440-3 Geometry/Topology: Cohomology Northwestern University Solution of Homework 5

Size: px
Start display at page:

Download "440-3 Geometry/Topology: Cohomology Northwestern University Solution of Homework 5"

Transcription

1 440-3 Geometry/Topology: Cohomology Northwestern University Solution of Homework 5 You can use freely the following simple results from complex analysis (which can be proved in the same way as the case of one complex variable). Recall that CP n = (C n+ \{0})/C, where C acts by scalar multiplication. Let (z 0,..., z n ) be the coordinates on C n+, and write z j = x j + iy j, 0 j n, with (x 0,..., y n ) real coordinates on C n+. We shall use complex derivatives = 2 ( x j i y j ), = 2 ( x j + i y j and complex -forms dz j = dx j + idy j, dz j = dx j idy j. Then for any smooth function f we have df = j=0 f dz j + j=0 f dz j. ), We also have that We will write z 2 = n j=0 z j 2. z k = δ jk, z k = 0. ) On C n+ \{0} let Prove that the complex 2-form g jk = log z 2. z k ω = i g jk dz j dz k, on C n+ \{0} is real (i.e. ω = ω), closed and invariant under the C action. Denote by ω FS the closed real 2-form it induces on CP n. Solution. First of all we claim that g jk = g kj, i.e. that at each point the matrix g jk is Hermitian. This is clear, because log z 2 is a real-valued function and ω = i z k = z k. Therefore g kj dz j dz k = i g kj dz k dz j = ω,

2 which means that ω is real (and after switching to real coordinates, it becomes a usual real 2-form). To show that ω is closed, we compute dω = i (dg jk ) dz j dz k = i log z 2 dz l dz j dz k z l z k j,k j,k,l + i log z 2 dz l dz j dz k = 0, z l z k j,k,l because partial derivatives commute. Let us now compute g jk = ( ) zk z 2 = z 2 δ jk z k z j z 4. If λ C and F λ : C n+ \{0} C n+ \{0} is given by F λ (z) = λz then F λ ω = i λ 2 (g jk F λ )dz j dz k = ω. 2) In the chart U 0 = {[z 0 : : z n ] CP n z 0 0} = C n with coordinates w j = z j /z 0, j =,..., n, show that ω n FS = n! ( + w 2 ) n+ idw dw idw n dw n. Solution. On the subset of C n+ \{0} where z 0 0, we have and log z 2 = log z log( + w 2 ), It follows that on U 0 we can write ω FS = i log z 0 2 = z 0 2 z 0 2 z k z 0 4 = 0. j,k= ( + w 2 )δ jk w k w j ( + w 2 ) 2 dw j dw k. Let us write h jk = ( + w 2 )δ jk w k w j ( + w 2 ) 2, 2

3 which is a Hermitian n n matrix at each point. If we apply a unitary change of coordinates, we may diagonalize h jk, so that in these new coordinates ζ j we have ω FS = i λ j dζ j dζ j, with λ j R. Taking the n th wedge product of this form, we get n ωfs n = n! idζ dζ idζ n dζ n, j= λ j j= and switching back to the original coordinates, ω n FS = n! det(h jk )idw dw idw n dw n, and we only need to compute the determinant of h jk. This equals det(h jk ) = ( + w 2 ) 2n det(( + w 2 )δ jk w k w j ). The Hermitian matrix w kw j represents the rank linear transformation w 2 which is the projection onto the complex line spanned by the nonzero complex number w, and therefore the matrix w k w j has the eigenvalue w 2 with multiplicity and the eigenvalue 0 with multiplicity n. Since (+ w 2 )δ jk is a multiple of the identity (which remains such in all coordinate systems, for example in coordinates which diagonalize w k w j ), we see that the matrix ( + w 2 )δ jk w k w j has eigenvalue with multiplicity and eigenvalue ( + w 2 ) with multiplicity n. It follows that det(( + w 2 )δ jk w k w j ) = ( + w 2 ) n, and so as required. det(h jk ) = ( + w 2 ) n+, 3) Again using the chart U 0, compute CP n ω n FS = (2π) n. 3

4 Deduce from this that [ω k FS ] 0 in H2k (CP n ) for all 0 k n, and show that therefore [ω k FS ] is a generator of H2k (CP n ). Solution. Note that idw j dw j = 2dx j dy j, so that idw dw idw n dw n = 2 n dµ, where dµ is the usual Lebesgue measure in C n. Since CP n \U 0 CP n has measure zero, we see that ωfs n = 2 n n! CP n C n ( + w 2 dµ(w). ) n+ We write C n = C n C, with w = (w, w n ), and first integrate in the variable w n. We have C n ( + w 2 dµ(w) = ) n+ C n C ( + w 2 + w n 2 ) n+ dµ(w n)dµ(w ). Use polar coordinates in C and write the innermost integral as 2π 0 so that r ( + w 2 + r 2 dr = π ) n+ C n ( + w 2 ) n+ dµ(w) = π n which can be iterated to get and so 0 ( + w 2 + s) n+ ds = π n( + w 2 ) n, C n ( + w 2 ) n dµ(w ), πn C n ( + w 2 dµ(w) = ) n+ n!, CP n ω n FS = 2 n n! πn n! = (2π)n. If we had [ωfs k ] = 0 in H2k (CP n ) for some 0 k n, then by taking the cup product with [ω n k FS ] we would get that also [ωn FS ] = 0 in H2n (CP n ). By Stokes s Theorem this would imply that ωfs n = 0, CP n a contradiction. Since we computed in Homework 2 that H 2k (CP n ) = R for 0 k n, it follows that any nonzero element in H 2k (CP n ) is a generator, 4

5 so in particular this holds for [ω k FS ]. 4) Use the Lefschetz fixed point theorem and show that for any even n, every smooth map F : CP n CP n has a fixed point. Solution. Since [ω FS ] is a generator of H 2 (CP n ), we have that F [ω FS ] = λ[ω FS ] for some λ R. Then F [ωfs k ] = [(F ω FS ) k ] = λ k [ωfs k ]. But these are generators for the cohomology of CP n (which vanishes in odd degree), and so by definition the Lefschetz number of F is L(F ) = + λ + λ λ n. If λ = then clearly L(F ) 0. If λ, then L(F ) = (λ n+ )/(λ ). If this was zero, then we would have that λ n+ =. If n is even, this is impossible, since λ is real. Therefore, if n is even we conclude that L(F ) 0. Thanks to the Lefschetz fixed point theorem, F has a fixed point. 5) For any odd n, find a smooth map F : CP n CP n without fixed points. Solution. We define F : CP 2n+ CP 2n+ by [z 0 : : z 2n+ ] [z : z 0 : z 3 : z 2 : : z 2n+ : z 2n ]. This is clearly a smooth map. If [z 0 : : z 2n+ ] was a fixed point for F, then we would have z 0 = λz, z = λz 0, for some λ C, and so z 0 = λ 2 z 0, which forces z 0 = z = 0. By the same token, z j = 0 for all j, a contradiction. 5

Math 225B: Differential Geometry, Final

Math 225B: Differential Geometry, Final Math 225B: Differential Geometry, Final Ian Coley March 5, 204 Problem Spring 20,. Show that if X is a smooth vector field on a (smooth) manifold of dimension n and if X p is nonzero for some point of

More information

Lecture VI: Projective varieties

Lecture VI: Projective varieties Lecture VI: Projective varieties Jonathan Evans 28th October 2010 Jonathan Evans () Lecture VI: Projective varieties 28th October 2010 1 / 24 I will begin by proving the adjunction formula which we still

More information

Complex manifolds, Kahler metrics, differential and harmonic forms

Complex manifolds, Kahler metrics, differential and harmonic forms Complex manifolds, Kahler metrics, differential and harmonic forms Cattani June 16, 2010 1 Lecture 1 Definition 1.1 (Complex Manifold). A complex manifold is a manifold with coordinates holomorphic on

More information

Let X be a topological space. We want it to look locally like C. So we make the following definition.

Let X be a topological space. We want it to look locally like C. So we make the following definition. February 17, 2010 1 Riemann surfaces 1.1 Definitions and examples Let X be a topological space. We want it to look locally like C. So we make the following definition. Definition 1. A complex chart on

More information

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit 1. (a) Show that the set M R 3 defined by the equation (1 z 2 )(x 2 + y 2 ) = 1 is a smooth submanifold of R 3.

More information

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS Contents 1. Almost complex manifolds 1. Complex manifolds 5 3. Kähler manifolds 9 4. Dolbeault cohomology 11 1. Almost complex manifolds Almost complex structures.

More information

Topic: First Chern classes of Kähler manifolds Mitchell Faulk Last updated: April 23, 2016

Topic: First Chern classes of Kähler manifolds Mitchell Faulk Last updated: April 23, 2016 Topic: First Chern classes of Kähler manifolds itchell Faulk Last updated: April 23, 2016 We study the first Chern class of various Kähler manifolds. We only consider two sources of examples: Riemann surfaces

More information

DIFFERENTIAL FORMS AND COHOMOLOGY

DIFFERENTIAL FORMS AND COHOMOLOGY DIFFERENIAL FORMS AND COHOMOLOGY ONY PERKINS Goals 1. Differential forms We want to be able to integrate (holomorphic functions) on manifolds. Obtain a version of Stokes heorem - a generalization of the

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

LECTURE 5: SURFACES IN PROJECTIVE SPACE. 1. Projective space

LECTURE 5: SURFACES IN PROJECTIVE SPACE. 1. Projective space LECTURE 5: SURFACES IN PROJECTIVE SPACE. Projective space Definition: The n-dimensional projective space P n is the set of lines through the origin in the vector space R n+. P n may be thought of as the

More information

E 0 0 F [E] + [F ] = 3. Chern-Weil Theory How can you tell if idempotents over X are similar?

E 0 0 F [E] + [F ] = 3. Chern-Weil Theory How can you tell if idempotents over X are similar? . Characteristic Classes from the viewpoint of Operator Theory. Introduction Overarching Question: How can you tell if two vector bundles over a manifold are isomorphic? Let X be a compact Hausdorff space.

More information

Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church.

Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church. Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church. Exercise 5.C.1 Suppose T L(V ) is diagonalizable. Prove that V = null T range T. Proof. Let v 1,...,

More information

is the desired collar neighbourhood. Corollary Suppose M1 n, M 2 and f : N1 n 1 N2 n 1 is a diffeomorphism between some connected components

is the desired collar neighbourhood. Corollary Suppose M1 n, M 2 and f : N1 n 1 N2 n 1 is a diffeomorphism between some connected components 1. Collar neighbourhood theorem Definition 1.0.1. Let M n be a manifold with boundary. Let p M. A vector v T p M is called inward if for some local chart x: U V where U subsetm is open, V H n is open and

More information

Lecture 19 (Nov. 15, 2017)

Lecture 19 (Nov. 15, 2017) Lecture 19 8.31 Quantum Theory I, Fall 017 8 Lecture 19 Nov. 15, 017) 19.1 Rotations Recall that rotations are transformations of the form x i R ij x j using Einstein summation notation), where R is an

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS SHOO SETO Abstract. These are the notes to an expository talk I plan to give at MGSC on Kähler Geometry aimed for beginning graduate students in hopes to motivate

More information

CHAPTER 1. Preliminaries Basic Relevant Algebra Introduction to Differential Geometry. By Christian Bär

CHAPTER 1. Preliminaries Basic Relevant Algebra Introduction to Differential Geometry. By Christian Bär CHAPTER 1 Preliminaries 1.1. Basic Relevant Algebra 1.2. Introduction to Differential Geometry By Christian Bär Inthis lecturewegiveabriefintroductiontothe theoryofmanifoldsandrelatedbasic concepts of

More information

RIEMANN SURFACES. ω = ( f i (γ(t))γ i (t))dt.

RIEMANN SURFACES. ω = ( f i (γ(t))γ i (t))dt. RIEMANN SURFACES 6. Week 7: Differential forms. De Rham complex 6.1. Introduction. The notion of differential form is important for us for various reasons. First of all, one can integrate a k-form along

More information

Notation. - the jth partial derivative of the ith coordinate function of a vector valued function f

Notation. - the jth partial derivative of the ith coordinate function of a vector valued function f 5.1 M(m, n) - the m n matrices with real entries, also denoted M when m and n are clear from context. For A M(m, n) we write [A] ij for the (i, j)th entry of A. If the entries are given as a ij, we also

More information

5 Constructions of connections

5 Constructions of connections [under construction] 5 Constructions of connections 5.1 Connections on manifolds and the Levi-Civita theorem We start with a bit of terminology. A connection on the tangent bundle T M M of a manifold M

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Statistics of supersymmetric vacua in string/m theory

Statistics of supersymmetric vacua in string/m theory Statistics of supersymmetric vacua in string/m theory Steve Zelditch Department of Mathematics Johns Hopkins University Joint Work with Bernard Shiffman Mike Douglas 1 Supergravity theory An effective

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Determinantal Processes And The IID Gaussian Power Series

Determinantal Processes And The IID Gaussian Power Series Determinantal Processes And The IID Gaussian Power Series Yuval Peres U.C. Berkeley Talk based on work joint with: J. Ben Hough Manjunath Krishnapur Bálint Virág 1 Samples of translation invariant point

More information

1 = I I I II 1 1 II 2 = normalization constant III 1 1 III 2 2 III 3 = normalization constant...

1 = I I I II 1 1 II 2 = normalization constant III 1 1 III 2 2 III 3 = normalization constant... Here is a review of some (but not all) of the topics you should know for the midterm. These are things I think are important to know. I haven t seen the test, so there are probably some things on it that

More information

j=1 ωj k E j. (3.1) j=1 θj E j, (3.2)

j=1 ωj k E j. (3.1) j=1 θj E j, (3.2) 3. Cartan s Structural Equations and the Curvature Form Let E,..., E n be a moving (orthonormal) frame in R n and let ωj k its associated connection forms so that: de k = n ωj k E j. (3.) Recall that ωj

More information

A BRIEF INTRODUCTION TO SEVERAL COMPLEX VARIABLES

A BRIEF INTRODUCTION TO SEVERAL COMPLEX VARIABLES A BRIEF INTRODUCTION TO SEVERAL COMPLEX VARIABLES PO-LAM YUNG Contents 1. The Cauchy-Riemann complex 1 2. Geometry of the domain: Pseudoconvexity 3 3. Solvability of the Cauchy-Riemann operator 5 4. The

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

Math 114: Course Summary

Math 114: Course Summary Math 114: Course Summary Rich Schwartz September 25, 2009 General Information: Math 114 is a course in real analysis. It is the second half of the undergraduate series in real analysis, M113-4. In M113,

More information

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let Chapter 1 Complex line bundles 1.1 Connections of line bundle Consider a complex line bundle L M. For any integer k N, let be the space of k-forms with values in L. Ω k (M, L) = C (M, L k (T M)) Definition

More information

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH 1. Differential Forms To start our discussion, we will define a special class of type (0,r) tensors: Definition 1.1. A differential form of order

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

Matrix Airy functions for compact Lie groups

Matrix Airy functions for compact Lie groups Matrix Airy functions for compact Lie groups V. S. Varadarajan University of California, Los Angeles, CA, USA Los Angeles, November 12, 2008 Abstract The classical Airy function and its many applications

More information

Mathematical Methods wk 2: Linear Operators

Mathematical Methods wk 2: Linear Operators John Magorrian, magog@thphysoxacuk These are work-in-progress notes for the second-year course on mathematical methods The most up-to-date version is available from http://www-thphysphysicsoxacuk/people/johnmagorrian/mm

More information

Geometry Qualifying Exam Notes

Geometry Qualifying Exam Notes Geometry Qualifying Exam Notes F 1 F 1 x 1 x n Definition: The Jacobian matrix of a map f : N M is.. F m F m x 1 x n square matrix, its determinant is called the Jacobian determinant.. When this is a Definition:

More information

November 18, 2013 ANALYTIC FUNCTIONAL CALCULUS

November 18, 2013 ANALYTIC FUNCTIONAL CALCULUS November 8, 203 ANALYTIC FUNCTIONAL CALCULUS RODICA D. COSTIN Contents. The spectral projection theorem. Functional calculus 2.. The spectral projection theorem for self-adjoint matrices 2.2. The spectral

More information

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n ANALYSIS QUALIFYING EXAM FALL 206: SOLUTIONS Problem. Let m be Lebesgue measure on R. For a subset E R and r (0, ), define E r = { x R: dist(x, E) < r}. Let E R be compact. Prove that m(e) = lim m(e /n).

More information

Linear Ordinary Differential Equations

Linear Ordinary Differential Equations MTH.B402; Sect. 1 20180703) 2 Linear Ordinary Differential Equations Preliminaries: Matrix Norms. Denote by M n R) the set of n n matrix with real components, which can be identified the vector space R

More information

Survey on exterior algebra and differential forms

Survey on exterior algebra and differential forms Survey on exterior algebra and differential forms Daniel Grieser 16. Mai 2013 Inhaltsverzeichnis 1 Exterior algebra for a vector space 1 1.1 Alternating forms, wedge and interior product.....................

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

MORE NOTES FOR MATH 823, FALL 2007

MORE NOTES FOR MATH 823, FALL 2007 MORE NOTES FOR MATH 83, FALL 007 Prop 1.1 Prop 1. Lemma 1.3 1. The Siegel upper half space 1.1. The Siegel upper half space and its Bergman kernel. The Siegel upper half space is the domain { U n+1 z C

More information

THE NEWLANDER-NIRENBERG THEOREM. GL. The frame bundle F GL is given by x M Fx

THE NEWLANDER-NIRENBERG THEOREM. GL. The frame bundle F GL is given by x M Fx THE NEWLANDER-NIRENBERG THEOREM BEN MCMILLAN Abstract. For any kind of geometry on smooth manifolds (Riemannian, Complex, foliation,...) it is of fundamental importance to be able to determine when two

More information

18.S34 linear algebra problems (2007)

18.S34 linear algebra problems (2007) 18.S34 linear algebra problems (2007) Useful ideas for evaluating determinants 1. Row reduction, expanding by minors, or combinations thereof; sometimes these are useful in combination with an induction

More information

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009.

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Solutions (1) Let Γ be a discrete group acting on a manifold M. (a) Define what it means for Γ to act freely. Solution: Γ acts

More information

ON NEARLY SEMIFREE CIRCLE ACTIONS

ON NEARLY SEMIFREE CIRCLE ACTIONS ON NEARLY SEMIFREE CIRCLE ACTIONS DUSA MCDUFF AND SUSAN TOLMAN Abstract. Recall that an effective circle action is semifree if the stabilizer subgroup of each point is connected. We show that if (M, ω)

More information

GQE ALGEBRA PROBLEMS

GQE ALGEBRA PROBLEMS GQE ALGEBRA PROBLEMS JAKOB STREIPEL Contents. Eigenthings 2. Norms, Inner Products, Orthogonality, and Such 6 3. Determinants, Inverses, and Linear (In)dependence 4. (Invariant) Subspaces 3 Throughout

More information

Introduction to Extremal metrics

Introduction to Extremal metrics Introduction to Extremal metrics Preliminary version Gábor Székelyhidi Contents 1 Kähler geometry 2 1.1 Complex manifolds........................ 3 1.2 Almost complex structures.................... 5 1.3

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

COMPLEX ANALYSIS HW 8

COMPLEX ANALYSIS HW 8 OMPLEX ANALYSIS HW 8 LAY SHONKWILE 23 For differentiable (but not necessarily holomorphic functions f, p, q : Ω, prove the following relations: (23.: dz d z 2idx dy d z dz. Proof. On one hand, dz d z (

More information

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015 The Canonical Sheaf Stefano Filipazzi September 14, 015 These notes are supposed to be a handout for the student seminar in algebraic geometry at the University of Utah. In this seminar, we will go over

More information

CHARACTERISTIC CLASSES

CHARACTERISTIC CLASSES 1 CHARACTERISTIC CLASSES Andrew Ranicki Index theory seminar 14th February, 2011 2 The Index Theorem identifies Introduction analytic index = topological index for a differential operator on a compact

More information

The Borsuk Ulam Theorem

The Borsuk Ulam Theorem The Borsuk Ulam Theorem Anthony Carbery University of Edinburgh & Maxwell Institute for Mathematical Sciences May 2010 () 1 / 43 Outline Outline 1 Brouwer fixed point theorem 2 Borsuk Ulam theorem Introduction

More information

x i x j x l ωk x j dx i dx j,

x i x j x l ωk x j dx i dx j, Exterior Derivatives In this section we define a natural differential operator on smooth forms, called the exterior derivative. It is a generalization of the diffeential of a function. Motivations: Recall

More information

DIFFERENTIAL GEOMETRY 1 PROBLEM SET 1 SOLUTIONS

DIFFERENTIAL GEOMETRY 1 PROBLEM SET 1 SOLUTIONS DIFFERENTIAL GEOMETRY PROBLEM SET SOLUTIONS Lee: -4,--5,-6,-7 Problem -4: If k is an integer between 0 and min m, n, show that the set of m n matrices whose rank is at least k is an open submanifold of

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

REAL ANALYSIS II HOMEWORK 3. Conway, Page 49

REAL ANALYSIS II HOMEWORK 3. Conway, Page 49 REAL ANALYSIS II HOMEWORK 3 CİHAN BAHRAN Conway, Page 49 3. Let K and k be as in Proposition 4.7 and suppose that k(x, y) k(y, x). Show that K is self-adjoint and if {µ n } are the eigenvalues of K, each

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW JC Stuff you should know for the exam. 1. Basics on vector spaces (1) F n is the set of all n-tuples (a 1,... a n ) with a i F. It forms a VS with the operations of + and scalar multiplication

More information

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0). Math 27C, Spring 26 Final Exam Solutions. Define f : R 2 R 2 and g : R 2 R 2 by f(x, x 2 (sin x 2 x, e x x 2, g(y, y 2 ( y y 2, y 2 + y2 2. Use the chain rule to compute the matrix of (g f (,. By the chain

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc. I will review some of these terms here, but quite

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

INTEGRATION ON MANIFOLDS and GAUSS-GREEN THEOREM

INTEGRATION ON MANIFOLDS and GAUSS-GREEN THEOREM INTEGRATION ON MANIFOLS and GAUSS-GREEN THEOREM 1. Schwarz s paradox. Recall that for curves one defines length via polygonal approximation by line segments: a continuous curve γ : [a, b] R n is rectifiable

More information

Differential forms. Proposition 3 Let X be a Riemann surface, a X and (U, z = x + iy) a coordinate neighborhood of a.

Differential forms. Proposition 3 Let X be a Riemann surface, a X and (U, z = x + iy) a coordinate neighborhood of a. Differential forms Proposition 3 Let X be a Riemann surface, a X and (U, z = x + iy) a coordinate neighborhood of a. 1. The elements d a x and d a y form a basis of the cotangent space T (1) a. 2. If f

More information

Formality of Kähler manifolds

Formality of Kähler manifolds Formality of Kähler manifolds Aron Heleodoro February 24, 2015 In this talk of the seminar we like to understand the proof of Deligne, Griffiths, Morgan and Sullivan [DGMS75] of the formality of Kähler

More information

225A DIFFERENTIAL TOPOLOGY FINAL

225A DIFFERENTIAL TOPOLOGY FINAL 225A DIFFERENTIAL TOPOLOGY FINAL KIM, SUNGJIN Problem 1. From hitney s Embedding Theorem, we can assume that N is an embedded submanifold of R K for some K > 0. Then it is possible to define distance function.

More information

(a) [15] Use perturbation theory to compute the eigenvalues and eigenvectors of H. Compute all terms up to fourth-order in Ω. The bare eigenstates are

(a) [15] Use perturbation theory to compute the eigenvalues and eigenvectors of H. Compute all terms up to fourth-order in Ω. The bare eigenstates are PHYS85 Quantum Mechanics II, Spring 00 HOMEWORK ASSIGNMENT 6: Solutions Topics covered: Time-independent perturbation theory.. [0 Two-Level System: Consider the system described by H = δs z + ΩS x, with

More information

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ. Linear Algebra 1 M.T.Nair Department of Mathematics, IIT Madras 1 Eigenvalues and Eigenvectors 1.1 Definition and Examples Definition 1.1. Let V be a vector space (over a field F) and T : V V be a linear

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

Matrix Theory, Math6304 Lecture Notes from Sept 11, 2012 taken by Tristan Whalen

Matrix Theory, Math6304 Lecture Notes from Sept 11, 2012 taken by Tristan Whalen Matrix Theory, Math6304 Lecture Notes from Sept 11, 2012 taken by Tristan Whalen 1 Further Review continued Warm-up Let A, B M n and suppose det(a) = 0.Defineamatrixvaluedfunctionasfollows: F (t) =(A +

More information

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality Math 67. umbos Fall 8 Solutions to eview Problems for Final Exam. In this problem, u and v denote vectors in n. (a) Use the triangle inequality to derive the inequality Solution: Write v u v u for all

More information

The only global contact transformations of order two or more are point transformations

The only global contact transformations of order two or more are point transformations Journal of Lie Theory Volume 15 (2005) 135 143 c 2005 Heldermann Verlag The only global contact transformations of order two or more are point transformations Ricardo J. Alonso-Blanco and David Blázquez-Sanz

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

Hyperkähler geometry lecture 3

Hyperkähler geometry lecture 3 Hyperkähler geometry lecture 3 Misha Verbitsky Cohomology in Mathematics and Physics Euler Institute, September 25, 2013, St. Petersburg 1 Broom Bridge Here as he walked by on the 16th of October 1843

More information

12 Geometric quantization

12 Geometric quantization 12 Geometric quantization 12.1 Remarks on quantization and representation theory Definition 12.1 Let M be a symplectic manifold. A prequantum line bundle with connection on M is a line bundle L M equipped

More information

Some brief notes on the Kodaira Vanishing Theorem

Some brief notes on the Kodaira Vanishing Theorem Some brief notes on the Kodaira Vanishing Theorem 1 Divisors and Line Bundles, according to Scott Nollet This is a huge topic, because there is a difference between looking at an abstract variety and local

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS

MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS MATH 320: PRACTICE PROBLEMS FOR THE FINAL AND SOLUTIONS There will be eight problems on the final. The following are sample problems. Problem 1. Let F be the vector space of all real valued functions on

More information

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ.

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ. Lecture 3 Cohomologies, curvatures Maxwell equations The Maxwell equations for electromagnetic fields are expressed as E = H t, H = 0, E = 4πρ, H E t = 4π j. These equations can be simplified if we use

More information

CR SINGULAR IMAGES OF GENERIC SUBMANIFOLDS UNDER HOLOMORPHIC MAPS

CR SINGULAR IMAGES OF GENERIC SUBMANIFOLDS UNDER HOLOMORPHIC MAPS CR SINGULAR IMAGES OF GENERIC SUBMANIFOLDS UNDER HOLOMORPHIC MAPS JIŘÍ LEBL, ANDRÉ MINOR, RAVI SHROFF, DUONG SON, AND YUAN ZHANG Abstract. The purpose of this paper is to organize some results on the local

More information

Math 408 Advanced Linear Algebra

Math 408 Advanced Linear Algebra Math 408 Advanced Linear Algebra Chi-Kwong Li Chapter 4 Hermitian and symmetric matrices Basic properties Theorem Let A M n. The following are equivalent. Remark (a) A is Hermitian, i.e., A = A. (b) x

More information

MATH 235. Final ANSWERS May 5, 2015

MATH 235. Final ANSWERS May 5, 2015 MATH 235 Final ANSWERS May 5, 25. ( points) Fix positive integers m, n and consider the vector space V of all m n matrices with entries in the real numbers R. (a) Find the dimension of V and prove your

More information

AN ASYMPTOTIC BEHAVIOR OF QR DECOMPOSITION

AN ASYMPTOTIC BEHAVIOR OF QR DECOMPOSITION Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 AN ASYMPTOTIC BEHAVIOR OF QR DECOMPOSITION HUAJUN HUANG AND TIN-YAU TAM Abstract. The m-th root of the diagonal of the upper

More information

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2.

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2. ANALYSIS QUALIFYING EXAM FALL 27: SOLUTIONS Problem. Determine, with justification, the it cos(nx) n 2 x 2 dx. Solution. For an integer n >, define g n : (, ) R by Also define g : (, ) R by g(x) = g n

More information

Lecture 13. Differential forms

Lecture 13. Differential forms Lecture 13. Differential forms In the last few lectures we have seen how a connection can be used to differentiate tensors, and how the introduction of a Riemannian metric gives a canonical choice of connection.

More information

Dr. Allen Back. Dec. 3, 2014

Dr. Allen Back. Dec. 3, 2014 Dr. Allen Back Dec. 3, 2014 forms are sums of wedge products of the basis 1-forms dx, dy, and dz. They are kinds of tensors generalizing ordinary scalar functions and vector fields. They have a skew-symmetry

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

4-MANIFOLDS: CLASSIFICATION AND EXAMPLES. 1. Outline

4-MANIFOLDS: CLASSIFICATION AND EXAMPLES. 1. Outline 4-MANIFOLDS: CLASSIFICATION AND EXAMPLES 1. Outline Throughout, 4-manifold will be used to mean closed, oriented, simply-connected 4-manifold. Hopefully I will remember to append smooth wherever necessary.

More information

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002 Solutions to Section 9 Homework Problems Problems 9 (odd) and 8 S F Ellermeyer June The pictured set contains the vector u but not the vector u so this set is not a subspace of The pictured set contains

More information

Homework 3 Solutions Math 309, Fall 2015

Homework 3 Solutions Math 309, Fall 2015 Homework 3 Solutions Math 39, Fall 25 782 One easily checks that the only eigenvalue of the coefficient matrix is λ To find the associated eigenvector, we have 4 2 v v 8 4 (up to scalar multiplication)

More information

Introduction to finite element exterior calculus

Introduction to finite element exterior calculus Introduction to finite element exterior calculus Ragnar Winther CMA, University of Oslo Norway Why finite element exterior calculus? Recall the de Rham complex on the form: R H 1 (Ω) grad H(curl, Ω) curl

More information

Essays on representations of p-adic groups. Smooth representations. π(d)v = ϕ(x)π(x) dx. π(d 1 )π(d 2 )v = ϕ 1 (x)π(x) dx ϕ 2 (y)π(y)v dy

Essays on representations of p-adic groups. Smooth representations. π(d)v = ϕ(x)π(x) dx. π(d 1 )π(d 2 )v = ϕ 1 (x)π(x) dx ϕ 2 (y)π(y)v dy 10:29 a.m. September 23, 2006 Essays on representations of p-adic groups Smooth representations Bill Casselman University of British Columbia cass@math.ubc.ca In this chapter I ll define admissible representations

More information

EIGENVALUES AND EIGENVECTORS

EIGENVALUES AND EIGENVECTORS EIGENVALUES AND EIGENVECTORS Diagonalizable linear transformations and matrices Recall, a matrix, D, is diagonal if it is square and the only non-zero entries are on the diagonal This is equivalent to

More information

MATH 31CH SPRING 2017 MIDTERM 2 SOLUTIONS

MATH 31CH SPRING 2017 MIDTERM 2 SOLUTIONS MATH 3CH SPRING 207 MIDTERM 2 SOLUTIONS (20 pts). Let C be a smooth curve in R 2, in other words, a -dimensional manifold. Suppose that for each x C we choose a vector n( x) R 2 such that (i) 0 n( x) for

More information

Qualifying Exams I, 2014 Spring

Qualifying Exams I, 2014 Spring Qualifying Exams I, 2014 Spring 1. (Algebra) Let k = F q be a finite field with q elements. Count the number of monic irreducible polynomials of degree 12 over k. 2. (Algebraic Geometry) (a) Show that

More information

ANSWERS TO VARIOUS HOMEWORK PROBLEMS IN MATH 3210, FALL 2015

ANSWERS TO VARIOUS HOMEWORK PROBLEMS IN MATH 3210, FALL 2015 ANSWERS TO VARIOUS HOMEWORK PROBLEMS IN MATH 3210, FALL 2015 HOMEWORK #11 (DUE FRIDAY DEC 4) Let M be a manifold. Define the Poincaré polynomial p M (t) := dim M i=0 (dim H i (M))t i and the Euler characteristic

More information

Is there a Small Skew Cayley Transform with Zero Diagonal?

Is there a Small Skew Cayley Transform with Zero Diagonal? Is there a Small Skew Cayley Transform with Zero Diagonal? Abstract The eigenvectors of an Hermitian matrix H are the columns of some complex unitary matrix Q. For any diagonal unitary matrix Ω the columns

More information

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018

Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March 22, 2018 1 Linear Systems Math 5630: Iterative Methods for Systems of Equations Hung Phan, UMass Lowell March, 018 Consider the system 4x y + z = 7 4x 8y + z = 1 x + y + 5z = 15. We then obtain x = 1 4 (7 + y z)

More information