CFD calculation of convective heat transfer coefficients and validation Laminar and Turbulent flow

Size: px
Start display at page:

Download "CFD calculation of convective heat transfer coefficients and validation Laminar and Turbulent flow"

Transcription

1 CFD calculation of convective heat transfer coefficients and validation Laminar and Turbulent flow Subtask 3: Boundary Conditions by Adam Neale M.A.Sc. Student Concordia University Dominique Derome Concordia University Bert Blocken K.U.Leuven Jan Carmeliet K.U.Leuven/Technical University of Eindhoven

2 CFD Calculation of Surface Coefficients Part 1: Laminar Flow - Simulation of Forced Convection Part 2a: Turbulent Flow - Simulation of Forced Convection Wall boundaries Wall boundary - Analytical Validation - Semi-empirical Validation Part 2b: Turbulent Flow - Simulation of Natural Convection - Validation case for wall functions

3 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Cases Computational Domain : Y X Height = 0.05 m Length = 3.0 m Boundary Conditions : Inlet Conditions U av = 0.1 m/s U(y) = 3/2*U av *[1 4*(y/b) 2 ] m/s T = 283 K Wall boundaries Case (A): Constant Heat Flux (CHF) q w = 10 W/m 2 Case (B): Constant Wall Temperature (CWT) T w = 293K q w = 10 W/m 2 T w = 293K

4 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Mesh cells b = 0.05m L = 3m

5 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Boundary Conditions (B.C.) Case A (CHF): Velocity Inlet B.C. U av = 0.1 m/s U(y) = 3/2*U av *[1 4*(y/b) 2 ] m/s T = 283 K Wall B.C.: q w = 10 W/m 2 Pressure Outlet B.C. Wall B.C.: q w = 10 W/m 2 Case B (CWT): Velocity Inlet B.C. U av = 0.1 m/s U(y) = 3/2*U av *[1 4*(y/b) 2 ] m/s T = 283 K Wall B.C.: T w = 293K Wall B.C.: T w = 293K Pressure Outlet B.C.

6 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Case A, Constant Heat Flux: h c values 4 h c (W/m 2 K) T b n i= = 1 ( u b T ) U i av i b i h cref hc-ref h cc hcc h cb hcb Analytical X Position (m)

7 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Case B, Constant Wall Temperature: h c values 4 h c (W/m 2 K) h cref hc-ref h cc hcc hcb h cb Analytical X Position (m)

8 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Grid sensitivity analysis φ h φ 2h φ 4h φ 8h φ 16h Number of cells in the Y Direction Number of cells in the X Direction Smallest cell height (m) Smallest cell width (m) Total number of cells E E E E E *Initial mesh

9 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Richardson Extrapolation Using h c at 2.5m as a reference (i.e. φ h = h c ) Discretization error: ε d h φh 2 φ a 2h 1 Order of the scheme: a = φ2h φ4 log φh φ2h log ( 2) h Richardson grid independent solution: d Φ = φ h + ε h Finest mesh solution

10 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Case A: Grid sensitivity results Φ = h c (W/m 2 K) x=2.5m Richardson Relative error Relative Error (%) φ16h (300) φ8h (1200) φ4h (5100) φ2h (19800) φh (80400) 0.0 Grid (#cells)

11 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Case B: Grid sensitivity results Φ = h c (W/m 2 K) x=2.5m Richardson Relative error Relative Error (%) φ16h (300) φ8h (1200) φ4h (5100) φ2h (19800) φh (80400) 0.0 Grid (#cells)

12 CFD Calculation of Surface Coefficients Part 1 Laminar Flow Results Order of the scheme a d ε h Discretization Error (W/m 2 K) Finest mesh solution (W/m 2 K) Richardson Solution (W/m 2 K) Analytical solution h c (W/m 2 K) CHF x φh Φ CWT x

13 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow Part 2a: Turbulent Flow - Simulation of Forced Convection Part 2b: Turbulent Flow - Simulation of Natural Convection - (In)Validation of wall functions Wall boundary - Semi-empirical Validation

14 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow Universal Law-of-the-wall u u+ Equation (7) u+ Equation (10) u+ Spalding Equation (13) T+ Equation (8) T+ Equation (11) T y+

15 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow Guidelines for near-wall modelling Height of first cell above the wall 1) Laminar Sublayer (y + < 5) Low-Reynolds number modelling u+ Equation (7) u+ Equation (10) u+ Spalding Equation (13) T+ Equation (8) T+ Equation (11) u+ T+ 2) Buffer Region (5 < y + < 30) Not recommended ) Log-law Layer (30 < y + < 60) y+ Wall functions

16 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow Computational Domain Symmetry BC U = 0.5m/s T = 283 K Y Velocity Inlet BC Pressure Outlet BC H = 1m Wall BC - Constant Heat Flux X q w = 10 W/m L = 5m Note : Not to scale.

17 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow Meshes y ,000 cells y cells

18 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow Simulations Low-Re Simulations 1. Spalart-Allmaras Model 2. Standard k-ε Model 3. RNG k-ε Model 4. Realizable k-ε Model 5. Standard k-ω Model 6. SST k-ω Model 7. Reynold s Stress Model (RSM) Wall Function Simulations 1. Standard k-ε Model 2. Standard k-ω Model

19 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow u + Results 25 u Semi-Empirical Equation - Laminar Sublayer Semi-empirical Equation - Log-law Empirical Equation - Spalding (1961) k-e standard k-e RNG k-e realizable k-w standard k-w SST Spalart-Allmaras RSM WF - ke WF - kw y+

20 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow T + Results 16 T Semi-empirical Equation - Laminar Sublayer Semi-empirical Equation - Log-law k-e standard k-e RNG k-e realizable k-w standard k-w SST Spalart-Allmaras RSM WF - ke WF - kw y+

21 CFD Calculation of Surface Coefficients Part 2a Turbulent Flow h c Results 6 h c (W/m 2 K) k-e standard k-e RNG k-e realizable k-w standard k-w SST Spalart-Allmaras RSM k-e WF k-w WF Lienhard (2006) Eq Lienhard (2006) Eq X Position (m)

22 CFD Calculation of Surface Coefficients Part 2b Turbulent Flow Methodology for validation Part 2a: Turbulent Flow - Simulation of Forced Convection Part 2b: Turbulent Flow - Simulation of Natural Convection - (In)Validation of wall functions Wall boundary - Semi-empirical Validation

23 CFD Calculation of Surface Coefficients Part 2b Natural Convection (In)Validity of Wall Functions y = 3m Air, T initial = 293K Isothermal Hot Side y = 2.25m Cold Side T w1 = 298K y = 1.50m T w2 = 288K Y y = 0.75m 0m 0m X Isothermal X = 3m Note : Not to scale.

24 CFD Calculation of Surface Coefficients Part 2b Natural Convection Meshes y + 2 (22500 cells) y + 30 (900 cells)

25 CFD Calculation of Surface Coefficients Part 2b Natural Convection Velocity profiles Low-Re Velocity profile at y = 2.25 m, Hot side Spalding wall function equation 0.6 Velocity (m/s) Position (m)

26 CFD Calculation of Surface Coefficients Part 2b Natural Convection Velocity fields m/s Low-Re Modelling Wall Function

27 CFD Calculation of Surface Coefficients Part 2b Natural Convection Dimensionless velocity Low-Re: y=0.75m, Hot side Low-Re: y=1.50m, Hot side Low-Re: y=2.25m, Hot side WF: y=0.75m, Hot Side WF: y=1.50m, Hot Side WF: y=2.25m, Hot Side Spalding Wall Function Equation Low-Re: y=0.75m, Cold side Low-Re: y=1.50m, Cold side Low-Re: y=2.25m, Cold side WF: y=0.75m, Cold Side WF: y=1.50m, Cold Side WF: y=2.25m, Cold Side u y+

Durability and hygrothermal performance of building envelope

Durability and hygrothermal performance of building envelope Durability and hygrothermal performance of building envelope Dominique Derome, arch., ing., PhD Associate professor Building Envelope Performance Laboratory Building, Civil and Environmental Engineering

More information

CFD calculation of convective heat transfer coefficients and validation Part I: Laminar flow Neale, A.; Derome, D.; Blocken, B.; Carmeliet, J.E.

CFD calculation of convective heat transfer coefficients and validation Part I: Laminar flow Neale, A.; Derome, D.; Blocken, B.; Carmeliet, J.E. CFD calculation of convective eat transfer coefficients and validation Part I: Laminar flow Neale, A.; Derome, D.; Blocken, B.; Carmeliet, J.E. Publised in: IEA Annex 41 working meeting, Kyoto, Japan Publised:

More information

CFD calculation of convective heat transfer coefficients and validation Part I: Laminar flow. Annex 41 Kyoto, April 3 rd to 5 th, 2006

CFD calculation of convective heat transfer coefficients and validation Part I: Laminar flow. Annex 41 Kyoto, April 3 rd to 5 th, 2006 CFD calculation of convective eat transfer coefficients and validation Part I: Laminar flow Annex 41 Kyoto, April 3 rd to 5 t, 2006 Adam Neale 1, Dominique Derome 1, Bert Blocken 2 and Jan Carmeliet 2,3

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS. by MUHAMMAD NOOR AFIQ WITRI, M.Eng

PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS. by MUHAMMAD NOOR AFIQ WITRI, M.Eng PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS by MUHAMMAD NOOR AFIQ WITRI, M.Eng 1 CONTENTS 1.Introduction 2.Building Configuration 3.Boundary Condition 4.Previous Works 5.Summary 2

More information

CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer

CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer Accepted for publication in International Journal of Heat and Mass Transfer CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer Thijs Defraeye a, *,

More information

Comparison of two equations closure turbulence models for the prediction of heat and mass transfer in a mechanically ventilated enclosure

Comparison of two equations closure turbulence models for the prediction of heat and mass transfer in a mechanically ventilated enclosure Proceedings of 4 th ICCHMT May 17-0, 005, Paris-Cachan, FRANCE 381 Comparison of two equations closure turbulence models for the prediction of heat and mass transfer in a mechanically ventilated enclosure

More information

There are no simple turbulent flows

There are no simple turbulent flows Turbulence 1 There are no simple turbulent flows Turbulent boundary layer: Instantaneous velocity field (snapshot) Ref: Prof. M. Gad-el-Hak, University of Notre Dame Prediction of turbulent flows standard

More information

Conjugate Heat Transfer Simulation of Internally Cooled Gas Turbine Vane

Conjugate Heat Transfer Simulation of Internally Cooled Gas Turbine Vane Conjugate Heat Transfer Simulation of Internally Cooled Gas Turbine Vane V. Esfahanian 1, A. Shahbazi 1 and G. Ahmadi 2 1 Department of Mechanical Engineering, University of Tehran, Tehran, Iran 2 Department

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

TOWARDS A MORE RELIABLE MODELLING OF NIGHT-TIME VENTILATION WITH BUILDING ENERGY SIMULATION MODELS

TOWARDS A MORE RELIABLE MODELLING OF NIGHT-TIME VENTILATION WITH BUILDING ENERGY SIMULATION MODELS TOWARDS A MORE RELIABLE MODELLING OF NIGHT-TIME VENTILATION WITH BUILDING ENERGY SIMULATION MODELS Sarah Leenknegt 1, Rolf Wagemakers 2, Walter Bosschaerts 2, Dirk Saelens 1 1 Building Physics Section,

More information

Numerical Study of Convective Heat Transfer for Flat Unglazed Transpired Solar Collectors

Numerical Study of Convective Heat Transfer for Flat Unglazed Transpired Solar Collectors Purdue University Purdue e-pubs International High Performance Buildings Conference School of Mechanical Engineering 2012 Numerical Study of Convective Heat Transfer for Flat Unglazed Transpired Solar

More information

Introduction to ANSYS FLUENT

Introduction to ANSYS FLUENT Lecture 6 Turbulence 14. 0 Release Introduction to ANSYS FLUENT 1 2011 ANSYS, Inc. January 19, 2012 Lecture Theme: Introduction The majority of engineering flows are turbulent. Successfully simulating

More information

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

Conjugate Heat Transfer Analysis of a high loaded convection cooled Vane with STAR-CCM+

Conjugate Heat Transfer Analysis of a high loaded convection cooled Vane with STAR-CCM+ STAR Global Conference 2013 March 18-20, Orlando, USA Conjugate Heat Transfer Analysis of a high loaded convection cooled Vane with STAR-CCM+ René Braun, Karsten Kusterer, B&B-AGEMA, Aachen, Germany Content

More information

Analysis of the effect of building geometry modifications on pedestrian-level wind speed

Analysis of the effect of building geometry modifications on pedestrian-level wind speed Eindhoven University of Technology MASTER Analysis of the effect of building geometry modifications on pedestrian-level wind speed van Druenen, T. Award date: 2016 Disclaimer This document contains a student

More information

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct Research Article International Journal of Thermal Technologies ISSN 2277-4114 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Computational Fluid Dynamics Based Analysis

More information

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS A Aroussi, S Kucukgokoglan, S.J.Pickering, M.Menacer School of Mechanical, Materials, Manufacturing Engineering and

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article EFFECT OF ROUGHNESS ELEMENT PITCH ON HEAT TRANSFER AND FRICTION CHARACTERISTICS OF ARTIFICIALLY ROUGHENED SOLAR AIR HEATER DUCT Aman Soi*, Ranjit Singh, Brij Bhushan Address for Correspondence

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER HESHAM G. IBRAHIM Assist. Prof., Department of Mechanical Engineering, Faculty of Marine Resources, Al-Asmarya Islamic

More information

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER HESHAM G. IBRAHIM Assist. Prof., Department of Mechanical Engineering, Faculty of Marine Resources, Al-Asmarya Islamic

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 19 Turbulent Flows Fausto Arpino f.arpino@unicas.it Introduction All the flows encountered in the engineering practice become unstable

More information

R. SHAYMAA ABDUL MUTTALEB ALHASHIMI

R. SHAYMAA ABDUL MUTTALEB ALHASHIMI www.semargroups.org, www.ijsetr.com ISSN 2319-8885 Vol.02,Issue.15, November-2013, Pages:1682-1687 CFD Modeling of Flow over Ogee Spillway by Using Different Turbulence DR. SHAYMAA ABDUL MUTTALEB ALHASHIMI

More information

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

CFD as a Tool for Thermal Comfort Assessment

CFD as a Tool for Thermal Comfort Assessment CFD as a Tool for Thermal Comfort Assessment Dimitrios Koubogiannis dkoubog@teiath.gr G. Tsimperoudis, E. Karvelas Department of Energy Technology Engineering Technological Educational Institute of Athens

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

MINI-CHANNELS COOLING FOR HIGH HEAT FLUX MANAGEMENT

MINI-CHANNELS COOLING FOR HIGH HEAT FLUX MANAGEMENT MINI-CHANNELS COOLING FOR HIGH HEAT FLUX MANAGEMENT Numerical and Experimental studies for the Fingers in the S 3 Beam Dump Project (S 3 : Super Separator Spectrometer) NADIA SELLAMI SIS On behalf of the

More information

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness Bonfring International Journal of Industrial Engineering and Management Science, Vol. 4, No. 3, August 2014 115 A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined

More information

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions

More information

Numerical Analysis of Heat Transfer Characteristics of an Orthogonal and Obliquely Impinging Air Jet on a Flat Plate

Numerical Analysis of Heat Transfer Characteristics of an Orthogonal and Obliquely Impinging Air Jet on a Flat Plate , July 1-3, 2015, London, U.K. Numerical Analysis of Heat Transfer Characteristics of an Orthogonal and Obliquely Impinging Air Jet on a Flat Plate Alenezi A., Teixeira J., and Addali A. Abstract This

More information

Express Introductory Training in ANSYS Fluent Lecture 3 Turbulence Modeling, Heat Transfer & Transient Calculations

Express Introductory Training in ANSYS Fluent Lecture 3 Turbulence Modeling, Heat Transfer & Transient Calculations Express Introductory Training in ANSYS Fluent Lecture 3 Turbulence Modeling, Heat Transfer & Transient Calculations Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn

More information

Computation for the Backward Facing Step Test Case with an Open Source Code

Computation for the Backward Facing Step Test Case with an Open Source Code Computation for the Backward Facing Step Test Case with an Open Source Code G.B. Deng Equipe de Modélisation Numérique Laboratoire de Mécanique des Fluides Ecole Centrale de Nantes 1 Rue de la Noë, 44321

More information

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2016 IJSRSET Volume 2 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Compressible Effect in the Flow Metering By Orifice Plate Using Prasanna

More information

Numerical evaluation of pollutant dispersion in the built environment: comparisons between models and experiments

Numerical evaluation of pollutant dispersion in the built environment: comparisons between models and experiments PREPRINT: Blocken B, Stathopoulos T, Saathoff P, Wang X. 2008. Numerical evaluation of pollutant dispersion in the built environment: comparisons between models and experiments. Journal of Wind Engineering

More information

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University

CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University CFD in Heat Transfer Equipment Professor Bengt Sunden Division of Heat Transfer Department of Energy Sciences Lund University email: bengt.sunden@energy.lth.se CFD? CFD = Computational Fluid Dynamics;

More information

SG Turbulence models for CFD

SG Turbulence models for CFD SG2218 2012 Turbulence models for CFD Stefan Wallin Linné FLOW Centre Dept of Mechanics, KTH Dept. of Aeronautics and Systems Integration, FOI There are no simple turbulent flows Turbulent boundary layer:

More information

CFDOFAIRFLOWINHYDROPOWERGENERATORS FOR CONVECTIVE COOLING, USING OPENFOAM

CFDOFAIRFLOWINHYDROPOWERGENERATORS FOR CONVECTIVE COOLING, USING OPENFOAM CFDOFAIRFLOWINHYDROPOWERGENERATORS FOR CONVECTIVE COOLING, USING OPENFOAM ECCOMAS CFD 21 Pirooz Moradnia, Håkan Nilsson Lisbon-Portugal 21-6-16 Pirooz Moradnia, Chalmers/ Applied Mechanics/ Fluid Dynamics

More information

THERMAL HYDRAULIC ANALYSIS IN REACTOR VESSEL INTERNALS CONSIDERING IRRADIATION HEAT

THERMAL HYDRAULIC ANALYSIS IN REACTOR VESSEL INTERNALS CONSIDERING IRRADIATION HEAT THERMAL HYDRAULIC ANALYSIS IN REACTOR VESSEL INTERNALS CONSIDERING IRRADIATION HEAT Sungje Hong, Kunwoo Yi, Jin Huh, Inyoung Im and Eunkee Kim KEPCO Engineering and Construction Company. INC. NSSS Division.

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

Yehia M. S. ElShazly Sarah W. H. ElEtriby. Alexandria University-Faculty of Engineering

Yehia M. S. ElShazly Sarah W. H. ElEtriby. Alexandria University-Faculty of Engineering Yehia M. S. ElShazly Sarah W. H. ElEtriby Alexandria University-Faculty of Engineering Low pressure drop Easy temperature control Lower Diffusion path Higher surface to volume ratio Photocatalytic reactions

More information

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract nd Workshop on CFD Uncertainty Analysis - Lisbon, 19th and 0th October 006 AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION Alfredo Iranzo 1, Jesús Valle, Ignacio Trejo 3, Jerónimo

More information

Numerical Simulation of Turbulent Flow inside the Electrostatic Precipitator of a Power Plant

Numerical Simulation of Turbulent Flow inside the Electrostatic Precipitator of a Power Plant Numerical Simulation of Turbulent Flow inside the Electrostatic Precipitator of a Power Plant S.M.E. Haque 1*, M.G. Rasul 2, A. Deev 1, M.M.K. Khan 2 and J. Zhou 3 1 Process Engineering & Light Metals

More information

Numerical solution of RANS equations. Numerical solution of RANS equations

Numerical solution of RANS equations. Numerical solution of RANS equations Convection linearization - Newton (Quasi-Newton) - Picard Discretization - Finite-differences - Finite-volume - Galerkin (Finite-elements,...) Solution of the algebraic systems of equations - Segregated

More information

NUMERICAL ANALYSIS OF TURBULENT FLOW IN CENTRIFUGAL PUMP

NUMERICAL ANALYSIS OF TURBULENT FLOW IN CENTRIFUGAL PUMP 224 Military Technical College Kobry El-Kobbah, Cairo, Egypt. 17 th International Conference on Applied Mechanics and Mechanical Engineering. NUMERICAL ANALYSIS OF TURBULENT FLOW IN CENTRIFUGAL PU S. M.

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

Study of flow and heat transfer in a 3D pin-fin channel

Study of flow and heat transfer in a 3D pin-fin channel Study of flow and heat transfer in a 3D pin-fin channel Jean-Eloi Lombard Swiss Institute of Technology Lausanne Supervisor : Dr. Mark Sawley Assistants : Laura Augello, Thierry Cornu December 27, 2011

More information

Wall treatments and wall functions

Wall treatments and wall functions Wall treatments and wall functions A wall treatment is the set of near-wall modelling assumptions for each turbulence model. Three types of wall treatment are provided in FLUENT, although all three might

More information

An Evaluation of Turbulence Models for the Numerical Study of Forced and Natural Convective Flow in Atria

An Evaluation of Turbulence Models for the Numerical Study of Forced and Natural Convective Flow in Atria An Evaluation of Turbulence Models for the Numerical Study of Forced and Natural Convective Flow in Atria by MATT CABLE A thesis submitted to the Department of Mechanical and Materials Engineering in conformity

More information

SOE3213/4: CFD Lecture 3

SOE3213/4: CFD Lecture 3 CFD { SOE323/4: CFD Lecture 3 @u x @t @u y @t @u z @t r:u = 0 () + r:(uu x ) = + r:(uu y ) = + r:(uu z ) = @x @y @z + r 2 u x (2) + r 2 u y (3) + r 2 u z (4) Transport equation form, with source @x Two

More information

Pillai and Yoshie. Journal of Urban and Environmental Engineering, v.7, n.1, p ISSN doi: /juee.2013.v7n1.

Pillai and Yoshie. Journal of Urban and Environmental Engineering, v.7, n.1, p ISSN doi: /juee.2013.v7n1. Pillai and Yoshie 74 J U E E Journal of Urban and Environmental Engineering, v.7, n.1, p.74-81 ISSN 1982-3932 doi: 10.4090/juee.2013.v7n1.074081 Journal of Urban and Environmental Engineering www.journal-uee.org

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014 Circle one: Div. 1 (12:30 pm, Prof. Choi) Div. 2 (9:30 am, Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #2 April 3, 2014 Instructions: Write your name

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

International Communications in Heat and Mass Transfer

International Communications in Heat and Mass Transfer International Communications in Heat and Mass Transfer 39 (12) 82 86 Contents lists available at SciVerse ScienceDirect International Communications in Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ichmt

More information

Near-Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

Near-Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine Near-Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine Bryan E. Kaiser 1 and Svetlana V. Poroseva 2 University of New Mexico, Albuquerque, New Mexico, 87131 Erick Johnson 3 Montana State University,

More information

Heat Transfer Engineering Publication details, including instructions for authors and subscription information:

Heat Transfer Engineering Publication details, including instructions for authors and subscription information: This article was downloaded by: [DTU Library] On: 1 March 213, At: 4:28 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 172954 Registered office: Mortimer House,

More information

Hydrodynamic Characteristics of Gradually Expanded Channel Flow

Hydrodynamic Characteristics of Gradually Expanded Channel Flow International Journal of Hydraulic Engineering 2013, 2(2): 21-27 DOI: 10.5923/j.ijhe.20130202.01 Hydrodynamic Characteristics of Gradually Expanded Channel Flow Edward Ching-Rue y LUO Department of Civil

More information

Available online at ScienceDirect. Procedia Engineering 113 (2015 )

Available online at   ScienceDirect. Procedia Engineering 113 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 113 (2015 ) 306 311 International Conference on Oil and Gas Engineering, OGE-2015 Developing of computational investigation

More information

MODELLING OF INFLUENCE OF TURBULENT TRANSITION ON HEAT TRANSFER CONDITIONS KRZYSZTOF BOCHON, WŁODZIMIERZ WRÓBLEWSKI

MODELLING OF INFLUENCE OF TURBULENT TRANSITION ON HEAT TRANSFER CONDITIONS KRZYSZTOF BOCHON, WŁODZIMIERZ WRÓBLEWSKI TASK QUARTERLY 12 No 3, 173 184 MODELLING OF INFLUENCE OF TURBULENT TRANSITION ON HEAT TRANSFER CONDITIONS KRZYSZTOF BOCHON, WŁODZIMIERZ WRÓBLEWSKI AND SŁAWOMIR DYKAS Institute of Power Engineering and

More information

Natural Convection from a Long Horizontal Cylinder

Natural Convection from a Long Horizontal Cylinder Natural Convection from a Long Horizontal Cylinder Hussein Awad Kurdi Saad Engineering Technical College of Al Najaf, Al-Furat Al-Awsat Technical University, Iraq ABSTRACT: Natural convection from a Long

More information

CFD in COMSOL Multiphysics

CFD in COMSOL Multiphysics CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective

More information

A Zooming Approach to Investigate Heat Transfer in Liquid Rocket Engines with ESPSS Propulsion Simulation Tool

A Zooming Approach to Investigate Heat Transfer in Liquid Rocket Engines with ESPSS Propulsion Simulation Tool A Zooming Approach to Investigate Heat Transfer in Liquid Rocket Engines with ESPSS Propulsion Simulation Tool M. Leonardi, F. Di Matteo, J. Steelant, B. Betti, M. Pizzarelli, F. Nasuti, M. Onofri 8th

More information

Assessment of Various Turbulence Models for Transitional Flows in Enclosed Environment (RP-1271)

Assessment of Various Turbulence Models for Transitional Flows in Enclosed Environment (RP-1271) Wang, M. and Chen, Q. 29. Assessment of various turbulence models for transitional flows in enclosed environment, Accepted by HVAC&R Research. Assessment of Various Turbulence Models for Transitional Flows

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

Analysis and interpretation of the LIVE-L6 experiment

Analysis and interpretation of the LIVE-L6 experiment Analysis and interpretation of the LIVE-L6 experiment A. Palagin, A. Miassoedov, X. Gaus-Liu (KIT), M. Buck (IKE), C.T. Tran, P. Kudinov (KTH), L. Carenini (IRSN), C. Koellein, W. Luther (GRS) V. Chudanov

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

Use of a CFD Code in the Analysis of Heat Transfer Surfaces

Use of a CFD Code in the Analysis of Heat Transfer Surfaces Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2008 Use of a CFD Code in the Analysis of Heat Transfer Surfaces Mohammad Shekoor

More information

The Pennsylvania State University. The Graduate School. College of Engineering CALCULATION OF TEMPERATURES IN GAS TURBINE ROTOR-STATOR

The Pennsylvania State University. The Graduate School. College of Engineering CALCULATION OF TEMPERATURES IN GAS TURBINE ROTOR-STATOR The Pennsylvania State University The Graduate School College of Engineering CALCULATION OF TEMPERATURES IN GAS TURBINE ROTOR-STATOR CAVITIES USING CONJUGATE HEAT TRANSFER A Thesis in Mechanical Engineering

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1355-1360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,

More information

MTF071 Computational Fluid Dynamics of Turbulent

MTF071 Computational Fluid Dynamics of Turbulent CHALMERS TEKNISKA HÖGSKOLA Termo- och Fluiddynamik 42 96 Göteborg MTF07 Computational Fluid Dynamics of Turbulent Flow http://wwwtfdchalmersse/gr-kurs/mtf07 Task K2 Lars Davidson 2003-02-03 In Task K you

More information

Numerical Analysis of Tube-Fin Heat Exchanger using Fluent

Numerical Analysis of Tube-Fin Heat Exchanger using Fluent Numerical Analysis of Tube-Fin Heat Exchanger using Fluent M. V. Ghori & R. K. Kirar Patel college of Science and Technology, Rajiv Gandhi Proudyogiki Vishwavidhyalaya, Ratibad, Bhopal- 462036, India E-mail

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN Numerical Analysis Of Heat Transfer And Fluid Flow Characteristics In Different V-Shaped Roughness Elements On The Absorber Plate Of Solar Air Heater Duct Jitesh Rana, Anshuman Silori, Rohan Ramola Abstract:

More information

A Numerical Study of Convective Heat Transfer in the Compression Chambers of Scroll Compressors

A Numerical Study of Convective Heat Transfer in the Compression Chambers of Scroll Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 A Numerical Study of Convective Heat Transfer in the Compression Chambers of Scroll

More information

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES

More information

Development of micro-scale CFD model to predict wind environment on complex terrain In-bok Lee

Development of micro-scale CFD model to predict wind environment on complex terrain In-bok Lee Development of micro-scale CFD model to predict wind environment on complex terrain In-bok Lee S N U CONTENTS Mountain meteorological observation system Over 65% of South Korea s territory is forestland.

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate

Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate Advanced Computational Methods in Heat Transfer IX 43 Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate A. Chaube 1, P. K. Sahoo

More information

Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV

Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-2016-226 Parametric Investigation of Hull Shaped Fuselage for an Amphibious UAV Emre Sazak

More information

Investigation of Opening Positions on the Natural Ventilation in a Low-Rise Building by CFD Analysis

Investigation of Opening Positions on the Natural Ventilation in a Low-Rise Building by CFD Analysis Proceedings of the 3 rd International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 16) Ottawa, Canada May 2 3, 2016 Paper No. 151 Investigation of Opening Positions on the Natural Ventilation

More information

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow TRANSPORT PHENOMENA MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow Introduction to Turbulent Flow 1. Comparisons of laminar and turbulent flows 2. Time-smoothed equations of change for incompressible

More information

Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2

Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2 Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2 Department of Mechanical and Materials Engineering, Military Engineering Institute,

More information

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY NUMERICAL ANALYSIS OF COMPRESSIBLE EFFECT IN THE FLOW METERING BY CLASSICAL VENTURIMETER Prasanna M A *, Dr V Seshadri, Yogesh

More information

Effect of radius ratio on pressure drop across a 90 bend for high concentration coal ash slurries

Effect of radius ratio on pressure drop across a 90 bend for high concentration coal ash slurries This paper is part of the Proceedings of the 11 International Conference th on Engineering Sciences (AFM 2016) www.witconferences.com Effect of radius ratio on pressure drop across a 90 bend for high concentration

More information

Initial and Boundary Conditions

Initial and Boundary Conditions Initial and Boundary Conditions Initial- and boundary conditions are needed For a steady problems correct initial conditions is important to reduce computational time and reach convergence Boundary conditions

More information

CFD Analysis of Multi-jet Air Impingement on Flat Plate

CFD Analysis of Multi-jet Air Impingement on Flat Plate , July 6-8, 2011, London, U.K. CFD Analysis of Multi-jet Air Impingement on Flat Plate Chougule N.K., Parishwad G.V., Gore P.R., Pagnis S., Sapali S.N. Abstract Jet impingement is one of the intensive

More information

Theoretical Study of Forced Convective Heat Transfer in Hexagonal Configuration with 7Rod Bundles Using Zirconia-water Nanofluid

Theoretical Study of Forced Convective Heat Transfer in Hexagonal Configuration with 7Rod Bundles Using Zirconia-water Nanofluid Theoretical Study of Forced Convective Heat Transfer in Hexagonal Configuration with 7Rod Bundles Using Zirconia-water Nanofluid Mojtaba Maktabifard1, a*, Nathanael P. Tian1, b 1 Faculty of Mechanical

More information

SIMULATION OF THERMAL CHARACTERISTICS OF RADIATORS USING A POROUS MODEL. YETSAN Auto Radiator Co. Inc Çorum, Turkey NOMENCLATURE

SIMULATION OF THERMAL CHARACTERISTICS OF RADIATORS USING A POROUS MODEL. YETSAN Auto Radiator Co. Inc Çorum, Turkey NOMENCLATURE Proceedings of CONV-14: Int. Symp. on ConvectiveHeatandMass Transfer June8 13, 2014, Turkey CONV-14 176 SIMULATION OF THERMAL CHARACTERISTICS OF RADIATORS USING A POROUS MODEL Kadir G. Güler 1,2 and BarbarosÇetin

More information

Basic Concepts: Drag. Education Community

Basic Concepts: Drag.  Education Community Basic Concepts: Drag 011 Autodesk Objectives Page Introduce the drag force that acts on a body moving through a fluid Discuss the velocity and pressure distributions acting on the body Introduce the drag

More information

Simulations for Enhancing Aerodynamic Designs

Simulations for Enhancing Aerodynamic Designs Simulations for Enhancing Aerodynamic Designs 2. Governing Equations and Turbulence Models by Dr. KANNAN B T, M.E (Aero), M.B.A (Airline & Airport), PhD (Aerospace Engg), Grad.Ae.S.I, M.I.E, M.I.A.Eng,

More information

ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK

ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, -4 8 ESTIMATION OF THE FLOW CHARACTERISTICS BETWEEN THE TRAIN UNDERBODY AND THE BALLAST TRACK Javier García*,

More information

Study of Forced and Free convection in Lid driven cavity problem

Study of Forced and Free convection in Lid driven cavity problem MIT Study of Forced and Free convection in Lid driven cavity problem 18.086 Project report Divya Panchanathan 5-11-2014 Aim To solve the Navier-stokes momentum equations for a lid driven cavity problem

More information