Measurements of Biofouling Drag Using a 2-D Channel Flow Apparatus with Models of Bio-fouled Panels

Size: px
Start display at page:

Download "Measurements of Biofouling Drag Using a 2-D Channel Flow Apparatus with Models of Bio-fouled Panels"

Transcription

1 International Congress on Marine Corrosion and Fouling 2018 Measurements of Biofouling Drag Using a 2-D Channel Flow Apparatus with Models of Bio-fouled Panels Scott Gowing (1) presenting Peter Chang (2), Scott Storms (3) (1) CSRA (2) NSWC Carderock (3) NSWC Philadelphia Sponsored by the Naval Innovative Science and Engineering (NISE) program 1 Distribution Statement A: Approved for Public Release

2 Goal Provide Equivalent Roughness of Biofouling for Numerical Drag Predictions Measure drag on model biofouled panels Determine size of uniform sandgrain roughness that causes same drag as model biofouling Use sandgrain sizes as input to CFD codes to predict hull drag caused by biofouling modeled in panels Provide quantitative assessments for: - Hull maintenance decisions - Evaluations of biofouling mitigation schemes Hydraulically Smooth Heavy Slime (Vargas 2018) 2

3 Channel Flow Facility View of basin end Bulk velocity from flowmeter Pressure gradient along channel yields friction factor Vary speed with pump 3

4 Channel Flow Facility Turbine Flow Meter Channel Pressure Transducers (4 ranges) Constant area transition Variable Speed Pump Pressure Control Data Acquisition 4

5 Channel Cross Section Model Biofouler Plates Smooth Calibration Plates 1 8 5

6 Sample Plates Smooth plastic or polished metal plates for calibration Metal backplate with dovetails Printed biofouler plates with dovetails Backplate and printed panel mesh to create biofouler plate assembly (assembly insures constant channel height) 6

7 Model Fouler Plates 7

8 Smooth Plates Channel overview mirror plates - top view mirror plates - end view Polished metal or acrylic plates provide smooth surface 8

9 Pressure drop re tap #1 (psid) Channel Flow Friction C f = dp dx Measured Skin Friction Friction based on streamwise pressure gradient, channel height, and bulk flow rate Pressure gradient measured over multiple taps 0.70 h ρ u E E E E E x/h 9

10 Channel Flow Friction Prandtl s Equation for Smooth Channel Friction Integrate log-law with modified B relation for channel flow Integration yields analytic equation (some rounding involved) 1 1 4C f log Re h 4C f C f log Re h ( 4C f k h)re h 4C f Equation for Smooth or Rough Channel Friction Equation can be solved (implicitly with Excel Goal Seek) to relate C f and relative roughness (k/h) 10

11 Smooth Plate Data all smooth data Prandtl Schultz & Flack 2013 Lee & Moser 2015 smooth mirror smooth plastic C f E E E E E E+05 Re channel Smooth plastic and mirror plates Smooth plastic and mirror plate data match Prandtl predictions Schultz & Flack data a little higher Lee & Moser data are in-between 11

12 Roughness Effects DB=7.63 u u = log u y υ ΔB Add Roughness Effects Roughness shifts velocities lower by constant value in log layer Adjust DB constant in log law to represent roughness (typical approach) 12

13 DB CFD Roughness Calculations 20 Uniform sandgrain roughness (Nikuradse) u k υ = k s log log k_s^+ s CFD calculations use uniform sandgrain to model roughness effects Derive equivalent sandgrain roughness for coated or biofouled surfaces from channel flow experiments measuring friction via pressure drop Allows CFD calculations for biofouled surfaces 13

14 CFD Roughness Calculations (uniform roughness) Schultz CFD calculations use uniform sandgrain roughness (Vargas) Derive equivalent sandgrain roughness for biofouled surfaces from channel flow experiments Enables CFD calculations for fouled surfaces Experiments validate CFD predictions 14

15 Biofouler Plate Data C f E E E E E E+05 Re channel all smooth data 5 pts panel 8 panel 7 panel 9 panel 1 panel 1X0.5 panel 1X3 panel HPX0.5 panel HPX1.0 panel oyster panel half oyster Drag values up to 2X or more of smooth values Some panels show fully rough drag behavior - friction no longer dependent on Re channel 15

16 sqrt(2/c f ) DB Derivation for DB shift Results all plastic plates panel #8 panel #9 panel #1 panel # ln (Re*sqrt(C f )) y = 2.745x y = x y = x y = x y = x Plot Re*sqrt(C f ) product vs sqrt (2/C f ) Fit data with linear fits For each plate, calculate DB at each data point - difference of sqrt(2/c f ) rough - sqrt(2/c f ) smooth (from linear fit) Determine equivalent sand grain size that yields measured DB 16

17 DB Roughness Forms Roughness Functions Granville Different roughness functions (sandgrain-type, Colebrook-type) possible for fitting if panels are not characterized by single size scale Adjust size scale to force conformity with selected function (DB determined by DC f ) Schultz

18 DB delta B DB delta B Sandgrain Type Fits Sandgrain Roughness Function Sizes Colebrook sizes (tested at scale) Colebrook 16 panel #8 14 panel HPX panel #9 10 panel HPX k+ k s Sandgrain sizes (tested at scale) Colebrook sandgrain panel #8 panel HPX0.5 panel #9 panel HPX k+ + k s Data slopes match Colebrook sizes better than sandgrain sizes but CFD uses sandgrain sizes in roughness function -> sizes must be defined using sandgrain scales 18

19 delta B DB Comparisons Comparison to Other Biofouler Data Colebrook type panel #7 panel #1 Schultz ks+ Panels #1 and #7 (barnacle data) have similar form to barnacle fouling measured by Schultz

20 D B Roughness Scaling Some Panels are Scaled (l = scale ratio) Colebrook type 14 panel # scaled values scaled DB value X k s + Modeled roughness scale = 1/l * actual roughness scale Correct DB using Colebrook function DB FS = DB MS + ddb/dk s+ * dk s+ and dks + = (l * k s+ ) Works well if fully rough 20

21 Comparisons EQUIVALENT SANDGRAIN SIZES (mm) Heavy Calcareous Fouling* Barnacle 2 (13%, 8.7 mm) Barnacle 1 (19%, 6.6 mm) Medium Calcareous Fouling* Barnacle 1 (6%, 6.6 mm) Barnacle 1 (4%, 6.6 mm) Small Calcareous Fouling/Weed* Tubeworm (18%, 0.9 mm) Tubeworm# Heavy Slime* Tubeworm (7%, 0.9 mm) Incipient Fouling 2 (3%, 0.7 mm) Incipient Fouling 1 (3%, 0.6 mm) Deteriorated Coating/Light Slime* Present data Other data Channel data show fouler ranking similar to other data: slime tubeworms small calcareous heavy calcareous fouling increasing sandgrain sizes 21

22 Comparisons Heavy Calcareous Fouling* Barnacle 2 (13%, 8.7 mm) Barnacle 1 (19%, 6.6 mm) Medium Calcareous Fouling* Barnacle 1 (6%, 6.6 mm) Barnacle 1 (4%, 6.6 mm) Small Calcareous Fouling/Weed* Tubeworm (18%, 0.9 mm) Tubeworm# Heavy Slime* Tubeworm (7%, 0.9 mm) Incipient Fouling 2 (3%, 0.7 mm) Incipient Fouling 1 (3%, 0.6 mm) Deteriorated Coating/Light Slime* EQUIVALENT SANDGRAIN SIZES (MM) 1.5X coverage 2.5X coverage 4.5X coverage Present data Other data Variations in spatial density show increases in relative sandgrain sizes Sandgrain size increase not proportional to increased coverage 22

23 Credits Project sponsored by the NSWCCD 219 program Jack Price, Krista Michalis - Program managers Eric Holm - Project manager Abel Vargas - Fluid dynamic modeling Christina Dehn - Panel preparation 23

24 END 24

Friction Resistance of Ship. Chugoku Marine Paints, Nace Pusan Oct 2008

Friction Resistance of Ship. Chugoku Marine Paints, Nace Pusan Oct 2008 Friction Resistance of Ship Drag for Ships Air Drag Form Drag Wave Drag Frictional Drag BC LNG Cont Friction Drag Active Module to friction drag Micro bubble Polymer Riblet Elasticity modulus Contact angle

More information

EXPERIMENTAL DETERMINATION OF THE ROUGHNESS FUNCTIONS OF MARINE COATINGS Y. K.

EXPERIMENTAL DETERMINATION OF THE ROUGHNESS FUNCTIONS OF MARINE COATINGS Y. K. EXPERIMENTAL DETERMINATION OF THE ROUGHNESS FUNCTIONS OF MARINE COATINGS Y. K. Demirel 1, O. Turan 1, A. Incecik 1, S. Day 1, H. I. Fang 2, S. Downie 2, S. M. Olsen 3 1 Department of Naval Architecture,

More information

The challenge of supplying antifouling coatings to reduce emission of greenhouse gases

The challenge of supplying antifouling coatings to reduce emission of greenhouse gases The challenge of supplying antifouling coatings to reduce emission of greenhouse gases Erik Risberg Jotun A/S Outline The complex technology situation Boundary layers and their influence on frictional

More information

A combined application of the integral wall model and the rough wall rescaling-recycling method

A combined application of the integral wall model and the rough wall rescaling-recycling method AIAA 25-299 A combined application of the integral wall model and the rough wall rescaling-recycling method X.I.A. Yang J. Sadique R. Mittal C. Meneveau Johns Hopkins University, Baltimore, MD, 228, USA

More information

SKIN-FRICTION BEHAVIOR IN THE TRANSITIONALLY-ROUGH REGIME

SKIN-FRICTION BEHAVIOR IN THE TRANSITIONALLY-ROUGH REGIME June 30 - July 3, 2015 Melbourne, Australia 9 2A-5 SKIN-FRICTION BEHAVIOR IN THE TRANSITIONALLY-ROUGH REGIME Karen A. Flack 1, Michael P. Schultz 2, Julio M. Barros 1, Yechan C. Kim 2 Department of Mechanical

More information

P. (2014) A CFD ISSN

P. (2014) A CFD ISSN Demirel, Yigit Kemal and Khorasanchi, Mahdi and Turan, Osman and Incecik, Atilla and Schultz, Michael P. (2014) A CFD model for the frictional resistance prediction of antifouling coatings. Ocean Engineering,

More information

Improved Method for Converting Equivalent Sand-grain Roughness to Hazen-Williams Coefficient

Improved Method for Converting Equivalent Sand-grain Roughness to Hazen-Williams Coefficient Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 119 OI: 10.11159/htff16.119 Improved Method for Converting

More information

Review of Hydraulic Roughness Scales in the Fully Rough Regime

Review of Hydraulic Roughness Scales in the Fully Rough Regime Karen A. Flack Department of Mechanical Engineering, United States Naval Academy, Annapolis, MD 21402 e-mail: flack@usna.edu Michael P. Schultz Department of Naval Architecture and Ocean Engineering, United

More information

Experimental support for Townsend s Reynolds number similarity hypothesis on rough walls

Experimental support for Townsend s Reynolds number similarity hypothesis on rough walls PHYSICS OF FLUIDS 17, 035102 2005 Experimental support for Townsend s Reynolds number similarity hypothesis on rough walls Karen A. Flack, Michael P. Schultz, and Thomas A. Shapiro Mechanical Engineering

More information

Turbulent Boundary Layers: Roughness Effects

Turbulent Boundary Layers: Roughness Effects 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 19 2.20 - Marine Hydrodynamics Lecture 19 Turbulent Boundary Layers: Roughness Effects So far, we have assumed a hydraulically smooth surface. In practice,

More information

Measurements and Prediction of Friction Drag of Rough Surfaces

Measurements and Prediction of Friction Drag of Rough Surfaces THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING IN THERMO AND FLUID DYNAMICS Measurements and Prediction of Friction Drag of Rough Surfaces B E R C E L A Y N I E B L E S A T E N C I O Department of

More information

BOUNDARY LAYER FLOWS HINCHEY

BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER FLOWS HINCHEY BOUNDARY LAYER PHENOMENA When a body moves through a viscous fluid, the fluid at its surface moves with it. It does not slip over the surface. When a body moves at high speed,

More information

ESTIMATING THE FRICTION VELOCITY IN A TURBULENT PLANE WALL JET OVER A TRANSITIONALLY ROUGH SURFACE

ESTIMATING THE FRICTION VELOCITY IN A TURBULENT PLANE WALL JET OVER A TRANSITIONALLY ROUGH SURFACE ESTIMATING THE FRICTION VELOCITY IN A TRBLENT PLANE WALL JET OVER A TRANSITIONALLY ROGH SRFACE Noorallah Rostamy niversity of Saskatchewan nori.rostamy@usask.ca Donald J. Bergstrom niversity of Saskatchewan

More information

Major and Minor Losses

Major and Minor Losses Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Turbulent boundary layer over a three-dimensional rough wall

Turbulent boundary layer over a three-dimensional rough wall Turbulent boundary layer over a three-dimensional rough wall Gaetano Maria Di Cicca 1, Andrea Ferrari 2, Michele Onorato 3 1 Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino,

More information

10 minutes reading time is allowed for this paper.

10 minutes reading time is allowed for this paper. EGT1 ENGINEERING TRIPOS PART IB Tuesday 31 May 2016 2 to 4 Paper 4 THERMOFLUID MECHANICS Answer not more than four questions. Answer not more than two questions from each section. All questions carry the

More information

A note on critical flow section in collector channels

A note on critical flow section in collector channels Sādhan ā, Vol. 26, Part 5, October 2001, pp. 439 445. Printed in India A note on critical flow section in collector channels 1. Introduction SUBHASISH DEY Department of Civil Engineering, Indian Institute

More information

Numerical and Experimental Results

Numerical and Experimental Results (G) Numerical and Experimental Results To begin, we shall show some data of R. D. Moser, J. Kim & N. N. Mansour, Direct numerical simulation of turbulent flow up to Re τ = 59, Phys. Fluids 11 943-945 (1999)

More information

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water

Department of Hydro Sciences, Institute for Urban Water Management. Urban Water Department of Hydro Sciences, Institute for Urban Water Management Urban Water 1 Global water aspects Introduction to urban water management 3 Basics for systems description 4 Water transport 5 Matter

More information

DAY 19: Boundary Layer

DAY 19: Boundary Layer DAY 19: Boundary Layer flat plate : let us neglect the shape of the leading edge for now flat plate boundary layer: in blue we highlight the region of the flow where velocity is influenced by the presence

More information

Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating

Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating Onset of Flow Instability in a Rectangular Channel Under Transversely Uniform and Non-uniform Heating Omar S. Al-Yahia, Taewoo Kim, Daeseong Jo School of Mechanical Engineering, Kyungpook National University

More information

VERTICAL SCALES AND SHEAR STRESSES IN WAVE BOUNDARY LAYERS OVER MOVABLE BEDS. Peter Nielsen & Paul A Guard

VERTICAL SCALES AND SHEAR STRESSES IN WAVE BOUNDARY LAYERS OVER MOVABLE BEDS. Peter Nielsen & Paul A Guard VERTICAL SCALES AND SHEAR STRESSES IN WAVE BOUNDARY LAYERS OVER MOVABLE BEDS. Peter Nielsen & Paul A Guard ABSTRACT Unified scaling rules are provided for smooth and rough wave boundary layers. It is shown

More information

Sediment transport and river bed evolution

Sediment transport and river bed evolution 1 Chapter 1 Sediment transport and river bed evolution 1.1 What is the sediment transport? What is the river bed evolution? System of the interaction between flow and river beds Rivers transport a variety

More information

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters Last lecture Analog-to-digital conversion (Ch. 1.1). Introduction to flow measurement systems (Ch. 12.1). Today s menu Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters

More information

Relation between Velocity Profile and Friction Factor at High Reynolds Number in Fully Developed Pipe Flow

Relation between Velocity Profile and Friction Factor at High Reynolds Number in Fully Developed Pipe Flow Relation between Velocity Profile and Friction Factor at High Reynolds Number in Fully eveloped Pipe Flow Noriyuki Furuichi and Yoshiya Terao National Metrology Institute of Japan National Institute of

More information

Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke

Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke 1 Modelling of flow and sediment transport in rivers and freshwater deltas Peggy Zinke with contributions from Norwegian and international project partners 2 Outline 1. Introduction 2. Basic ideas of flow

More information

Figure 34: Coordinate system for the flow in open channels.

Figure 34: Coordinate system for the flow in open channels. OE466 redging Processes 5. SCOUR 5.. Steady uniform flow in open channels This chapter is written with a view to bottom scour. The main outcome is the scour velocity as a function of the particle diameter.

More information

INTRODUCTION TO FLUID MECHANICS June 27, 2013

INTRODUCTION TO FLUID MECHANICS June 27, 2013 INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

NUMERICAL INVESTIGATION ON THE INFLUENCE OF ANISOTROPIC SURFACE STRUCTURES ON THE SKIN FRICTION

NUMERICAL INVESTIGATION ON THE INFLUENCE OF ANISOTROPIC SURFACE STRUCTURES ON THE SKIN FRICTION Proceedings of 10 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC10, April 15-19, 2013, Lappeenranta, Finland NUMERICAL INVESTIGATION ON THE INFLUENCE OF ANISOTROPIC SURFACE

More information

Turbulent boundary layers developing over rough surfaces: from the laboratory to full-scale systems

Turbulent boundary layers developing over rough surfaces: from the laboratory to full-scale systems th Australasian Fluid Mechanics Conference Perth, Australia 5-8 December 6 Turbulent boundary layers developing over rough surfaces: from the laboratory to full-scale systems N. Hutchins, J. P. Monty,

More information

Experiment (4): Flow measurement

Experiment (4): Flow measurement Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d) ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

More information

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1 HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

OMICS Group International is an amalgamation of Open Access publications

OMICS Group International is an amalgamation of Open Access publications About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 2007 with the sole aim of

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey

More information

Roll No. :... Invigilator s Signature :.. CS/B.Tech (EIE)/SEM-5/EI-501/ INDUSTRIAL INSTRUMENTATION II

Roll No. :... Invigilator s Signature :.. CS/B.Tech (EIE)/SEM-5/EI-501/ INDUSTRIAL INSTRUMENTATION II Name : Roll No. :.... Invigilator s Signature :.. CS/B.Tech (EIE)/SEM-5/EI-501/2011-12 2011 INDUSTRIAL INSTRUMENTATION II Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes 8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

More information

Energy transfer rates in turbulent channels with drag reduction at constant power input

Energy transfer rates in turbulent channels with drag reduction at constant power input Energ transfer rates in turbulent channels with drag reduction at constant power input Davide Gatti, M. Quadrio, Y. Hasegawa, B. Frohnapfel and A. Cimarelli EDRFCM 2017, Villa Mondragone, Monte Porio Catone

More information

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1.

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1. PIPE FLOW General Characteristic of Pipe Flow Figure 1 Some of the basic components of a typical pipe system are shown in Figure 1. They include the pipes, the various fitting used to connect the individual

More information

Frictional Losses in Straight Pipe

Frictional Losses in Straight Pipe 2/2/206 CM325 Fundamentals of Chemical Engineering Laboratory Prelab Preparation for Frictional Losses in Straight Pipe Professor Faith Morrison Department of Chemical Engineering Michigan Technological

More information

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018

EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 EXAMPLES (SEDIMENT TRANSPORT) AUTUMN 2018 Q1. Using Cheng s formula estimate the settling velocity of a sand particle of diameter 1 mm in: (a) air; (b) water. Q2. Find the critical Shields parameter diameter

More information

Experimental Investigations on the Local Distribution of wall static pressure coefficient Due To an Impinging Slot Air Jet on a Confined Rough Surface

Experimental Investigations on the Local Distribution of wall static pressure coefficient Due To an Impinging Slot Air Jet on a Confined Rough Surface Experimental Investigations on the Local Distribution of wall static pressure coefficient Due To an Impinging Slot Air Jet on a Confined Rough Surface 1 Adimurthy. M 1 BLDEA s VP DR. P G Halakatti college

More information

Hydraulics of pipelines

Hydraulics of pipelines Hydraulics of pipelines K 4 HYAE Hydraulics of pipelines Application of Bernoulli equation BE continuity equation CE g g p h g g p h loss head (losses): friction losses t (in distance L) local losses m

More information

CHALLENGE: MAGNETOHYDRODYNAMICS

CHALLENGE: MAGNETOHYDRODYNAMICS Turbulence / free surface interaction produces key phenomena - anisotropic near-surface turbulence Turbulent production dominated by the generation of wall eections, formation of spanwise upsurging vortices

More information

Recent Progress In Estimating Ship-Hull Drag Penalty

Recent Progress In Estimating Ship-Hull Drag Penalty Recent Progress In Estimating Ship-Hull Drag Penalty I Ketut Aria Pria Utama Dept of Naval Architecture and shipbuilding Engineering Institut Tenologi Sepuluh Nopember Surabaya, Indonesia utama@na.its.ac.id

More information

Only if handing in. Name: Student No.: Page 2 of 7

Only if handing in. Name: Student No.: Page 2 of 7 UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 10, 2014 2:00 PM 2.5 HOURS CHE 211F FLUID MECHANICS EXAMINER: PROFESSOR D.G. ALLEN ANSWER ALL SEVEN (7) QUESTIONS

More information

Hydraulic Design Of Polyethylene Pipes

Hydraulic Design Of Polyethylene Pipes Hydraulic Design Of Polyethylene Pipes Waters & Farr polyethylene pipes offer a hydraulically smooth bore that provides excellent flow characteristics. Other advantages of Waters & Farr polyethylene pipes,

More information

Lunch and Learn Presentation FTT-UCF Impingement Testing

Lunch and Learn Presentation FTT-UCF Impingement Testing Lunch and Learn Presentation FTT-UCF Impingement Testing Roberto Claretti UTSR Fellow - Heat Transfer Intern Florida Turbine Technologies, Inc. RClaretti@fttinc.com www.fttinc.com Who am I? My name is

More information

AN EXPERIMENTAL INVESTIGATION OF FRICTION REDUCTION IN TUBES CAUSED BY HYDROPHOBIC MAGNETITE NANO PARTICLES (HMNP) COATING

AN EXPERIMENTAL INVESTIGATION OF FRICTION REDUCTION IN TUBES CAUSED BY HYDROPHOBIC MAGNETITE NANO PARTICLES (HMNP) COATING ISSN : 0976-2876 (Print) ISSN : 2250-0138 (Online) AN EXPERIMENTAL INVESTIGATION OF FRICTION REDUCTION IN TUBES CAUSED BY HYDROPHOBIC MAGNETITE NANO PARTICLES (HMNP) COATING AMIR JAVAD AHRAR a1 AND MARYAM

More information

Laboratory exercise 1: Open channel flow measurement

Laboratory exercise 1: Open channel flow measurement Chapter 1 Laboratory exercise 1: Open channel flow measurement Laboratory exercise Open channel flow measurement is placed on the Faculty of Civil and Geodetic Engineering, on Department of Environmental

More information

Turbulence - Theory and Modelling GROUP-STUDIES:

Turbulence - Theory and Modelling GROUP-STUDIES: Lund Institute of Technology Department of Energy Sciences Division of Fluid Mechanics Robert Szasz, tel 046-0480 Johan Revstedt, tel 046-43 0 Turbulence - Theory and Modelling GROUP-STUDIES: Turbulence

More information

ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS

ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS ROLE OF THE VERTICAL PRESSURE GRADIENT IN WAVE BOUNDARY LAYERS Karsten Lindegård Jensen 1, B. Mutlu Sumer 1, Giovanna Vittori 2 and Paolo Blondeaux 2 The pressure field in an oscillatory boundary layer

More information

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER.

White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER. White Paper FINAL REPORT AN EVALUATION OF THE HYDRODYNAMICS MECHANISMS WHICH DRIVE THE PERFORMANCE OF THE WESTFALL STATIC MIXER Prepared by: Dr. Thomas J. Gieseke NUWCDIVNPT - Code 8233 March 29, 1999

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

FIELD TESTING AND INSTRUMENTATION OF ROCK. Philadelphia, Pa., June ASTM SPECIAL TECHNICAL PUBLICATION 554 G. B. Clark, symposium chairman

FIELD TESTING AND INSTRUMENTATION OF ROCK. Philadelphia, Pa., June ASTM SPECIAL TECHNICAL PUBLICATION 554 G. B. Clark, symposium chairman FIELD TESTING AND INSTRUMENTATION OF ROCK A symposium presented at the Seventy-sixth Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa., 24-29 June 1973 ASTM SPECIAL TECHNICAL

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Some CFD simulations for the design of the FCC ventilation system. 9/28/2015 A. Rakai EN-CV-PJ 2

Some CFD simulations for the design of the FCC ventilation system. 9/28/2015 A. Rakai EN-CV-PJ 2 Some CFD simulations for the design of the FCC ventilation system 9/28/2015 A. Rakai EN-CV-PJ 2 FCC tunnel design 9/28/2015 A. Rakai EN-CV-PJ 3 FCC: machine tunnel A 9100 m section considered for the study,

More information

Storm Water Best Management Practice: Development of Debris Filtering Structure for Supercritical Flow

Storm Water Best Management Practice: Development of Debris Filtering Structure for Supercritical Flow Storm Water Best Management Practice: Development of Debris Filtering Structure for Supercritical Flow Jungseok Ho 1, Todd Marti 2, and Julie Coonrod 3 1 Department of Civil Engineering, University of

More information

Particle Image Velocimetry Measurements of the Flow over Barnacles in a Turbulent Boundary Layer

Particle Image Velocimetry Measurements of the Flow over Barnacles in a Turbulent Boundary Layer Particle Image Velocimetry Measurements of the Flow over Barnacles in a Turbulent Boundary Layer Julio M. Barros, 1*, Elizabeth A. Murphy 2, Michael P. Schultz 3 1: Dept. of Mechanical Engineering, United

More information

7. TURBULENCE SPRING 2019

7. TURBULENCE SPRING 2019 7. TRBLENCE SPRING 2019 7.1 What is turbulence? 7.2 Momentum transfer in laminar and turbulent flow 7.3 Turbulence notation 7.4 Effect of turbulence on the mean flow 7.5 Turbulence generation and transport

More information

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Internal Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction Pipe circular cross section. Duct noncircular cross section. Tubes small-diameter

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Uniform Channel Flow Basic Concepts. Definition of Uniform Flow Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,

More information

7.6 Example von Kármán s Laminar Boundary Layer Problem

7.6 Example von Kármán s Laminar Boundary Layer Problem CEE 3310 External Flows (Boundary Layers & Drag, Nov. 11, 2016 157 7.5 Review Non-Circular Pipes Laminar: f = 64/Re DH ± 40% Turbulent: f(re DH, ɛ/d H ) Moody chart for f ± 15% Bernoulli-Based Flow Metering

More information

The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime

The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime J. Fluid Mech. (27), vol. 58, pp. 381 45. c 27 Cambridge University Press doi:1.117/s221127552 Printed in the United Kingdom 381 The rough-wall turbulent boundary layer from the hydraulically smooth to

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

1.060 Engineering Mechanics II Spring Problem Set 8

1.060 Engineering Mechanics II Spring Problem Set 8 1.060 Engineering Mechanics II Spring 2006 Due on Monday, May 1st Problem Set 8 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members

More information

THE CHARACTERISTICS OF BRAZED PLATE HEAT EXCHANGERS WITH DIFFERENT CHEVRON ANGLES

THE CHARACTERISTICS OF BRAZED PLATE HEAT EXCHANGERS WITH DIFFERENT CHEVRON ANGLES THE CHARACTERISTICS OF BRAZED PLATE HEAT EXCHANGERS WITH DIFFERENT CHEVRON ANGLES M. Amala Justus Selvam 1, Senthil kumar P. 2 and S. Muthuraman 3 1 Sathyabama University, Tamil Nadu, India 2 K. S. R College

More information

5. Secondary Current and Spiral Flow

5. Secondary Current and Spiral Flow 5. Secondary Current and Spiral Flow The curve of constant velocity for rectangular and triangular cross-section obtained by Nikuradse are shown in Figures and 2. In all cases the velocities at the corners

More information

Amélie Neuville (1,2), Renaud Toussaint (2), Eirik Flekkøy (1), Jean Schmittbuhl (2)

Amélie Neuville (1,2), Renaud Toussaint (2), Eirik Flekkøy (1), Jean Schmittbuhl (2) Amélie Neuville (1,2), Renaud Toussaint (2), Eirik Flekkøy (1), Jean Schmittbuhl (2) Thermal exchanges between a hot fractured rock and a cold fluid Deep geothermal systems Enhanced Geothermal Systems

More information

ASSESSMENT OF UNCERTAINTY IN EQUIVALENT SAND GRAIN ROUGHNESS METHODS CHINMAY P BHATT

ASSESSMENT OF UNCERTAINTY IN EQUIVALENT SAND GRAIN ROUGHNESS METHODS CHINMAY P BHATT ASSESSMENT OF UNCERTAINTY IN EQUIVALENT SAND GRAIN ROUGHNESS METHODS by CHINMAY P BHATT STEPHEN T. MCCLAIN, COMMITTEE CHAIR PETER M. WALSH ROY P. KOOMULLIL A THESIS Submitted to the graduate faculty of

More information

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B. CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

More information

FLOW SEPARATION. Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc.

FLOW SEPARATION. Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc. FLOW SEPARATION Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc. (Form Drag, Pressure Distribution, Forces and Moments, Heat And Mass Transfer, Vortex Shedding)

More information

NUMERICAL SIMULATION OF EROSION PROCESSES ON CROSSBAR BLOCK RAMPS

NUMERICAL SIMULATION OF EROSION PROCESSES ON CROSSBAR BLOCK RAMPS E-proceedings of the 36 th IAHR World Congress NUMERICAL SIMULATION OF EROSION PROCESSES ON CROSSBAR BLOCK RAMPS MARIO OERTEL (1), JAN P. BALMES (2), DANIEL B. BUNG (3) (1) Hydraulic Engineering Section,

More information

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness Bonfring International Journal of Industrial Engineering and Management Science, Vol. 4, No. 3, August 2014 115 A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

ASTM C STEADY-STATE HEAT FLUX MEASUREMENTS AND THERMAL TRANSMISSION PROPERTIES BY MEANS OF THE HEAT FLOW METER APPARATUS

ASTM C STEADY-STATE HEAT FLUX MEASUREMENTS AND THERMAL TRANSMISSION PROPERTIES BY MEANS OF THE HEAT FLOW METER APPARATUS Page 1 of 10 ASTM C 518 04 STEADY-STATE HEAT FLUX MEASUREMENTS AND THERMAL TRANSMISSION PROPERTIES BY MEANS OF THE HEAT FLO METER APPARATUS Rockwool Premium Plus Insulation Project No. 3194876SAT-001A

More information

Chapter 10 Flow in Conduits

Chapter 10 Flow in Conduits Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear

More information

Calculation of Stream Discharge Required to Move Bed Material

Calculation of Stream Discharge Required to Move Bed Material Calculation of Stream Discharge Required to Move Bed Material Objective: Students will map two sections of a stream and calculate the depth, velocity, and discharge of flows required to move the stream

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 5. The logarithmic sublayer and surface roughness In this lecture Similarity theory for the logarithmic sublayer. Characterization of different land and water surfaces for surface flux parameterization

More information

FRICTION LOSS TESTS ON CEMENT LINED STEEL PIPES

FRICTION LOSS TESTS ON CEMENT LINED STEEL PIPES FRICTION LOSS TESTS ON CEMENT LINED STEEL PIPES by C.R. Dudgeon Research Report No. 158 August, 1983 The University of New South Wales School of Civil Engineering Water Research Laboratory FRICTION LOSS

More information

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing.

Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Turbulence is a ubiquitous phenomenon in environmental fluid mechanics that dramatically affects flow structure and mixing. Thus, it is very important to form both a conceptual understanding and a quantitative

More information

Measurements of Turbulent Pressure Under Breaking Waves

Measurements of Turbulent Pressure Under Breaking Waves MEASUREMENTS OF TURBULENT PRESSURE UNDER BREAKING WAVES 33 Measurements of Turbulent Pressure Under Breaking Waves Author: Faculty Sponsor: Department: Christopher Olsen Francis Ting, Ph.D., P.E. Civil

More information

Experimental Study of Convective Heat Transfer and Thermal Performance in the Heat-Sink Channel with Various Geometrical Configurations Fins

Experimental Study of Convective Heat Transfer and Thermal Performance in the Heat-Sink Channel with Various Geometrical Configurations Fins Experimental Study of Convective Heat Transfer and Thermal Performance in the Heat-Sink Channel with Various Geometrical Configurations Fins 1 Mohit Taneja, 2 Sandeep Nandal, 3 Arpan Manchanda, 4 Ajay

More information

Experiences in an Undergraduate Laboratory Using Uncertainty Analysis to Validate Engineering Models with Experimental Data

Experiences in an Undergraduate Laboratory Using Uncertainty Analysis to Validate Engineering Models with Experimental Data Experiences in an Undergraduate Laboratory Using Analysis to Validate Engineering Models with Experimental Data W. G. Steele 1 and J. A. Schneider Abstract Traditionally, the goals of engineering laboratory

More information

Experimental Aerodynamics. Experimental Aerodynamics

Experimental Aerodynamics. Experimental Aerodynamics Lecture 6: Slender Body Aerodynamics G. Dimitriadis Slender bodies! Wings are only one of the types of body that can be tested in a wind tunnel.! Although wings play a crucial role in aeronautical applications

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG 1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page of Table of Contents Waterjet Propulsion Test and Extrapolation... PURPOSE OF PROCEDURE.... PARAMETERS.... Nomenclature... 3. DESCRIPTION OF PROCEDURE... 3 3. Model and installation... 3 3.. Resistance

More information

Process Gas Flow Measurement and Performance Evaluation API TECHNICAL REPORT 2571 SECOND EDITION DRAFT, FEBRUARY 2018

Process Gas Flow Measurement and Performance Evaluation API TECHNICAL REPORT 2571 SECOND EDITION DRAFT, FEBRUARY 2018 Process Gas Flow Measurement and Performance Evaluation API TECHNICAL REPORT 2571 SECOND EDITION DRAFT, FEBRUARY 2018 (Note: modify document as needed once final proposal on name change is agreed, i.e.

More information

Multiphase Science and Technology, Vol. 19, No. 1, pp. 1 48, 2007 A MATHEMATICAL MODEL FOR TWO-PHASE STRATIFIED TURBULENT DUCT FLOW

Multiphase Science and Technology, Vol. 19, No. 1, pp. 1 48, 2007 A MATHEMATICAL MODEL FOR TWO-PHASE STRATIFIED TURBULENT DUCT FLOW Multiphase Science and Technology, Vol. 9, No., pp. 48, 27 A MATHEMATICAL MODEL FOR TWO-PHASE STRATIFIED TURBULENT DUCT FLOW Dag Biberg Scandpower Petroleum Technology, P.O.Box 3, Gåsevikvn. 2-4 N-227

More information

EXPERIMENTAL STUDY OF HEAT TRANSFER AND PRESSURE LOSS IN CHANNELS WITH MINIATURE V RIB-DIMPLE HYBRID STRUCTURE

EXPERIMENTAL STUDY OF HEAT TRANSFER AND PRESSURE LOSS IN CHANNELS WITH MINIATURE V RIB-DIMPLE HYBRID STRUCTURE EXPERIMENTAL STUDY OF HEAT TRANSFER AND PRESSURE LOSS IN CHANNELS WITH MINIATURE V RIB-DIMPLE HYBRID STRUCTURE Yu Rao and Peng Zhang. Institute of Turbomachinery, School of Mechanical Engineering, Shanghai

More information

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

More information

National Center for Earth-surface Dynamics: Renesse 2003: Non-cohesive Sediment Transport

National Center for Earth-surface Dynamics: Renesse 2003: Non-cohesive Sediment Transport Introduction to Morphodynamics For the original references on the work of Exner see Graf, W., 1971, Hydraulics of Sediment Transport, McGraw Hill, New York, 513 p. Sediment Properties Dietrich, E. W.,

More information