Matrix Completion from Fewer Entries

Size: px
Start display at page:

Download "Matrix Completion from Fewer Entries"

Transcription

1 from Fewer Entries Stanford University March 30, 2009

2 Outline The problem, a look at the data, and some results (slides) 2 Proofs (blackboard) arxiv:

3 The problem, a look at the data, and some results

4 Netflix dataset: A big (!) matrix M = movies users 0 8 ratings

5 A big (!) matrix? ???? users 2 0 movies 0 6 queries M =

6 You get a prize if... RMSE < ; ) Is this possible?

7 You get a prize if... RMSE < ; ) Is this possible?

8 You get a prize if... RMSE < ; ) Is this possible?

9 A model: Incoherent low-rank matrices

10 The observations M = r n movies nα users

11 The observations M E = n movies nα users nɛ unif. random positions

12 You need some structure! r V T r M = n U nα r n

13 You need some structure! r V T r M = n U nα r n

14 Unstructured factors A. Bounded entries M ia M max = µ 0 r. A2. Incoherence r U 2 ik µ r, k= r Vak 2 µ r. k= [Candés, Recht 2008]

15 Metric (RMSE) D(M, ˆM) n 2 M 2 M ia ˆM ia 2 max i,a /2

16 Previous work Theorem (Candés, Recht, 2008) If ɛ C r n /5 log n then whp. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007]

17 Previous work Theorem (Candés, Recht, 2008) If ɛ C r n /5 log n then whp. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007]

18 Previous work Theorem (Candés, Recht, 2008) If ɛ C r n /5 log n then whp. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007]

19 Previous work Theorem (Candés, Recht, 2008) If ɛ C r n /5 log n then whp. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007]

20 Previous work Theorem (Candés, Recht, 2008) If ɛ C r n /5 log n then whp. M is unique given the observed entries. 2. M is the unique minimum of a SDP. cf. also [Recht, Fazel, Parrilo 2007]

21 Great, but.... n /5 observations for bit of information? 2. RMSE = 0? 3. SDP = O(n...6 ). Substitute n =

22 Great, but.... n /5 observations for bit of information? 2. RMSE = 0? 3. SDP = O(n...6 ). Substitute n =

23 Great, but.... n /5 observations for bit of information? 2. RMSE = 0? 3. SDP = O(n...6 ). Substitute n =

24 Great, but.... n /5 observations for bit of information? 2. RMSE = 0? 3. SDP = O(n...6 ). Substitute n =

25 O(n) entries are enough (practice)

26 A movie

27 Rank = : Bayes optimal vs. Belief Propagation 0.8 n=00 n=000 n=0000 D ɛ

28 Rank = 2: Belief Propagation..2 n=00 n=000 n=0000 D ɛ

29 Rank = 3: Belief Propagation D n=00 n=000 n= ɛ

30 Rank = : Belief Propagation D n=00 n=000 n= ɛ

31 O(n) entries are enough (theory)

32 Naive spectral algorithm M E ia = { Mia if (i, a) E, 0 otherwise. Projection M E = n i= T r (M E ) = n α ɛ σ i x i y T i, σ σ 2... r i= σ i x i y T i.

33 Naive spectral algorithm M E ia = { Mia if (i, a) E, 0 otherwise. Projection M E = n i= T r (M E ) = n α ɛ σ i x i y T i, σ σ 2... r i= σ i x i y T i.

34 Troubles and solution If ɛ = O(), spurious singular values Ω( log n/(log log n)). Trimming M E ia = { M E ia if deg(i) 2 Edeg(i), deg(a) 2 Edeg(a), 0 otherwise.

35 Troubles and solution If ɛ = O(), spurious singular values Ω( log n/(log log n)). Trimming M E ia = { M E ia if deg(i) 2 Edeg(i), deg(a) 2 Edeg(a), 0 otherwise.

36 Not-as-naive spectral algorithm Spectral ( matrix M E ) : Trim M E, and let M E be the output; 2: Project M E to T r ( M E ); 3: Clean residual errors by gradient descent in the factors.

37 Theorem (Keshavan, M, Oh, 2009) Assume r n /2 and bounded entries. Then nm max M T r ( M E ) F = RMSE C r/ɛ. with probability larger than exp( Bn). Theorem (Keshavan, M, Oh, 2009) Assune r = O(), bounded entries and incoherent factors, with Σ min, Σ max uniformly bounded away from 0 and. If ɛ C log n then Spectral returns, whp, the matrix M.

38 Theorem (Keshavan, M, Oh, 2009) Assume r n /2 and bounded entries. Then nm max M T r ( M E ) F = RMSE C r/ɛ. with probability larger than exp( Bn). Theorem (Keshavan, M, Oh, 2009) Assune r = O(), bounded entries and incoherent factors, with Σ min, Σ max uniformly bounded away from 0 and. If ɛ C log n then Spectral returns, whp, the matrix M.

39 A comparison Theorem (Achlioptas, McSherry 2007) Assume ɛ (8 log n) and bounded entries. Then nm max M T r ( M E ) F = RMSE r/ɛ. with probability larger than exp( 9(log n) ). (For n = 0 6, (8 log n) )

40 A comparison Theorem (Achlioptas, McSherry 2007) Assume ɛ (8 log n) and bounded entries. Then nm max M T r ( M E ) F = RMSE r/ɛ. with probability larger than exp( 9(log n) ). (For n = 0 6, (8 log n) )

41 One more comparison Theorem (Candés, Tao, March 8, 2009) Assume bounded entries and strongly incoherent factors If ɛ C r (log n) 6 then Semidefinite Programming returns, whp, the matrix M. A2. Strong incoherence r U 2 ik µ r, k= r U ik U jk µ r, k=

42 One more comparison Theorem (Candés, Tao, March 8, 2009) Assume bounded entries and strongly incoherent factors If ɛ C r (log n) 6 then Semidefinite Programming returns, whp, the matrix M. A2. Strong incoherence r U 2 ik µ r, k= r U ik U jk µ r, k=

43 One more comparison Theorem (Candés, Tao, March 8, 2009) Assume bounded entries and strongly incoherent factors If ɛ C r (log n) 6 then Semidefinite Programming returns, whp, the matrix M. A2. Strong incoherence r U 2 ik µ r, k= r U ik U jk µ r, k=

44 Our approach: Graph theory movies i nα users a n (i, a) E User a rated movie i.

45 Our approach: Graph theory movies i nα users a n (i, a) E User a rated movie i.

46 Back to the data

47 Random r =, n = 0000, ɛ = σ σ 3 σ 2σ

48 Netflix data (trimmed)

49 Is Neflix a random low-rank matrix? Compare for coordinate descent (SimonFunk).

50 Rank = 3 fit error pred. error D Lowrank Netflix Data Random Data U[- ] steps Lowrank Netflix Data Random Data U[- ] steps

51 Rank = fit error pred. error D Lowrank Netflix Data Random Data U[- ] steps Lowrank Netflix Data Random Data U[- ] steps

52 Rank = 5 fit error pred. error D Lowrank Netflix Data Random Data U[- ] steps Lowrank Netflix Data Random Data U[- ] steps

53 Proofs (blackboard)

Matrix completion: Fundamental limits and efficient algorithms. Sewoong Oh Stanford University

Matrix completion: Fundamental limits and efficient algorithms. Sewoong Oh Stanford University Matrix completion: Fundamental limits and efficient algorithms Sewoong Oh Stanford University 1 / 35 Low-rank matrix completion Low-rank Data Matrix Sparse Sampled Matrix Complete the matrix from small

More information

Low-rank Matrix Completion from Noisy Entries

Low-rank Matrix Completion from Noisy Entries Low-rank Matrix Completion from Noisy Entries Sewoong Oh Joint work with Raghunandan Keshavan and Andrea Montanari Stanford University Forty-Seventh Allerton Conference October 1, 2009 R.Keshavan, S.Oh,

More information

Matrix Completion: Fundamental Limits and Efficient Algorithms

Matrix Completion: Fundamental Limits and Efficient Algorithms Matrix Completion: Fundamental Limits and Efficient Algorithms Sewoong Oh PhD Defense Stanford University July 23, 2010 1 / 33 Matrix completion Find the missing entries in a huge data matrix 2 / 33 Example

More information

Matrix Completion from a Few Entries

Matrix Completion from a Few Entries Matrix Completion from a Few Entries Raghunandan H. Keshavan and Sewoong Oh EE Department Stanford University, Stanford, CA 9434 Andrea Montanari EE and Statistics Departments Stanford University, Stanford,

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Raghunandan H. Keshavan, Andrea Montanari and Sewoong Oh Electrical Engineering and Statistics Department Stanford University,

More information

Matrix Completion from Noisy Entries

Matrix Completion from Noisy Entries Matrix Completion from Noisy Entries Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh Abstract Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy observations

More information

Low Rank Matrix Completion Formulation and Algorithm

Low Rank Matrix Completion Formulation and Algorithm 1 2 Low Rank Matrix Completion and Algorithm Jian Zhang Department of Computer Science, ETH Zurich zhangjianthu@gmail.com March 25, 2014 Movie Rating 1 2 Critic A 5 5 Critic B 6 5 Jian 9 8 Kind Guy B 9

More information

Recovering any low-rank matrix, provably

Recovering any low-rank matrix, provably Recovering any low-rank matrix, provably Rachel Ward University of Texas at Austin October, 2014 Joint work with Yudong Chen (U.C. Berkeley), Srinadh Bhojanapalli and Sujay Sanghavi (U.T. Austin) Matrix

More information

Adaptive one-bit matrix completion

Adaptive one-bit matrix completion Adaptive one-bit matrix completion Joseph Salmon Télécom Paristech, Institut Mines-Télécom Joint work with Jean Lafond (Télécom Paristech) Olga Klopp (Crest / MODAL X, Université Paris Ouest) Éric Moulines

More information

Matrix estimation by Universal Singular Value Thresholding

Matrix estimation by Universal Singular Value Thresholding Matrix estimation by Universal Singular Value Thresholding Courant Institute, NYU Let us begin with an example: Suppose that we have an undirected random graph G on n vertices. Model: There is a real symmetric

More information

BEYOND MATRIX COMPLETION

BEYOND MATRIX COMPLETION BEYOND MATRIX COMPLETION ANKUR MOITRA MASSACHUSETTS INSTITUTE OF TECHNOLOGY Based on joint work with Boaz Barak (MSR) Part I: RecommendaIon systems and parially observed matrices THE NETFLIX PROBLEM movies

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms François Caron Department of Statistics, Oxford STATLEARN 2014, Paris April 7, 2014 Joint work with Adrien Todeschini,

More information

From Compressed Sensing to Matrix Completion and Beyond. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison

From Compressed Sensing to Matrix Completion and Beyond. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison From Compressed Sensing to Matrix Completion and Beyond Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Netflix Prize One million big ones! Given 100 million ratings on a

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Adrien Todeschini Inria Bordeaux JdS 2014, Rennes Aug. 2014 Joint work with François Caron (Univ. Oxford), Marie

More information

Linear dimensionality reduction for data analysis

Linear dimensionality reduction for data analysis Linear dimensionality reduction for data analysis Nicolas Gillis Joint work with Robert Luce, François Glineur, Stephen Vavasis, Robert Plemmons, Gabriella Casalino The setup Dimensionality reduction for

More information

Guaranteed Rank Minimization via Singular Value Projection

Guaranteed Rank Minimization via Singular Value Projection 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 3 3 33 34 35 36 37 38 39 4 4 4 43 44 45 46 47 48 49 5 5 5 53 Guaranteed Rank Minimization via Singular Value Projection Anonymous Author(s) Affiliation Address

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via convex relaxations Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

1-bit Matrix Completion. PAC-Bayes and Variational Approximation

1-bit Matrix Completion. PAC-Bayes and Variational Approximation : PAC-Bayes and Variational Approximation (with P. Alquier) PhD Supervisor: N. Chopin Bayes In Paris, 5 January 2017 (Happy New Year!) Various Topics covered Matrix Completion PAC-Bayesian Estimation Variational

More information

Collaborative Filtering

Collaborative Filtering Case Study 4: Collaborative Filtering Collaborative Filtering Matrix Completion Alternating Least Squares Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Carlos Guestrin

More information

Matrix Completion for Structured Observations

Matrix Completion for Structured Observations Matrix Completion for Structured Observations Denali Molitor Department of Mathematics University of California, Los ngeles Los ngeles, C 90095, US Email: dmolitor@math.ucla.edu Deanna Needell Department

More information

Low-Rank Matrix Recovery

Low-Rank Matrix Recovery ELE 538B: Mathematics of High-Dimensional Data Low-Rank Matrix Recovery Yuxin Chen Princeton University, Fall 2018 Outline Motivation Problem setup Nuclear norm minimization RIP and low-rank matrix recovery

More information

The convex algebraic geometry of rank minimization

The convex algebraic geometry of rank minimization The convex algebraic geometry of rank minimization Pablo A. Parrilo Laboratory for Information and Decision Systems Massachusetts Institute of Technology International Symposium on Mathematical Programming

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Statistical Performance of Convex Tensor Decomposition

Statistical Performance of Convex Tensor Decomposition Slides available: h-p://www.ibis.t.u tokyo.ac.jp/ryotat/tensor12kyoto.pdf Statistical Performance of Convex Tensor Decomposition Ryota Tomioka 2012/01/26 @ Kyoto University Perspectives in Informatics

More information

Matrix Completion from Noisy Entries

Matrix Completion from Noisy Entries Journal of Machine Learning Research (200) 2057-2078 Submitted 6/09; Revised 4/0; Published 7/0 Matrix Completion from Noisy Entries Raghunandan H. Keshavan Andrea Montanari Sewoong Oh Department of Electrical

More information

EE 381V: Large Scale Learning Spring Lecture 16 March 7

EE 381V: Large Scale Learning Spring Lecture 16 March 7 EE 381V: Large Scale Learning Spring 2013 Lecture 16 March 7 Lecturer: Caramanis & Sanghavi Scribe: Tianyang Bai 16.1 Topics Covered In this lecture, we introduced one method of matrix completion via SVD-based

More information

Collaborative Filtering Matrix Completion Alternating Least Squares

Collaborative Filtering Matrix Completion Alternating Least Squares Case Study 4: Collaborative Filtering Collaborative Filtering Matrix Completion Alternating Least Squares Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade May 19, 2016

More information

Restricted Boltzmann Machines for Collaborative Filtering

Restricted Boltzmann Machines for Collaborative Filtering Restricted Boltzmann Machines for Collaborative Filtering Authors: Ruslan Salakhutdinov Andriy Mnih Geoffrey Hinton Benjamin Schwehn Presentation by: Ioan Stanculescu 1 Overview The Netflix prize problem

More information

Divide-and-Conquer Matrix Factorization

Divide-and-Conquer Matrix Factorization Divide-and-Conquer Matrix Factorization Lester Mackey Collaborators: Ameet Talwalkar Michael I. Jordan Stanford University UCLA UC Berkeley December 14, 2015 Mackey (Stanford) Divide-and-Conquer Matrix

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline More Uniform Convergence Examples Example

More information

BEYOND MATRIX COMPLETION

BEYOND MATRIX COMPLETION BEYOND MATRIX COMPLETION ANKUR MOITRA MASSACHUSETTS INSTITUTE OF TECHNOLOGY Based on joint work with Boaz Barak (Harvard) Part I: RecommendaJon systems and parjally observed matrices THE NETFLIX PROBLEM

More information

Matrix Factorizations: A Tale of Two Norms

Matrix Factorizations: A Tale of Two Norms Matrix Factorizations: A Tale of Two Norms Nati Srebro Toyota Technological Institute Chicago Maximum Margin Matrix Factorization S, Jason Rennie, Tommi Jaakkola (MIT), NIPS 2004 Rank, Trace-Norm and Max-Norm

More information

Subsampling, Spectral Methods and Semidefinite Programming

Subsampling, Spectral Methods and Semidefinite Programming Subsampling, Spectral Methods and Semidefinite Programming Alexandre d Aspremont, Princeton University Joint work with Noureddine El Karoui, U.C. Berkeley. Support from NSF, DHS and Google. A. d Aspremont

More information

Binary matrix completion

Binary matrix completion Binary matrix completion Yaniv Plan University of Michigan SAMSI, LDHD workshop, 2013 Joint work with (a) Mark Davenport (b) Ewout van den Berg (c) Mary Wootters Yaniv Plan (U. Mich.) Binary matrix completion

More information

Low-rank Solutions of Linear Matrix Equations via Procrustes Flow

Low-rank Solutions of Linear Matrix Equations via Procrustes Flow Low-rank Solutions of Linear Matrix Equations via Procrustes low Stephen Tu, Ross Boczar, Max Simchowitz {STEPHENT,BOCZAR,MSIMCHOW}@BERKELEYEDU EECS Department, UC Berkeley, Berkeley, CA Mahdi Soltanolkotabi

More information

ELE 538B: Mathematics of High-Dimensional Data. Spectral methods. Yuxin Chen Princeton University, Fall 2018

ELE 538B: Mathematics of High-Dimensional Data. Spectral methods. Yuxin Chen Princeton University, Fall 2018 ELE 538B: Mathematics of High-Dimensional Data Spectral methods Yuxin Chen Princeton University, Fall 2018 Outline A motivating application: graph clustering Distance and angles between two subspaces Eigen-space

More information

An Extended Frank-Wolfe Method, with Application to Low-Rank Matrix Completion

An Extended Frank-Wolfe Method, with Application to Low-Rank Matrix Completion An Extended Frank-Wolfe Method, with Application to Low-Rank Matrix Completion Robert M. Freund, MIT joint with Paul Grigas (UC Berkeley) and Rahul Mazumder (MIT) CDC, December 2016 1 Outline of Topics

More information

MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS

MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS MATRIX RECOVERY FROM QUANTIZED AND CORRUPTED MEASUREMENTS Andrew S. Lan 1, Christoph Studer 2, and Richard G. Baraniuk 1 1 Rice University; e-mail: {sl29, richb}@rice.edu 2 Cornell University; e-mail:

More information

Matrix Completion with Noise

Matrix Completion with Noise Matrix Completion with Noise 1 Emmanuel J. Candès and Yaniv Plan Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 of the rapidly developing field of compressed sensing, and is already

More information

An iterative hard thresholding estimator for low rank matrix recovery

An iterative hard thresholding estimator for low rank matrix recovery An iterative hard thresholding estimator for low rank matrix recovery Alexandra Carpentier - based on a joint work with Arlene K.Y. Kim Statistical Laboratory, Department of Pure Mathematics and Mathematical

More information

Lecture Notes 10: Matrix Factorization

Lecture Notes 10: Matrix Factorization Optimization-based data analysis Fall 207 Lecture Notes 0: Matrix Factorization Low-rank models. Rank- model Consider the problem of modeling a quantity y[i, j] that depends on two indices i and j. To

More information

MATRIX COMPLETION AND TENSOR RANK

MATRIX COMPLETION AND TENSOR RANK MATRIX COMPLETION AND TENSOR RANK HARM DERKSEN Abstract. In this paper, we show that the low rank matrix completion problem can be reduced to the problem of finding the rank of a certain tensor. arxiv:1302.2639v2

More information

LLORMA: Local Low-Rank Matrix Approximation

LLORMA: Local Low-Rank Matrix Approximation Journal of Machine Learning Research 17 (2016) 1-24 Submitted 7/14; Revised 5/15; Published 3/16 LLORMA: Local Low-Rank Matrix Approximation Joonseok Lee Seungyeon Kim Google Research, Mountain View, CA

More information

Large-scale Collaborative Ranking in Near-Linear Time

Large-scale Collaborative Ranking in Near-Linear Time Large-scale Collaborative Ranking in Near-Linear Time Liwei Wu Depts of Statistics and Computer Science UC Davis KDD 17, Halifax, Canada August 13-17, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via nonconvex optimization Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Shuyang Ling Department of Mathematics, UC Davis Oct.18th, 2016 Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016

More information

Lecture 2 Part 1 Optimization

Lecture 2 Part 1 Optimization Lecture 2 Part 1 Optimization (January 16, 2015) Mu Zhu University of Waterloo Need for Optimization E(y x), P(y x) want to go after them first, model some examples last week then, estimate didn t discuss

More information

Andriy Mnih and Ruslan Salakhutdinov

Andriy Mnih and Ruslan Salakhutdinov MATRIX FACTORIZATION METHODS FOR COLLABORATIVE FILTERING Andriy Mnih and Ruslan Salakhutdinov University of Toronto, Machine Learning Group 1 What is collaborative filtering? The goal of collaborative

More information

Compressed Sensing and Robust Recovery of Low Rank Matrices

Compressed Sensing and Robust Recovery of Low Rank Matrices Compressed Sensing and Robust Recovery of Low Rank Matrices M. Fazel, E. Candès, B. Recht, P. Parrilo Electrical Engineering, University of Washington Applied and Computational Mathematics Dept., Caltech

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

Sparse and Low-Rank Matrix Decompositions

Sparse and Low-Rank Matrix Decompositions Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Sparse and Low-Rank Matrix Decompositions Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo,

More information

Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies

Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies July 12, 212 Recovery of Low-Rank Plus Compressed Sparse Matrices with Application to Unveiling Traffic Anomalies Morteza Mardani Dept. of ECE, University of Minnesota, Minneapolis, MN 55455 Acknowledgments:

More information

Three Generalizations of Compressed Sensing

Three Generalizations of Compressed Sensing Thomas Blumensath School of Mathematics The University of Southampton June, 2010 home prev next page Compressed Sensing and beyond y = Φx + e x R N or x C N x K is K-sparse and x x K 2 is small y R M or

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

Universal low-rank matrix recovery from Pauli measurements

Universal low-rank matrix recovery from Pauli measurements Universal low-rank matrix recovery from Pauli measurements Yi-Kai Liu Applied and Computational Mathematics Division National Institute of Standards and Technology Gaithersburg, MD, USA yi-kai.liu@nist.gov

More information

Lecture: Matrix Completion

Lecture: Matrix Completion 1/56 Lecture: Matrix Completion http://bicmr.pku.edu.cn/~wenzw/bigdata2017.html Acknowledgement: this slides is based on Prof. Jure Leskovec and Prof. Emmanuel Candes s lecture notes Recommendation systems

More information

A Scalable Spectral Relaxation Approach to Matrix Completion via Kronecker Products

A Scalable Spectral Relaxation Approach to Matrix Completion via Kronecker Products A Scalable Spectral Relaxation Approach to Matrix Completion via Kronecker Products Hui Zhao Jiuqiang Han Naiyan Wang Congfu Xu Zhihua Zhang Department of Automation, Xi an Jiaotong University, Xi an,

More information

A Tutorial on Matrix Approximation by Row Sampling

A Tutorial on Matrix Approximation by Row Sampling A Tutorial on Matrix Approximation by Row Sampling Rasmus Kyng June 11, 018 Contents 1 Fast Linear Algebra Talk 1.1 Matrix Concentration................................... 1. Algorithms for ɛ-approximation

More information

Generative Models for Discrete Data

Generative Models for Discrete Data Generative Models for Discrete Data ddebarr@uw.edu 2016-04-21 Agenda Bayesian Concept Learning Beta-Binomial Model Dirichlet-Multinomial Model Naïve Bayes Classifiers Bayesian Concept Learning Numbers

More information

Uniform Convergence Examples

Uniform Convergence Examples Uniform Convergence Examples James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 13, 2017 Outline 1 Example Let (x n ) be the sequence

More information

Random Methods for Linear Algebra

Random Methods for Linear Algebra Gittens gittens@acm.caltech.edu Applied and Computational Mathematics California Institue of Technology October 2, 2009 Outline The Johnson-Lindenstrauss Transform 1 The Johnson-Lindenstrauss Transform

More information

Spectral k-support Norm Regularization

Spectral k-support Norm Regularization Spectral k-support Norm Regularization Andrew McDonald Department of Computer Science, UCL (Joint work with Massimiliano Pontil and Dimitris Stamos) 25 March, 2015 1 / 19 Problem: Matrix Completion Goal:

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Symmetric Factorization for Nonconvex Optimization

Symmetric Factorization for Nonconvex Optimization Symmetric Factorization for Nonconvex Optimization Qinqing Zheng February 24, 2017 1 Overview A growing body of recent research is shedding new light on the role of nonconvex optimization for tackling

More information

Matrix Completion from Noisy Entries

Matrix Completion from Noisy Entries Matrix Completion from Noisy Entries Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh June 10, 2009 Abstract Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy

More information

Maximum Margin Matrix Factorization

Maximum Margin Matrix Factorization Maximum Margin Matrix Factorization Nati Srebro Toyota Technological Institute Chicago Joint work with Noga Alon Tel-Aviv Yonatan Amit Hebrew U Alex d Aspremont Princeton Michael Fink Hebrew U Tommi Jaakkola

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

1-bit Matrix Completion. PAC-Bayes and Variational Approximation

1-bit Matrix Completion. PAC-Bayes and Variational Approximation : PAC-Bayes and Variational Approximation (with P. Alquier) PhD Supervisor: N. Chopin Junior Conference on Data Science 2016 Université Paris Saclay, 15-16 September 2016 Introduction: Matrix Completion

More information

Estimation of (near) low-rank matrices with noise and high-dimensional scaling

Estimation of (near) low-rank matrices with noise and high-dimensional scaling Estimation of (near) low-rank matrices with noise and high-dimensional scaling Sahand Negahban Department of EECS, University of California, Berkeley, CA 94720, USA sahand n@eecs.berkeley.edu Martin J.

More information

Matrix Completion and Matrix Concentration

Matrix Completion and Matrix Concentration Matrix Completion and Matrix Concentration Lester Mackey Collaborators: Ameet Talwalkar, Michael I. Jordan, Richard Y. Chen, Brendan Farrell, Joel A. Tropp, and Daniel Paulin Stanford University UCLA UC

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 04 Matrix Completion Rainer Gemulla, Pauli Miettinen May 02, 2013 Recommender systems Problem Set of users Set of items (movies, books, jokes, products, stories,...) Feedback (ratings,

More information

High-dimensional Statistics

High-dimensional Statistics High-dimensional Statistics Pradeep Ravikumar UT Austin Outline 1. High Dimensional Data : Large p, small n 2. Sparsity 3. Group Sparsity 4. Low Rank 1 Curse of Dimensionality Statistical Learning: Given

More information

Rank minimization via the γ 2 norm

Rank minimization via the γ 2 norm Rank minimization via the γ 2 norm Troy Lee Columbia University Adi Shraibman Weizmann Institute Rank Minimization Problem Consider the following problem min X rank(x) A i, X b i for i = 1,..., k Arises

More information

Riemannian Pursuit for Big Matrix Recovery

Riemannian Pursuit for Big Matrix Recovery Riemannian Pursuit for Big Matrix Recovery Mingkui Tan 1, Ivor W. Tsang 2, Li Wang 3, Bart Vandereycken 4, Sinno Jialin Pan 5 1 School of Computer Science, University of Adelaide, Australia 2 Center for

More information

Dense Error Correction for Low-Rank Matrices via Principal Component Pursuit

Dense Error Correction for Low-Rank Matrices via Principal Component Pursuit Dense Error Correction for Low-Rank Matrices via Principal Component Pursuit Arvind Ganesh, John Wright, Xiaodong Li, Emmanuel J. Candès, and Yi Ma, Microsoft Research Asia, Beijing, P.R.C Dept. of Electrical

More information

Going off the grid. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison

Going off the grid. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Going off the grid Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Badri Bhaskar Parikshit Shah Gonnguo Tang We live in a continuous world... But we work

More information

Recommender Systems. Dipanjan Das Language Technologies Institute Carnegie Mellon University. 20 November, 2007

Recommender Systems. Dipanjan Das Language Technologies Institute Carnegie Mellon University. 20 November, 2007 Recommender Systems Dipanjan Das Language Technologies Institute Carnegie Mellon University 20 November, 2007 Today s Outline What are Recommender Systems? Two approaches Content Based Methods Collaborative

More information

ROBUST BLIND SPIKES DECONVOLUTION. Yuejie Chi. Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 43210

ROBUST BLIND SPIKES DECONVOLUTION. Yuejie Chi. Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 43210 ROBUST BLIND SPIKES DECONVOLUTION Yuejie Chi Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 4 ABSTRACT Blind spikes deconvolution, or blind super-resolution, deals with

More information

GoDec: Randomized Low-rank & Sparse Matrix Decomposition in Noisy Case

GoDec: Randomized Low-rank & Sparse Matrix Decomposition in Noisy Case ianyi Zhou IANYI.ZHOU@SUDEN.US.EDU.AU Dacheng ao DACHENG.AO@US.EDU.AU Centre for Quantum Computation & Intelligent Systems, FEI, University of echnology, Sydney, NSW 2007, Australia Abstract Low-rank and

More information

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization Forty-Fifth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 26-28, 27 WeA3.2 Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization Benjamin

More information

arxiv: v1 [stat.ml] 1 Mar 2015

arxiv: v1 [stat.ml] 1 Mar 2015 Matrix Completion with Noisy Entries and Outliers Raymond K. W. Wong 1 and Thomas C. M. Lee 2 arxiv:1503.00214v1 [stat.ml] 1 Mar 2015 1 Department of Statistics, Iowa State University 2 Department of Statistics,

More information

A Novel Approach to Quantized Matrix Completion Using Huber Loss Measure

A Novel Approach to Quantized Matrix Completion Using Huber Loss Measure 1 A Novel Approach to Quantized Matrix Completion Using Huber Loss Measure Ashkan Esmaeili and Farokh Marvasti ariv:1810.1260v1 [stat.ml] 29 Oct 2018 Abstract In this paper, we introduce a novel and robust

More information

High-dimensional Statistical Models

High-dimensional Statistical Models High-dimensional Statistical Models Pradeep Ravikumar UT Austin MLSS 2014 1 Curse of Dimensionality Statistical Learning: Given n observations from p(x; θ ), where θ R p, recover signal/parameter θ. For

More information

Information-Theoretic Limits of Matrix Completion

Information-Theoretic Limits of Matrix Completion Information-Theoretic Limits of Matrix Completion Erwin Riegler, David Stotz, and Helmut Bölcskei Dept. IT & EE, ETH Zurich, Switzerland Email: {eriegler, dstotz, boelcskei}@nari.ee.ethz.ch Abstract We

More information

Kernel Learning via Random Fourier Representations

Kernel Learning via Random Fourier Representations Kernel Learning via Random Fourier Representations L. Law, M. Mider, X. Miscouridou, S. Ip, A. Wang Module 5: Machine Learning L. Law, M. Mider, X. Miscouridou, S. Ip, A. Wang Kernel Learning via Random

More information

LARGE SCALE 2D SPECTRAL COMPRESSED SENSING IN CONTINUOUS DOMAIN

LARGE SCALE 2D SPECTRAL COMPRESSED SENSING IN CONTINUOUS DOMAIN LARGE SCALE 2D SPECTRAL COMPRESSED SENSING IN CONTINUOUS DOMAIN Jian-Feng Cai, Weiyu Xu 2, and Yang Yang 3 Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,

More information

Low-rank Solutions of Linear Matrix Equations via Procrustes Flow

Low-rank Solutions of Linear Matrix Equations via Procrustes Flow Low-rank Solutions of Linear Matrix Equations via Procrustes low Stephen Tu Mahdi Soltanolkotabi Ross Boczar Benjamin Recht July 11, 2015 Abstract In this paper we study the problem of recovering an low-rank

More information

The convex algebraic geometry of linear inverse problems

The convex algebraic geometry of linear inverse problems The convex algebraic geometry of linear inverse problems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from

INFO 4300 / CS4300 Information Retrieval. slides adapted from Hinrich Schütze s, linked from INFO 4300 / CS4300 Information Retrieval slides adapted from Hinrich Schütze s, linked from http://informationretrieval.org/ IR 8: Evaluation & SVD Paul Ginsparg Cornell University, Ithaca, NY 20 Sep 2011

More information

Probabilistic Low-Rank Matrix Completion from Quantized Measurements

Probabilistic Low-Rank Matrix Completion from Quantized Measurements Journal of Machine Learning Research 7 (206-34 Submitted 6/5; Revised 2/5; Published 4/6 Probabilistic Low-Rank Matrix Completion from Quantized Measurements Sonia A. Bhaskar Department of Electrical Engineering

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

Concentration-Based Guarantees for Low-Rank Matrix Reconstruction

Concentration-Based Guarantees for Low-Rank Matrix Reconstruction JMLR: Workshop and Conference Proceedings 9 20 35 339 24th Annual Conference on Learning Theory Concentration-Based Guarantees for Low-Rank Matrix Reconstruction Rina Foygel Department of Statistics, University

More information

Implicit Regularization in Matrix Factorization

Implicit Regularization in Matrix Factorization Implicit Regularization in Matrix Factorization Suriya Gunasekar Blake Woodworth Srinadh Bhojanapalli Behnam Neyshabur Nathan Srebro SURIYA@TTIC.EDU BLAKE@TTIC.EDU SRINADH@TTIC.EDU BEHNAM@TTIC.EDU NATI@TTIC.EDU

More information

Stochastic dynamical modeling:

Stochastic dynamical modeling: Stochastic dynamical modeling: Structured matrix completion of partially available statistics Armin Zare www-bcf.usc.edu/ arminzar Joint work with: Yongxin Chen Mihailo R. Jovanovic Tryphon T. Georgiou

More information

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task Binary Principal Component Analysis in the Netflix Collaborative Filtering Task László Kozma, Alexander Ilin, Tapani Raiko first.last@tkk.fi Helsinki University of Technology Adaptive Informatics Research

More information

A Fast Algorithm for Reconstruction of Spectrally Sparse Signals in Super-Resolution

A Fast Algorithm for Reconstruction of Spectrally Sparse Signals in Super-Resolution A Fast Algorithm for Reconstruction of Spectrally Sparse Signals in Super-Resolution Jian-Feng ai a, Suhui Liu a, and Weiyu Xu b a Department of Mathematics, University of Iowa, Iowa ity, IA 52242; b Department

More information