Mathematical Induction. Part Two

Size: px
Start display at page:

Download "Mathematical Induction. Part Two"

Transcription

1 Mathematical Induction Part Two

2 The principle of mathematical induction states that if for some property P(n), we have that If it starts P(0) is true and and it keeps going For any n N, we have P(n) P(n + ) Then then it's always true. For any n N, P(n) is true.

3 n(n+ ) Theorem: For any natural number n, i= Proof: By induction. Let P(n) be 2 n n(n+ ) P(n) i= i= 2 For our base case, we need to show P(0) is true, meaning that 0 0(0+ ) i= i= 2 Since the empty sum is defined to be 0, this claim is true. n+ i= n i= n i= For the inductive step, assume that for some n N that P(n) holds, so n(n+ ) i= 2 We need to show that P(n + ) holds, meaning that n+ (n+ )(n+ 2) i= i= 2 To see this, note that n n(n+ ) n(n+ )+ 2(n+ ) (n+ )(n+ 2) i= i+ (n+ )= + n+ = = i= Thus P(n + ) is true, completing the induction.

4 Induction in Practice Typically, a proof by induction will not explicitly state P(n). Rather, the proof will describe P(n) implicitly and leave it to the reader to fill in the details. Provided that there is sufficient detail to determine what P(n) is, that P(0) is true, and that whenever P(n) is true, P(n + ) is true, the proof is usually valid.

5 Theorem: For any natural number n, Proof: By induction on n. For our base case, if n = 0, note that and the theorem is true for 0. For the inductive step, assume that for some n the theorem is true. Then we have that n(n+ ) n(n+ )+ 2(n+ ) (n+ )(n+ 2) i+ (n+ )= + n+ = = n+ i= n i= i= 0 i= i= so the theorem is true for n +, completing the induction. n i= 0(0+ ) =0 2 i= n(n+ ) 2

6 A Variant of Induction

7 n 2 versus 2 n 0 2 = 0 2 = 2 2 = = = = = = = = = 00 < < = > = < < < < < < 2 n is much 2 0 = bigger here. 2 = 2 Does the trend 2 2 = 4 continue? 2 3 = = = = = = = = 024

8 Theorem: For any natural number n 5, n 2 < 2 n. Proof: By induction on n. As a base case, if n = 5, then we have that 5 2 = 25 < 32 = 2 5, so the claim holds. For the inductive step, assume that for some n 5, that n 2 < 2 n. Then we have that (n + ) 2 = n 2 + 2n + Since n 5, we have (n + ) 2 = n 2 + 2n + < n 2 + 2n + n (since < 5 n) = n 2 + 3n < n 2 + n 2 (since 3n < 5n n 2 ) = 2n 2 So (n + ) 2 < 2n 2. Now, by our inductive hypothesis, we know that n 2 < 2 n. This means that (n + ) 2 < 2n 2 (from above) < 2(2 n ) (by the inductive hypothesis) = 2 n + Completing the induction.

9 Theorem: For any natural number n 5, n 2 < 2 n. Proof: By induction on n. As a base case, if n = 5, then we have that 5 2 = 25 < 32 = 2 5, so the claim holds. For the inductive step, assume that for some n 5, that n 2 < 2 n. Then we have that (n + ) 2 = n 2 + 2n + Since n 5, we have Why (n + ) 2 = n 2 + 2n Why is + is this this < n 2 + 2n allowed? allowed? + n (since < 5 n) = n 2 + 3n < n 2 + n 2 (since 3n < 5n n 2 ) = 2n 2 So (n + ) 2 < 2n 2. Now, by our inductive hypothesis, we know that n 2 < 2 n. This means that (n + ) 2 < 2n 2 (from above) < 2(2 n ) (by the inductive hypothesis) = 2 n + Completing the induction.

10 Why is this Legal? Let P(n) be Either n < 5 or n 2 < 2 n. P(0) is trivially true. P() is trivially true, so P(0) P() P(2) is trivially true, so P() P(2) P(3) is trivially true, so P(2) P(3) P(4) is trivially true, so P(3) P(4) We explicitly proved P(5), so P(4) P(5) For any n 5, we explicitly proved that P(n) P(n + ). Thus P(0) and for any n N, P(n) P(n + ), so by induction P(n) is true for all natural numbers n.

11 Induction Starting at k To prove that P(n) is true for all natural numbers greater than or equal to k: Show that P(k) is true. Show that for any n k, that P(n) P(n + ). Conclude P(k) holds for all natural numbers greater than or equal to k. You don't need to justify why it's okay to start from k.

12 An Important Observation

13 One Major Catch In In an an inductive inductive proof, proof, to to prove prove P(5), P(5), we we can can only only assume assume P(4). P(4). We We cannot cannot rely rely on on any any of of our our earlier earlier results! results!

14 Strong Induction

15 The principle of strong induction states that if for some property P(n), we have that Assume Assume that that P(n) P(n) holds holds for for all all natural natural numbers numbers smaller smaller than than n. n. P(0) is true and For any n N with n 0, if P(n') is true for all n' < n, then P(n) is true then For any n N, P(n) is true.

16 Using Strong Induction

17 Induction and Dominoes

18 Strong Induction and Dominoes

19 Weak and Strong Induction Weak induction (regular induction) is good for showing that some property holds by incrementally adding in one new piece. Strong induction is good for showing that some property holds by breaking a large structure down into multiple small pieces.

20 Proof by Strong Induction State that you are attempting to prove something by strong induction. State what your choice of P(n) is. Prove the base case: State what P(0) is, then prove it. Prove the inductive step: State that you assume for all 0 n' < n, that P(n') is true. State what P(n) is. (this is what you're trying to prove) Go prove P(n).

21 Application: Binary Numbers

22 Binary Numbers The binary number system is base 2. Every number is represented as s and 0s encoding various powers of two. Examples: 00 2 = = = = 27 Enormously useful in computing; almost all computers do computation on binary numbers. Question: How do we know that every natural number can be written in binary?

23 Justifying Binary Numbers To justify the binary representation, we will prove the following result: Every natural number n can be expressed as the sum of distinct powers of two. This says that there's at least one way to write a number in binary; we'd need a separate proof to show that there's exactly one way to do it. So how do we prove this?

24 One Proof Idea

25 General Idea Repeatedly subtract out the largest power of two less than the number. Can't subtract 2 n twice for any n; otherwise, you could have subtracted 2 n+. Eventually, we reach 0; the number is then the sum of the powers of two that we subtracted. How do we formalize this as a proof?

26 Theorem: Every n N is the sum of distinct powers of two. Proof: By strong induction. Let P(n) be n is the sum of distinct powers of two. We prove that P(n) is true for all n N. As our base case, we prove P(0), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, P(0) holds. For the inductive step, assume that for some nonzero n N, that for any n' N where 0 n' < n, that P(n') holds and n' is the sum of distinct powers of two. We prove P(n), that n is the sum of distinct powers of two. Let 2 k be the greatest power of two such that 2 k n. Consider n 2 k. Since 2 k for any natural number k, we know that n 2 k < n. Since 2 k n, we know Notice 0 n 2 k. Thus, by our inductive hypothesis, n 2 Notice the the stronger stronger version version of of k is the sum of distinct powers of two. If S be the set of these powers of two, then n is the the sum the induction of induction these powers hypothesis. hypothesis. of two and 2 k. If we can show that We're We're 2 k now S, now we showing showing will have that that n P(n') P(n') is the is sum is of distinct powers of two (namely, true the elements of S and 2 k ). Then P(n) will hold, completing the induction. true for for all all natural natural numbers numbers in in the We show 2 k S by the range contradiction; range 0 assume n' n' < n. that n. We'll 2We'll k S. Since 2 k S and the sum of the powers use use of two this this in fact S fact is n later later 2 k, this on. on. means that 2 k n 2 k. Thus 2 k + 2 k n, so 2 k + n. This contradicts that 2 k is the largest power of two no greater than n. We have reached a contradiction, so our assumption was wrong and 2 k S, as required.

27 Theorem: Every n N is the sum of distinct powers of two. Proof: By strong induction. Let P(n) be n is the sum of distinct powers of two. We prove that P(n) is true for all n N. As our base case, we prove P(0), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, P(0) holds. For the inductive step, assume that for some nonzero n N, that for any n' N where 0 n' < n, that P(n') holds and n' is the sum of distinct powers of two. We prove P(n), that n is the sum of distinct powers of two. Let 2 k be the greatest power of two such that 2 k n. Consider n 2 k. Since 2 k for any natural number k, we know that n 2 k < n. Since 2 k n, we know Here's 0 n 2 k. Thus, by our inductive hypothesis, n 2 k is the sum of Here's the distinct powers the key key step of two. step of If of the S be the proof. the proof. set of these powers of two, then n is the sum If If of we we these can can powers show show of that that two and 2 k. If we can show that 2 k S, we will have that n is the sum of distinct powers of two (namely, the 0 elements of S and 2 k ). Then P(n) will hold, n 2 k completing the induction. k < n We show 2 k S by then then contradiction; we we can can use use assume the the that inductive inductive 2 k S. Since 2 k S and the sum of the powers of two in S is n 2 k, this means that 2 k n 2 k. hypothesis Thus 2 k + 2 k hypothesis to n, so 2 k + to claim n. claim that This contradicts that n 2 that k k is is a 2 k a is the largest power of two no sum sum greater of of distinct than distinct n. We powers powers have reached of of two. two. a contradiction, so our assumption was wrong and 2 k S, as required.

28 Theorem: Every n N is the sum of distinct powers of two. Proof: By strong induction. Let P(n) be n is the sum of distinct powers of two. We prove that P(n) is true for all n N. As our base case, we prove P(0), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, P(0) holds. For the inductive step, assume that for some nonzero n N, that for any n' N where 0 n' < n, that P(n') holds and n' is the sum of distinct powers of two. We prove P(n), that n is the sum of distinct powers of two. Let 2 k be the greatest power of two such that 2 k n. Consider n 2 k. Since 2 k for any natural number k, we know that n 2 k < n. Since 2 k n, we know 0 n 2 k. Thus, by our inductive hypothesis, n 2 k is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of these powers of two and 2 k. If we can Here Here show is is that where where 2 k strong S, strong we will induction induction have that n kicks kicks is the in. in. sum of We We distinct powers use of two (namely, the elements of S and 2 k ). Then P(n) will hold, completing use the the the fact induction. fact that that any any smaller smaller number number can can be be written We show written as 2 k S by as the contradiction; the sum sum of of distinct assume distinct powers that powers of 2 k S. Since of two two 2 k S and the sum to to of show show the powers that that n of two 2 k k in can can S is be n be 2written k, this means as as the the that sum sum 2 k n 2 k. Thus 2 k + 2 k n, so of 2 k + n. This contradicts that 2 k is the largest power of two no greater of distinct distinct powers than n. powers of We have reached of two. two. a contradiction, so our assumption was wrong and 2 k S, as required.

29 Theorem: Every n N is the sum of distinct powers of two. Proof: By strong induction. Let P(n) be n is the sum of distinct powers of two. We prove that P(n) is true for all n N. As our base case, we prove P(0), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, P(0) holds. For the inductive step, assume that for some nonzero n N, that for any n' N where 0 n' < n, that P(n') holds and n' is the sum of distinct powers of two. We prove P(n), that n is the sum of distinct powers of two. Let 2 k be the greatest power of two such that 2 k n. Consider n 2 k. Since 2 k for any natural number k, we know that n 2 k < n. Since 2 k n, we know 0 n 2 k. Thus, by our inductive hypothesis, n 2 k is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2 k. If we can show that 2 k S, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2 k ). Then P(n) will hold, completing the induction. We show 2 k S by contradiction; assume that 2 k S. Since 2 k S and the sum of the powers of two in S is n 2 k, this means that 2 k n 2 k. Thus 2 k + 2 k n, so 2 k + n. This contradicts that 2 k is the largest power of two no greater than n. We have reached a contradiction, so our assumption was wrong and 2 k S, as required.

30 Theorem: Every n N is the sum of distinct powers of two. Proof: By strong induction. Let P(n) be n is the sum of distinct powers of two. We prove that P(n) is true for all n N. As our base case, we prove P(0), that 0 is the sum of distinct powers of 2. Since the empty sum of no powers of 2 is equal to 0, P(0) holds. For the inductive step, assume that for some nonzero n N, that for any n' N where 0 n' < n, that P(n') holds and n' is the sum of distinct powers of two. We prove P(n), that n is the sum of distinct powers of two. Let 2 k be the greatest power of two such that 2 k n. Consider n 2 k. Since 2 k for any natural number k, we know that n 2 k < n. Since 2 k n, we know 0 n 2 k. Thus, by our inductive hypothesis, n 2 k is the sum of distinct powers of two. If S be the set of these powers of two, then n is the sum of the elements of S and 2 k. If we can show that 2 k S, we will have that n is the sum of distinct powers of two (namely, the elements of S and 2 k ). Then P(n) will hold, completing the induction. We show 2 k S by contradiction; assume that 2 k S. Since 2 k S and the sum of the powers of two in S is n 2 k, this means that 2 k n 2 k. Thus 2 k + 2 k n, so 2 k + n. This contradicts that 2 k is the largest power of two no greater than n. We have reached a contradiction, so our assumption was wrong and 2 k S, as required.

31 Application: Continued Fractions

32 Continued Fractions

33 Continued Fractions A continued fraction is an expression of the form a + a 2 + a a n Formally, a continued fraction is either An integer n, or n + / F, where n is an integer and F is a continued fraction. Continued fractions have numerous applications in number theory and computer science. (They're also really fun to write!)

34 Fun with Continued Fractions Every rational number, including negative rational numbers, has a continued fraction representation. Harder result: every irrational number has an (infinite) continued fraction representation. Even harder result: If we truncate an infinite continued fraction for an irrational number, we can get progressively better approximations of that number.

35 π as a Continued Fraction π=

36 Approximating π π= = And And he he made made the the Sea Sea of of cast cast bronze, bronze, ten ten cubits cubits from from one one brim brim to to the the other; other; it it was was completely completely round. round. [ [ A] A] line line of of thirty thirty cubits cubits measured measured its its circumference. Kings Kings 7:23, 7:23, New New King King James James Translation Translation

37 Approximating π π= = /7 = Greek Greek mathematician Archimedes knew knew of of this this approximation, circa circa BCE BCE

38 Approximating π π= = /7 = /06 = /3 = Chinese Chinese mathematician mathematician 祖沖之祖沖之 (Zu (Zu Chongzhi) Chongzhi) discovered discovered this this approximation approximation in in the the early early fifth fifth century; century; this this was was the the best best approximation approximation of of pi pi for for over over a a thousand thousand years. years.

39 Approximating π π= = /7 = /06 = /3 = /3302 =

40 More Continued Fractions 3 The The Ancient Ancient Greeks Greeks knew knew about about this this connection. connection. 4 They They called called this this procedure procedure anthyphairesis. anthyphairesis. 3 4 =

41 An Interesting Continued Fraction x=

42 An Interesting Continued Fraction x= / 2 / 3 / 2 5 / 3 8 / 5 3 / 8 2 / 3 34 / 2 Each fraction is the ratio of consecutive Fibonacci numbers!

43 The Golden Ratio ϕ= = ϕ

44 The Golden Ratio

45 The Golden Spiral

46 How do we prove all rational numbers have continued fractions?

47 Constructing a Continued Fraction = = = 3+ 2

48 Constructing a Continued Fraction =

49 Constructing a Continued Fraction = > 7 > 2 > 2

50 The Division Algorithm For any integers a and b, with b > 0, there exists unique integers q and r such that and a = qb + r 0 r < b q is the quotient and r is the remainder. Given a = and b = 4: = Given a = -37 and b = 42: -37 =

51 Theorem: Every rational has a continued fraction. Proof: By strong induction. Let P(d) be any rational with denominator d has a continued fraction. We prove that P(d) is true for all positive natural numbers. Since all rationals can be written with a positive denominator, this proves that all rationals have continued fractions. For our base case, we prove P(), that any rational with denominator has a continued fraction. Consider any rational with denominator ; let it be n /. Since n is a continued fraction and n = n /, P() holds. For our inductive step, assume that for some d N with d >, that for any d' N where d' < d, that P(d') is true, so any rational with denominator d' has a continued fraction. We prove P(d) by showing that any rational with denominator d has a continued fraction. Take any rational with denominator d; let it be n / d. Using the division algorithm, write n = qd + r, where 0 r < d. We consider two cases: Case : r = 0. Then n = qd, so n / d = q. Then q is a continued fraction for n / d. n Case 2: r 0. Given that n = qd + r, we have d =q+ r d =q+ d /r. Since r < d, by our inductive hypothesis there is some continued fraction for d / r; call it F. Then q + / F is a continued fraction for n / d. In either case, we find a continued fraction for n / d, so P(d) holds, completing the induction.

52 For more on continued fractions:

53 Next Time Graphs and Relations Representing structured data. Categorizing how objects are connected.

Mathematical Induction. Part Two

Mathematical Induction. Part Two Mathematical Induction Part Two Announcements Problem Set due Friday, January 8 at the start of class. Problem Set checkpoints graded, will be returned at end of lecture. Afterwards, will be available

More information

Mathematical Induction

Mathematical Induction Mathematical Induction MAT30 Discrete Mathematics Fall 018 MAT30 (Discrete Math) Mathematical Induction Fall 018 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)

More information

Mathematical Induction Assignments

Mathematical Induction Assignments 1 Mathematical Induction Assignments Prove the Following using Principle of Mathematical induction 1) Prove that for any positive integer number n, n 3 + 2 n is divisible by 3 2) Prove that 1 3 + 2 3 +

More information

1 Continued Fractions

1 Continued Fractions Continued Fractions To start off the course, we consider a generalization of the Euclidean Algorithm which has ancient historical roots and yet still has relevance and applications today.. Continued Fraction

More information

THE DIVISION THEOREM IN Z AND R[T ]

THE DIVISION THEOREM IN Z AND R[T ] THE DIVISION THEOREM IN Z AND R[T ] KEITH CONRAD 1. Introduction In both Z and R[T ], we can carry out a process of division with remainder. Theorem 1.1. For any integers a and b, with b nonzero, there

More information

Mathematical Induction

Mathematical Induction Mathematical Induction MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Mathematical Induction Fall 2014 1 / 21 Outline 1 Mathematical Induction 2 Strong Mathematical

More information

Mathematics 228(Q1), Assignment 2 Solutions

Mathematics 228(Q1), Assignment 2 Solutions Mathematics 228(Q1), Assignment 2 Solutions Exercise 1.(10 marks) A natural number n > 1 is said to be square free if d N with d 2 n implies d = 1. Show that n is square free if and only if n = p 1 p k

More information

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n Appendix A: The Principle of Mathematical Induction We now present an important deductive method widely used in mathematics: the principle of mathematical induction. First, we provide some historical context

More information

Standard forms for writing numbers

Standard forms for writing numbers Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

More information

Infinite Continued Fractions

Infinite Continued Fractions Infinite Continued Fractions 8-5-200 The value of an infinite continued fraction [a 0 ; a, a 2, ] is lim c k, where c k is the k-th convergent k If [a 0 ; a, a 2, ] is an infinite continued fraction with

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: rule of inference Mathematical Induction: Conjecturing and Proving Climbing an Infinite Ladder

More information

Induction 1 = 1(1+1) = 2(2+1) = 3(3+1) 2

Induction 1 = 1(1+1) = 2(2+1) = 3(3+1) 2 Induction 0-8-08 Induction is used to prove a sequence of statements P(), P(), P(3),... There may be finitely many statements, but often there are infinitely many. For example, consider the statement ++3+

More information

What is proof? Lesson 1

What is proof? Lesson 1 What is proof? Lesson The topic for this Math Explorer Club is mathematical proof. In this post we will go over what was covered in the first session. The word proof is a normal English word that you might

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 3

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 3 EECS 70 Discrete Mathematics and Probability Theory Spring 014 Anant Sahai Note 3 Induction Induction is an extremely powerful tool in mathematics. It is a way of proving propositions that hold for all

More information

Some Review Problems for Exam 1: Solutions

Some Review Problems for Exam 1: Solutions Math 3355 Fall 2018 Some Review Problems for Exam 1: Solutions Here is my quick review of proof techniques. I will focus exclusively on propositions of the form p q, or more properly, x P (x) Q(x) or x

More information

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes.

INTEGERS. In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. INTEGERS PETER MAYR (MATH 2001, CU BOULDER) In this section we aim to show the following: Goal. Every natural number can be written uniquely as a product of primes. 1. Divisibility Definition. Let a, b

More information

CSC236H Lecture 2. Ilir Dema. September 19, 2018

CSC236H Lecture 2. Ilir Dema. September 19, 2018 CSC236H Lecture 2 Ilir Dema September 19, 2018 Simple Induction Useful to prove statements depending on natural numbers Define a predicate P(n) Prove the base case P(b) Prove that for all n b, P(n) P(n

More information

CS1800: Mathematical Induction. Professor Kevin Gold

CS1800: Mathematical Induction. Professor Kevin Gold CS1800: Mathematical Induction Professor Kevin Gold Induction: Used to Prove Patterns Just Keep Going For an algorithm, we may want to prove that it just keeps working, no matter how big the input size

More information

Grade 8 Chapter 7: Rational and Irrational Numbers

Grade 8 Chapter 7: Rational and Irrational Numbers Grade 8 Chapter 7: Rational and Irrational Numbers In this chapter we first review the real line model for numbers, as discussed in Chapter 2 of seventh grade, by recalling how the integers and then the

More information

Proof Techniques (Review of Math 271)

Proof Techniques (Review of Math 271) Chapter 2 Proof Techniques (Review of Math 271) 2.1 Overview This chapter reviews proof techniques that were probably introduced in Math 271 and that may also have been used in a different way in Phil

More information

Grade 7/8 Math Circles Winter March 20/21/22 Types of Numbers

Grade 7/8 Math Circles Winter March 20/21/22 Types of Numbers Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Winter 2018 - March 20/21/22 Types of Numbers Introduction Today, we take our number

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1 CS 70 Discrete Mathematics and Probability Theory Fall 013 Vazirani Note 1 Induction Induction is a basic, powerful and widely used proof technique. It is one of the most common techniques for analyzing

More information

Lecture 2: Continued fractions, rational approximations

Lecture 2: Continued fractions, rational approximations Lecture 2: Continued fractions, rational approximations Algorithmic Number Theory (Fall 204) Rutgers University Swastik Kopparty Scribe: Cole Franks Continued Fractions We begin by calculating the continued

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.4 Strong Mathematical Induction and the Well-Ordering Principle for the Integers Copyright

More information

CHAPTER 4: EXPLORING Z

CHAPTER 4: EXPLORING Z CHAPTER 4: EXPLORING Z MATH 378, CSUSM. SPRING 2009. AITKEN 1. Introduction In this chapter we continue the study of the ring Z. We begin with absolute values. The absolute value function Z N is the identity

More information

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS

UNIT 4 NOTES: PROPERTIES & EXPRESSIONS UNIT 4 NOTES: PROPERTIES & EXPRESSIONS Vocabulary Mathematics: (from Greek mathema, knowledge, study, learning ) Is the study of quantity, structure, space, and change. Algebra: Is the branch of mathematics

More information

What can you prove by induction?

What can you prove by induction? MEI CONFERENCE 013 What can you prove by induction? Martyn Parker M.J.Parker@keele.ac.uk Contents Contents iii 1 Splitting Coins.................................................. 1 Convex Polygons................................................

More information

THE DIVISION THEOREM IN Z AND F [T ]

THE DIVISION THEOREM IN Z AND F [T ] THE DIVISION THEOREM IN Z AND F [T ] KEITH CONRAD 1. Introduction In the integers we can carry out a process of division with remainder, as follows. Theorem 1.1. For any integers a and b, with b 0 there

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x.

x 2 + 6x 18 x + 2 Name: Class: Date: 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 1. Find the coordinates of the local extreme of the function y = x 2 4 x. 2. How many local maxima and minima does the polynomial y = 8 x 2 + 7 x + 7 have? 3. How many local maxima and minima does the

More information

1. Introduction to commutative rings and fields

1. Introduction to commutative rings and fields 1. Introduction to commutative rings and fields Very informally speaking, a commutative ring is a set in which we can add, subtract and multiply elements so that the usual laws hold. A field is a commutative

More information

1.2 The Well-Ordering Principle

1.2 The Well-Ordering Principle 36 Chapter 1. The Integers Exercises 1.1 1. Prove the following theorem: Theorem. Let m and a be integers. If m a and a m, thenm = ±a. 2. Prove the following theorem: Theorem. For all integers a, b and

More information

A NEW SET THEORY FOR ANALYSIS

A NEW SET THEORY FOR ANALYSIS Article A NEW SET THEORY FOR ANALYSIS Juan Pablo Ramírez 0000-0002-4912-2952 Abstract: We present the real number system as a generalization of the natural numbers. First, we prove the co-finite topology,

More information

Notes on arithmetic. 1. Representation in base B

Notes on arithmetic. 1. Representation in base B Notes on arithmetic The Babylonians that is to say, the people that inhabited what is now southern Iraq for reasons not entirely clear to us, ued base 60 in scientific calculation. This offers us an excuse

More information

Basic Principles of Algebra

Basic Principles of Algebra Basic Principles of Algebra Algebra is the part of mathematics dealing with discovering unknown numbers in an equation. It involves the use of different types of numbers: natural (1, 2, 100, 763 etc.),

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

The Inductive Proof Template

The Inductive Proof Template CS103 Handout 24 Winter 2016 February 5, 2016 Guide to Inductive Proofs Induction gives a new way to prove results about natural numbers and discrete structures like games, puzzles, and graphs. All of

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 4 1 Principle of Mathematical Induction 2 Example 3 Base Case 4 Inductive Hypothesis 5 Inductive Step When Induction Isn t Enough

More information

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction

CSC 344 Algorithms and Complexity. Proof by Mathematical Induction CSC 344 Algorithms and Complexity Lecture #1 Review of Mathematical Induction Proof by Mathematical Induction Many results in mathematics are claimed true for every positive integer. Any of these results

More information

Writing proofs for MATH 61CM, 61DM Week 1: basic logic, proof by contradiction, proof by induction

Writing proofs for MATH 61CM, 61DM Week 1: basic logic, proof by contradiction, proof by induction Writing proofs for MATH 61CM, 61DM Week 1: basic logic, proof by contradiction, proof by induction written by Sarah Peluse, revised by Evangelie Zachos and Lisa Sauermann September 27, 2016 1 Introduction

More information

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1.

Solutions Quiz 9 Nov. 8, Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Solutions Quiz 9 Nov. 8, 2010 1. Prove: If a, b, m are integers such that 2a + 3b 12m + 1, then a 3m + 1 or b 2m + 1. Answer. We prove the contrapositive. Suppose a, b, m are integers such that a < 3m

More information

MAT115A-21 COMPLETE LECTURE NOTES

MAT115A-21 COMPLETE LECTURE NOTES MAT115A-21 COMPLETE LECTURE NOTES NATHANIEL GALLUP 1. Introduction Number theory begins as the study of the natural numbers the integers N = {1, 2, 3,...}, Z = { 3, 2, 1, 0, 1, 2, 3,...}, and sometimes

More information

Discrete Mathematics. Spring 2017

Discrete Mathematics. Spring 2017 Discrete Mathematics Spring 2017 Previous Lecture Principle of Mathematical Induction Mathematical Induction: Rule of Inference Mathematical Induction: Conjecturing and Proving Mathematical Induction:

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 4

Discrete Mathematics for CS Spring 2008 David Wagner Note 4 CS 70 Discrete Mathematics for CS Spring 008 David Wagner Note 4 Induction Induction is an extremely powerful tool in mathematics. It is a way of proving propositions that hold for all natural numbers,

More information

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki

Assignment #2 COMP 3200 Spring 2012 Prof. Stucki Assignment #2 COMP 3200 Spring 2012 Prof. Stucki 1) Construct deterministic finite automata accepting each of the following languages. In (a)-(c) the alphabet is = {0,1}. In (d)-(e) the alphabet is ASCII

More information

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models Contents Mathematical Reasoning 3.1 Mathematical Models........................... 3. Mathematical Proof............................ 4..1 Structure of Proofs........................ 4.. Direct Method..........................

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

Section 4.2: Mathematical Induction 1

Section 4.2: Mathematical Induction 1 Section 4.: Mathematical Induction 1 Over the next couple of sections, we shall consider a method of proof called mathematical induction. Induction is fairly complicated, but a very useful proof technique,

More information

3 Finite continued fractions

3 Finite continued fractions MTH628 Number Theory Notes 3 Spring 209 3 Finite continued fractions 3. Introduction Let us return to the calculation of gcd(225, 57) from the preceding chapter. 225 = 57 + 68 57 = 68 2 + 2 68 = 2 3 +

More information

Outline Goals and Assumptions Real Numbers Rational and Irrational. L11: Numbers. Alice E. Fischer

Outline Goals and Assumptions Real Numbers Rational and Irrational. L11: Numbers. Alice E. Fischer L11: Numbers Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing March 5-8, 2018 1 Goals and Assumptions 2 Real Numbers 3 Rational and Irrational Assumptions We rely the following assumptions:

More information

CHAPTER 1 NUMBER SYSTEMS. 1.1 Introduction

CHAPTER 1 NUMBER SYSTEMS. 1.1 Introduction N UMBER S YSTEMS NUMBER SYSTEMS CHAPTER. Introduction In your earlier classes, you have learnt about the number line and how to represent various types of numbers on it (see Fig..). Fig.. : The number

More information

Proof: If (a, a, b) is a Pythagorean triple, 2a 2 = b 2 b / a = 2, which is impossible.

Proof: If (a, a, b) is a Pythagorean triple, 2a 2 = b 2 b / a = 2, which is impossible. CS103 Handout 07 Fall 2013 October 2, 2013 Guide to Proofs Thanks to Michael Kim for writing some of the proofs used in this handout. What makes a proof a good proof? It's hard to answer this question

More information

CSE 1400 Applied Discrete Mathematics Proofs

CSE 1400 Applied Discrete Mathematics Proofs CSE 1400 Applied Discrete Mathematics Proofs Department of Computer Sciences College of Engineering Florida Tech Fall 2011 Axioms 1 Logical Axioms 2 Models 2 Number Theory 3 Graph Theory 4 Set Theory 4

More information

Part I, Number Systems. CS131 Mathematics for Computer Scientists II Note 1 INTEGERS

Part I, Number Systems. CS131 Mathematics for Computer Scientists II Note 1 INTEGERS CS131 Part I, Number Systems CS131 Mathematics for Computer Scientists II Note 1 INTEGERS The set of all integers will be denoted by Z. So Z = {..., 2, 1, 0, 1, 2,...}. The decimal number system uses the

More information

CS 360, Winter Morphology of Proof: An introduction to rigorous proof techniques

CS 360, Winter Morphology of Proof: An introduction to rigorous proof techniques CS 30, Winter 2011 Morphology of Proof: An introduction to rigorous proof techniques 1 Methodology of Proof An example Deep down, all theorems are of the form If A then B, though they may be expressed

More information

a = qb + r where 0 r < b. Proof. We first prove this result under the additional assumption that b > 0 is a natural number. Let

a = qb + r where 0 r < b. Proof. We first prove this result under the additional assumption that b > 0 is a natural number. Let 2. Induction and the division algorithm The main method to prove results about the natural numbers is to use induction. We recall some of the details and at the same time present the material in a different

More information

Mathematical Induction

Mathematical Induction Mathematical Induction Representation of integers Mathematical Induction Reading (Epp s textbook) 5.1 5.3 1 Representations of Integers Let b be a positive integer greater than 1. Then if n is a positive

More information

5) ) y 20 y 10 =

5) ) y 20 y 10 = Name Class Date 7.N.4 Develop the laws of exponents for multiplication and division Directions: Rewrite as a base with an exponent. 1) 3 6 3-4 = 2) x 7 x 17 = 3) 10-8 10 3 = 5) 12-3 = -3 12 6) y 20 y 10

More information

At the start of the term, we saw the following formula for computing the sum of the first n integers:

At the start of the term, we saw the following formula for computing the sum of the first n integers: Chapter 11 Induction This chapter covers mathematical induction. 11.1 Introduction to induction At the start of the term, we saw the following formula for computing the sum of the first n integers: Claim

More information

1 Basic Combinatorics

1 Basic Combinatorics 1 Basic Combinatorics 1.1 Sets and sequences Sets. A set is an unordered collection of distinct objects. The objects are called elements of the set. We use braces to denote a set, for example, the set

More information

Chapter 1 A Survey of Divisibility 14

Chapter 1 A Survey of Divisibility 14 Chapter 1 A Survey of Divisibility 14 SECTION C Euclidean Algorithm By the end of this section you will be able to use properties of the greatest common divisor (gcd) obtain the gcd using the Euclidean

More information

1 Adeles over Q. 1.1 Absolute values

1 Adeles over Q. 1.1 Absolute values 1 Adeles over Q 1.1 Absolute values Definition 1.1.1 (Absolute value) An absolute value on a field F is a nonnegative real valued function on F which satisfies the conditions: (i) x = 0 if and only if

More information

The Dynamics of Continued Fractions

The Dynamics of Continued Fractions The Dynamics of Continued Fractions Evan O Dorney May 3, 20 The Story I was first introduced to the Intel Science Talent Search in ninth grade. I knew I would have no trouble entering this contest, as

More information

0.Axioms for the Integers 1

0.Axioms for the Integers 1 0.Axioms for the Integers 1 Number theory is the study of the arithmetical properties of the integers. You have been doing arithmetic with integers since you were a young child, but these mathematical

More information

The area of a geometric figure is a measure of how big a region is enclosed inside the figure.

The area of a geometric figure is a measure of how big a region is enclosed inside the figure. 59 CH 7 GEOMETRY Introduction G eo: Greek for earth, and metros: Greek for measure. These roots are the origin of the word geometry, which literally means earth measurement. The study of geometry has gone

More information

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...} WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

More information

MATH10040: Numbers and Functions Homework 1: Solutions

MATH10040: Numbers and Functions Homework 1: Solutions MATH10040: Numbers and Functions Homework 1: Solutions 1. Prove that a Z and if 3 divides into a then 3 divides a. Solution: The statement to be proved is equivalent to the statement: For any a N, if 3

More information

Assignment: Summer Assignment Part 1 of 8 Real Numbers and Their Properties. Student: Date:

Assignment: Summer Assignment Part 1 of 8 Real Numbers and Their Properties. Student: Date: Student: Date: Assignment: Summer Assignment Part of 8 Real Numbers and Their Properties. Identify to which number groups (natural numbers, whole numbers, integers, rational numbers, real numbers, and

More information

PRINCIPLE OF MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of

More information

MATH 131A: REAL ANALYSIS

MATH 131A: REAL ANALYSIS MATH 131A: REAL ANALYSIS NICKOLAS ANDERSEN The textbook for the course is Ross, Elementary Analysis [2], but in these notes I have also borrowed from Tao, Analysis I [3], and Abbott, Understanding Analysis

More information

Mathematical Fundamentals

Mathematical Fundamentals Mathematical Fundamentals Sets Factorials, Logarithms Recursion Summations, Recurrences Proof Techniques: By Contradiction, Induction Estimation Techniques Data Structures 1 Mathematical Fundamentals Sets

More information

Reading and Writing. Mathematical Proofs. Slides by Arthur van Goetham

Reading and Writing. Mathematical Proofs. Slides by Arthur van Goetham Reading and Writing Mathematical Proofs Slides by Arthur van Goetham What is a proof? Why explanations are not proofs What is a proof? A method for establishing truth What establishes truth depends on

More information

Sequences of Real Numbers

Sequences of Real Numbers Chapter 8 Sequences of Real Numbers In this chapter, we assume the existence of the ordered field of real numbers, though we do not yet discuss or use the completeness of the real numbers. In the next

More information

1. Introduction to commutative rings and fields

1. Introduction to commutative rings and fields 1. Introduction to commutative rings and fields Very informally speaking, a commutative ring is a set in which we can add, subtract and multiply elements so that the usual laws hold. A field is a commutative

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 5-1 Chapter 5 Number Theory and the Real Number System 5.1 Number Theory Number Theory The study of numbers and their properties. The numbers we use to

More information

CSE 311: Foundations of Computing. Lecture 14: Induction

CSE 311: Foundations of Computing. Lecture 14: Induction CSE 311: Foundations of Computing Lecture 14: Induction Mathematical Induction Method for proving statements about all natural numbers A new logical inference rule! It only applies over the natural numbers

More information

Numbers. 2.1 Integers. P(n) = n(n 4 5n 2 + 4) = n(n 2 1)(n 2 4) = (n 2)(n 1)n(n + 1)(n + 2); 120 =

Numbers. 2.1 Integers. P(n) = n(n 4 5n 2 + 4) = n(n 2 1)(n 2 4) = (n 2)(n 1)n(n + 1)(n + 2); 120 = 2 Numbers 2.1 Integers You remember the definition of a prime number. On p. 7, we defined a prime number and formulated the Fundamental Theorem of Arithmetic. Numerous beautiful results can be presented

More information

Beautiful Mathematics

Beautiful Mathematics Beautiful Mathematics 1. Principle of Mathematical Induction The set of natural numbers is the set of positive integers {1, 2, 3,... } and is denoted by N. The Principle of Mathematical Induction is a

More information

1 Proof by Contradiction

1 Proof by Contradiction In these notes, which will serve as a record of what we covered in weeks 3-4, we discuss various indirect methods of proof. While direct proof is often preferred it is sometimes either not possible or

More information

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n.

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n. 11 Recurrences A recurrence equation or recurrence counts things using recursion. 11.1 Recurrence Equations We start with an example. Example 11.1. Find a recurrence for S(n), the number of subsets of

More information

12 Sequences and Recurrences

12 Sequences and Recurrences 12 Sequences and Recurrences A sequence is just what you think it is. It is often given by a formula known as a recurrence equation. 12.1 Arithmetic and Geometric Progressions An arithmetic progression

More information

3.1 Induction: An informal introduction

3.1 Induction: An informal introduction Chapter 3 Induction and Recursion 3.1 Induction: An informal introduction This section is intended as a somewhat informal introduction to The Principle of Mathematical Induction (PMI): a theorem that establishes

More information

What Fun! It's Practice with Scientific Notation!

What Fun! It's Practice with Scientific Notation! What Fun! It's Practice with Scientific Notation! Review of Scientific Notation Scientific notation provides a place to hold the zeroes that come after a whole number or before a fraction. The number 100,000,000

More information

Fall 2017 November 10, Written Homework 5

Fall 2017 November 10, Written Homework 5 CS1800 Discrete Structures Profs. Aslam, Gold, & Pavlu Fall 2017 November 10, 2017 Assigned: Mon Nov 13 2017 Due: Wed Nov 29 2017 Instructions: Written Homework 5 The assignment has to be uploaded to blackboard

More information

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions

MATH 2112/CSCI 2112, Discrete Structures I Winter 2007 Toby Kenney Homework Sheet 5 Hints & Model Solutions MATH 11/CSCI 11, Discrete Structures I Winter 007 Toby Kenney Homework Sheet 5 Hints & Model Solutions Sheet 4 5 Define the repeat of a positive integer as the number obtained by writing it twice in a

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

A number that can be written as, where p and q are integers and q Number.

A number that can be written as, where p and q are integers and q Number. RATIONAL NUMBERS 1.1 Definition of Rational Numbers: What are rational numbers? A number that can be written as, where p and q are integers and q Number. 0, is known as Rational Example:, 12, -18 etc.

More information

Proofs Not Based On POMI

Proofs Not Based On POMI s Not Based On POMI James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University February 1, 018 Outline Non POMI Based s Some Contradiction s Triangle

More information

CS1800: Strong Induction. Professor Kevin Gold

CS1800: Strong Induction. Professor Kevin Gold CS1800: Strong Induction Professor Kevin Gold Mini-Primer/Refresher on Unrelated Topic: Limits This is meant to be a problem about reasoning about quantifiers, with a little practice of other skills, too

More information

Ma/CS 6a Class 2: Congruences

Ma/CS 6a Class 2: Congruences Ma/CS 6a Class 2: Congruences 1 + 1 5 (mod 3) By Adam Sheffer Reminder: Public Key Cryptography Idea. Use a public key which is used for encryption and a private key used for decryption. Alice encrypts

More information

Study Guide for Math 095

Study Guide for Math 095 Study Guide for Math 095 David G. Radcliffe November 7, 1994 1 The Real Number System Writing a fraction in lowest terms. 1. Find the largest number that will divide into both the numerator and the denominator.

More information

Induction and recursion. Chapter 5

Induction and recursion. Chapter 5 Induction and recursion Chapter 5 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms Mathematical Induction Section 5.1

More information

CYCLICITY OF (Z/(p))

CYCLICITY OF (Z/(p)) CYCLICITY OF (Z/(p)) KEITH CONRAD 1. Introduction For each prime p, the group (Z/(p)) is cyclic. We will give seven proofs of this fundamental result. A common feature of the proofs that (Z/(p)) is cyclic

More information

Chapter 3 Basic Number Theory

Chapter 3 Basic Number Theory Chapter 3 Basic Number Theory What is Number Theory? Well... What is Number Theory? Well... Number Theory The study of the natural numbers (Z + ), especially the relationship between different sorts of

More information

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 1 Chapter Summary Mathematical Induction Strong Induction Well-Ordering Recursive Definitions Structural Induction Recursive Algorithms 2 Section 5.1 3 Section Summary Mathematical Induction Examples of

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 7

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 7 EECS 70 Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Note 7 Polynomials Polynomials constitute a rich class of functions which are both easy to describe and widely applicable in topics

More information

1 Numbers. exponential functions, such as x 7! a x ; where a; x 2 R; trigonometric functions, such as x 7! sin x; where x 2 R; ffiffi x ; where x 0:

1 Numbers. exponential functions, such as x 7! a x ; where a; x 2 R; trigonometric functions, such as x 7! sin x; where x 2 R; ffiffi x ; where x 0: Numbers In this book we study the properties of real functions defined on intervals of the real line (possibly the whole real line) and whose image also lies on the real line. In other words, they map

More information

Climbing an Infinite Ladder

Climbing an Infinite Ladder Section 5.1 Section Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken Proofs by Mathematical Induction Guidelines for Proofs by Mathematical Induction Climbing an Infinite

More information