 May 2013 Conference Complex Analysis & Dynamical Systems VI Nahariya, Israel 1 Typical problem in my subject

More information

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP Dedicated to Professor Gheorghe Bucur on the occasion of his 7th birthday ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP EMIL POPESCU Starting from the usual Cauchy problem, we give

More information

Rigidity and Non-rigidity Results on the Sphere

Rigidity and Non-rigidity Results on the Sphere Rigidity and Non-rigidity Results on the Sphere Fengbo Hang Xiaodong Wang Department of Mathematics Michigan State University Oct., 00 1 Introduction It is a simple consequence of the maximum principle

More information

Notes on fractal uncertainty principle version 0.5 (October 4, 2017) Semyon Dyatlov

Notes on fractal uncertainty principle version 0.5 (October 4, 2017) Semyon Dyatlov Notes on fractal uncertainty principle version 0.5 (October 4, 2017) Semyon Dyatlov E-mail address: dyatlov@math.mit.edu Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts

More information

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009 THE GEOMETRY OF B-FIELDS Nigel Hitchin (Oxford) Odense November 26th 2009 THE B-FIELD IN PHYSICS B = i,j B ij dx i dx j flux: db = H a closed three-form Born-Infeld action: det(g ij + B ij ) complexified

More information