Rock Physics Perturbational Modeling: Carbonate case study, an intracratonic basin Northwest/Saharan Africa

Size: px
Start display at page:

Download "Rock Physics Perturbational Modeling: Carbonate case study, an intracratonic basin Northwest/Saharan Africa"

Transcription

1 Rock Physics Perturbational Modeling: Carbonate case study, an intracratonic basin Northwest/Saharan Africa Franklin Ruiz, Carlos Cobos, Marcelo Benabentos, Beatriz Chacon, and Roberto Varade, Luis Gairifo, Mercedes Socas, Nidal El Hafiz, and Iman Suripto Abstract We present an innovative methodology to conduct a rock-physics based perturbational modeling of synthetic seismograms appropriate for tight reservoir rocks. It consists of perturbing the rock s fluid and solid constituent volumes at each well-log depth, and estimating the elastic properties of the perturbed rock. The properties of the mineral constituents and their uncertainties are known fairly well and are kept constant along the entire depth interval. The fluid properties are changed as physical conditions vary. The properties of the perturbed rocks are estimated using an appropriate effective medium approximation. The properties can be upscaled to seismic wavelengths and synthetic CMPgathers can be calculated and compared with measured gathers at well locations. The simulated gathers can be used to interpret measured gathers, in terms of rock fabric parameters. Meticulous perturbations allow us to produce a set of seismic signatures and crossplots of elastic properties, as each model parameter is changed, mimicking properties away from well locations. This approach can be used to better select suitable seismic attributes techniques to be applied in the area. In this scenario, expectations for hydrocarbon discovery and quantification increase. This approach was applied successfully to a carbonate well data set from an intracratonic basin northwest-saharan, Africa. Introduction We present an approach to conduct a rock-physics based perturbational modeling of synthetic seismograms appropriate for tight sandstone and carbonate rocks. The methodology consists of perturbing the volumetric fractions of the rock s fluid and solid constituents at each well log depth, and estimating the elastic properties of the new created rock: the perturbed hypothetical rock. The perturbation of the volumes is achieved without changing the type of microstructure or rock fabric. The elastic properties of the solid constituents and their uncertainties are known fairly well and are kept constant in the entire depth interval. The elastic properties of the fluids are changed as physical conditions vary. The elastic properties of the perturbed rocks are estimated using an appropriate effective medium approximation, which is consistent with the studied rock microstructure. The elastic properties of the new hypothetical rocks can be upscaled to seismic wavelengths, and synthetic CMP gathers can be calculated and compared with measured seismic gathers at well locations. The simulated gathers can be used to interpret measured gathers, previously conditioned for AVO and inversion analysis, in terms of rock fabric parameters and/or physical conditions (e.g. fluids, cracks, mineralogy, diagenesis, pore pressure, and stresses) that control the character of the seismic wavefield. During the modeling, layer thickness effects are also considered after up-scaling the elastic to seismic wavelengths. Meticulous perturbations to the hypothetical rock s constituents allow us to produce a set of seismic signatures and crossplots (templates) of elastic properties and AVO parameters, as each fluid and mineral constituent, porosity, and physical conditions are varied away from well locations. In this scenario, the expectations for hydrocarbon discovery and quantification increase, as well as a reliable technique to optimize the site-specific selection of the appropriate

2 seismic attributes technique to be used in seismic reservoir characterization projects. Our goal is to estimate seismic signatures and/or associate measured seismic data away from the well, with variations in the type and amount of pore space fluids and minerals. We apply this methodology to a well data set from an intracratonic basin northwest-saharan, Africa. The reservoir rock consists of a well-cemented, brittle, and fine to medium crystalline, white to light grey limestone. To estimate the elastic properties of these rocks, we use the soft porosity model (SPM). SPM treats the well cemented carbonate matrix as a continuous solid with embedded low concentrations of stiff (rounded pores) and soft pores (crack like pores). In tight rocks, if pores have high aspect ratios (rounded), the elastic moduli of the rock mineral matrix often dominates those of the bulk rock (Ruiz and Dvorkin, 20), but if the rock has low aspect ratio pores (crack like pores), this is not necessarily true. The magnitude of the effect of crack-like pores (soft pores) on the rock elastic properties will not only depend on the cracks density and aspect ratios, but also on the compressibility of pore fluids. We assume that the solid grains and pores are randomly oriented and randomly positioned, and that the P- and S-sonic wavelengths (~3 ft) are much greater than grains and pores dimensions. Soft Model (SPM) To estimate the elastic moduli of tight rock we use the soft-porosity model (Ruiz and Cheng, 20), which is based on the multimineral version of the self-consistent approximation (Berryman, 1995). SPM consists on dividing the rock pore space (total porosity) into two pore spaces: the soft-pore space (soft-porosity) and the stiff pore space (stiff-porosity). In the SPM, the soft-porosity ( soft ) is defined as the volumetric fraction of soft inclusions with a fixed aspect ratio = 0.01 and the stiff-porosity ) as the volumetric fraction of spherical inclusions with a fixed = 1. The methodology ( stiff consists of matching well log sonic data with the theoretical-velocities to determine the soft porosity required to accomplish this match. This methodology looks for the elastic equivalency between the hypothetical rock model and measured data. If such elastic equivalency can be established for all log data points in the studied depth interval, it is possible to identify an idealized physical analogue to real rock that can be used as a tool of extrapolation, interpolation, prediction of seismic signature, and interpretation of seismic data. Case Study: Low porosity Intracratonic Basin Carbonate We use a well data set an intracratonic basin northwest-saharan, Africa. The stratigraphic column in the studied area consists of rocks that vary from Cambrian-Ordovician to Quaternary. The available well-logs were edited, spliced, and conditioned (Figure 1), before proceeding with the rock physics analysis. Information on mineral type and volumetric fractions, pore types and connectivity, textural characteristics and grain size of the studied rock samples were obtained using X-ray diffraction and petrographic analysis. The laboratory data are used to calibrate the petrophysical estimated volumetric fractions of minerals and fluids (at well-log scale). The rock images, at the micro-scale, allow us to choose an appropriately idealized microstructure that captures most features of the real rock. Once the microstructure is selected, we look for an appropriate effective medium approximation which is consistent with the chosen microstructure. This theory allows us to estimate the elastic properties of the hypothetical rock with known constituents and microstructure. The studied limestones comprise mixtures of calcareous fragments together with local replacive dolomites. Dolomite is coarsely crystalline and occurs as variably sized crystal. Well logs show that physical properties change over small intervals, which is a characteristic of fine heterogeneities in the subsurface formations. The total porosity varies from 0.5 % - 3% with an approximate average value of 1.% approximately. Water saturation is estimated using the dual water model, obtaining values and ranges from 0 to 0%. Clays, quartz, calcite and dolomite average content values are %, 9%, 5% and 2%, respectively.

3 Figure 1 From left to right: Volumetric fractions of minerals and fluids; fluid saturations; total porosity T ; soft-porosity soft ; measured (black) and theoretical (red) V p velocities; predicted Vs velocities estimated from V p ; measured (black) and theoretical (red) density. Vs velocities were not available, so they are predicted using the soft porosity model. In the modeling, the stiff- and soft-pore spaces are filled with a fluid with an effective bulk modulus, given by the harmonic average of bulk moduli of the brine and gas phases, respectively. Figure 1 shows the predicted V, the calculated (z) and a comparison of the theoretical and measured densities. s soft Rock physics perturbational modeling The rock physics perturbational modeling is achieved by varying the volume of selected rock s constituents within specific ranges and estimating the elastic properties of the perturbed rock using the soft-porosity model. Pore pressure, stresses, and temperature may be also varied. The range of variation of each model parameter is selected based on the variability of the parameter along the well or in the studied area. In this study, we perturb the following rock s parameters: volume of quartz and dolomite; fluid type; and stiff porosity. We also model the effect of random micro-cracks by adding cracks to the rock and estimating the elastic properties of the new hypothetical cracked rock. Fluid substitution is conducted by filling soft- and stiff-pores with a single effective fluid. The results of the perturbational modeling are shown by cross plotting the P- and S-wave acoustic impedances, Ip and Is, respectively, versus Poisson s ratio (PR) or density. The theoretical data are compared with the measured data in the Ip-PR, Is-PR, and Ip-density planes (Figure 2). The five perturbed parameters are varied as follows: (I) Increase the in situ quartz volume by 20% and reduce all other mineral volumes proportionally. We observe that an increase in quartz volume up to 20% causes a small increase in acoustic impedances, but a significant decrease in Poisson s ratio and density. (II) Increase the in situ dolomite volume by 20% and reduce all other mineral volumetric fractions proportionally. An

4 increase in dolomite volume up to 20% causes a small increase in acoustic impedances, as well as a small increase in Poisson s ratio and density. (III) Increase the in situ total porosity by increasing the stiff-porosity by % and reducing all mineral volumetric fractions proportionally. An increase in stiffporosity up to % causes a significant decrease in acoustic impedances, and density, but Poisson s ratio remain constant. (IV) Fluid substitution is conducted by: a) replacing the in situ fluids with mixture of 80% gas and 20% brine, and b) replacing the in situ fluids with pure brine. The saturations in the mixture are kept constant with depth. Replacing in situ fluids by gas causes a significant decrease in acoustic impedances, as well as a significant decrease in Poisson s ratio and density. (V) Add cracks (oblate spheroids) with aspect ratio and crack density 0.1. The cracks are filled with in situ fluids. The bottom row of Figure 2 shows the measured data colorcoded by brine saturation (Sw). It also shows the changes on elastic properties when adding cracks. Notice that the gas-filled cracks cause a much larger effect on the elastic properties than the brine-filled cracks. When we add cracks filled with brine, the acoustic impedance remain constant, but Poisson s ratio increases slightly. When we add cracks filled with gas the acoustic impedances, and also Poisson s ratio decreases considerably. The aspect ratios used for quartz and dolomite grains are 1 and for clay minerals is 0.2. When a specific mineral is perturbed, we keep porosity and saturations constant and only rebalance the volumetric fractions of minerals. The perturbation procedure may change depending on the specific diagenetic process we wish to take into account. For instance, we can increase calcite and reduce dolomite proportionally, keeping constant the volume of other minerals, mimicking calcite-dolomite conversion. It is important to consider that a diagenetic process may change the rock microstructure, so if necessary, during the perturbational modeling, the selected idealized microstructure may be changed, and in consequence, the corresponding effective medium approximation. Conclusions We propose an approach to conduct rock physics based perturbational modeling of synthetic seismic data. The meticulous perturbations to the hypothetical rock s constituents allowed us to produce a set of crossplots and seismic signatures showing the behavior of elastic properties, as each fluid and mineral constituent, porosity, and physical conditions are varied away from well locations. This new and innovative methodology is determinant in setting realistic expectations for reserve discovery and quantification in the studied area, as well as a valuable methodology to optimize the site-specific selection of seismic attributes to be used in seismic reservoir characterization projects.

5 % Stiff Is (km/s g/cc ) +% Stiff Ip (km/s g/cc ) +% Stiff Gas Effect Brine Effect Measured Cracks w ith Gas Cracks w ith Brine Poisson ratio Is (km/s g/cc ) 8 Gas Effect Brine Effect Measured Gas Effect Brine Effect Measured Sg Cracks w ith Gas Cracks w ith Brine Poisson ratio Ip (km/s g/cc ) Density (g/cc) Figure 2. First column: P-impedance (Ip) versus Poisson s ratio. Second Column: S-impedance (Is) versus Poisson s ratio. Third column: P-impedance versus density. From top to bottom, rows are a comparison between measured and perturbed properties when adding: 20% quartz, 20% dolomite; and % stiff porosity; and when replacing in-situ fluids with gas or brine; and when adding cracks with aspect ratios 0.00 and crack density 0.1. In the bottom row the measured data is colorcoded by water saturation (Sg). The arrows indicate the trend the data follows after the perturbation. All green symbols correspond to data after achieving perturbations and black s to measured data. References Berryman, J.G. [1995] Mixture theories for rock properties. In: American Geophysical Union Handbook of Physical Constants, edited by T. J. Ahrens, AGU, New York, Ruiz, F. and Cheng, A. [20] A rock physics model for tight gas sand. The Leading Edge, 29, Ruiz, F. and Dvorkin, J. [20] DEM and SC estimations of elastic moduli of complex rock matrix using composites as analogs. Society of Exploration Geophysicists Extended Abstracts 29, Cracks

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico Rock Physics for Fluid and Porosity Mapping in NE GoM JACK DVORKIN, Stanford University and Rock Solid Images TIM FASNACHT, Anadarko Petroleum Corporation RICHARD UDEN, MAGGIE SMITH, NAUM DERZHI, AND JOEL

More information

Rock physics of a gas hydrate reservoir. Gas hydrates are solids composed of a hydrogen-bonded ROUND TABLE

Rock physics of a gas hydrate reservoir. Gas hydrates are solids composed of a hydrogen-bonded ROUND TABLE ROUND TABLE Rock physics of a gas hydrate reservoir JACK DVORKIN and AMOS NUR, Stanford University, California, U.S. RICHARD UDEN and TURHAN TANER, Rock Solid Images, Houston, Texas, U.S. Gas hydrates

More information

Rock Physics Modeling in Montney Tight Gas Play

Rock Physics Modeling in Montney Tight Gas Play Rock Physics Modeling in Montney Tight Gas Play Ayato Kato 1, Kunio Akihisa 1, Carl Wang 2 and Reona Masui 3 1 JOGMEC-TRC, Chiba, Japan, kato-ayato@jogmec.go.jp 2 Encana, Calgary, Alberta 3 Mitsubishi

More information

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Summary.

Downloaded 11/02/16 to Redistribution subject to SEG license or copyright; see Terms of Use at   Summary. in thin sand reservoirs William Marin* and Paola Vera de Newton, Rock Solid Images, and Mario Di Luca, Pacific Exploración y Producción. Summary Rock Physics Templates (RPTs) are useful tools for well

More information

Estimating the hydrocarbon volume from elastic and resistivity data: A concept

Estimating the hydrocarbon volume from elastic and resistivity data: A concept INTERPRETER S CORNER Coordinated by Rebecca B. Latimer Estimating the hydrocarbon volume from elastic and resistivity data: A concept CARMEN T. GOMEZ, JACK DVORKIN, and GARY MAVKO, Stanford University,

More information

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES PER AVSETH, JACK DVORKIN, AND GARY MAVKO Department of Geophysics, Stanford University, CA 94305-2215, USA

More information

Evaluation of Rock Properties from Logs Affected by Deep Invasion A Case Study

Evaluation of Rock Properties from Logs Affected by Deep Invasion A Case Study Evaluation of Rock Properties from Logs Affected by Deep Invasion A Case Study Jahan Zeb a, Reece Murrell b a CGG Australia, 1 Ord Street, West Perth, WA 6005 Contact email: Jahan.Zeb@cgg.com b Esso Australia,

More information

Correlation of brittleness index with fractures and microstructure in the Barnett Shale

Correlation of brittleness index with fractures and microstructure in the Barnett Shale Correlation of brittleness index with fractures and microstructure in the Barnett Shale Z. Guo (British Geological Survey), M. Chapman (University of Edinburgh), X.Y. Li (British Geological Survey) SUMMARY

More information

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc. Summary Rock physics establishes the link between reservoir properties,

More information

Competing Effect of Pore Fluid and Texture -- Case Study

Competing Effect of Pore Fluid and Texture -- Case Study Competing Effect of Pore Fluid and Texture -- Case Study Depth (m) Sw Sxo. m Poisson's Ratio.. GOC.1 5 7 8 9 P-Impedance OWC 15 GR.. RHOB.5 1 Saturation...5. 1. 1.5 Vs (km/s).. Poisson's Ratio 5 7 P-Impedance

More information

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad*

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad* Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad* Carl Reine 1, Chris Szelewski 2, and Chaminda Sandanayake 3 Search and Discovery Article #41899 (2016)** Posted September

More information

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration

Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration 66 Seismic reservoir and source-rock analysis using inverse rock-physics modeling: A Norwegian Sea demonstration Kenneth Bredesen 1, Erling Hugo Jensen 1, 2, Tor Arne Johansen 1, 2, and Per Avseth 3, 4

More information

RESEARCH PROPOSAL. Effects of scales and extracting methods on quantifying quality factor Q. Yi Shen

RESEARCH PROPOSAL. Effects of scales and extracting methods on quantifying quality factor Q. Yi Shen RESEARCH PROPOSAL Effects of scales and extracting methods on quantifying quality factor Q Yi Shen 2:30 P.M., Wednesday, November 28th, 2012 Shen 2 Ph.D. Proposal ABSTRACT The attenuation values obtained

More information

A shale rock physics model for analysis of brittleness index, mineralogy, and porosity in the Barnett Shale

A shale rock physics model for analysis of brittleness index, mineralogy, and porosity in the Barnett Shale 1 2 A shale rock physics model for analysis of brittleness index, mineralogy, and porosity in the Barnett Shale 3 4 5 6 7 8 9 Zhiqi Guo 1, Xiang-Yang Li 2,3, Cai Liu 1, Xuan Feng 1, and Ye Shen 4 1 Jilin

More information

Summary. Simple model for kerogen maturity (Carcione, 2000)

Summary. Simple model for kerogen maturity (Carcione, 2000) Malleswar Yenugu* and De-hua Han, University of Houston, USA Summary The conversion of kerogen to oil/gas will build up overpressure. Overpressure is caused by conversion of solid kerogen to fluid hydrocarbons

More information

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives:

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives: Learning Objectives Reservoir Rock Properties Core Sources and Seals Porosity and Permeability This section will cover the following learning objectives: Explain why petroleum fluids are found in underground

More information

An empirical method for estimation of anisotropic parameters in clastic rocks

An empirical method for estimation of anisotropic parameters in clastic rocks An empirical method for estimation of anisotropic parameters in clastic rocks YONGYI LI, Paradigm Geophysical, Calgary, Alberta, Canada Clastic sediments, particularly shale, exhibit transverse isotropic

More information

Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran

Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran Iranian Int. J. Sci. 4(2), 2003, p. 209-221 Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran Eskandari, H. 1, Rezaee, M.R., 2 Javaherian, A., 3 and Mohammadnia,

More information

We P2 04 Rock Property Volume Estimation Using the Multiattribute Rotation Scheme (MARS) - Case Study in the South Falkland Basin

We P2 04 Rock Property Volume Estimation Using the Multiattribute Rotation Scheme (MARS) - Case Study in the South Falkland Basin We P2 04 Rock Property Volume Estimation Using the Multiattribute Rotation Scheme (MARS) - Case Study in the South Falkland Basin P.K. Alvarez* (Rock Solid Images), B. Farrer (Borders & Southern Petroleum),

More information

Methane hydrate rock physics models for the Blake Outer Ridge

Methane hydrate rock physics models for the Blake Outer Ridge Stanford Exploration Project, Report 80, May 15, 2001, pages 1 307 Methane hydrate rock physics models for the Blake Outer Ridge Christine Ecker 1 ABSTRACT Seismic analyses of methane hydrate data from

More information

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project

Rock Physics of Shales and Source Rocks. Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project Rock Physics of Shales and Source Rocks Gary Mavko Professor of Geophysics Director, Stanford Rock Physics Project 1 First Question: What is Shale? Shale -- a rock composed of mud-sized particles, such

More information

Sections Rock Physics Seminar Alejandra Rojas

Sections Rock Physics Seminar Alejandra Rojas Sections 1.1 1.3 Rock Physics Seminar Alejandra Rojas February 6 th, 2009 Outline Introduction Velocity Porosity relations for mapping porosity and facies Fluid substitution analysis 1.1 Introduction Discovering

More information

Downloaded 02/05/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 02/05/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Relationship among porosity, permeability, electrical and elastic properties Zair Hossain Alan J Cohen RSI, 2600 South Gessner Road, Houston, TX 77063, USA Summary Electrical resisivity is usually easier

More information

Pressure and Compaction in the Rock Physics Space. Jack Dvorkin

Pressure and Compaction in the Rock Physics Space. Jack Dvorkin Pressure and Compaction in the Rock Physics Space Jack Dvorkin June 2002 0 200 Compaction of Shales Freshly deposited shales and clays may have enormous porosity of ~ 80%. The speed of sound is close to

More information

Effects of fluid changes on seismic reflections: Predicting amplitudes at gas reservoir directly from amplitudes at wet reservoir

Effects of fluid changes on seismic reflections: Predicting amplitudes at gas reservoir directly from amplitudes at wet reservoir GEOPHYSICS, VOL. 77, NO. 4 (JULY-AUGUST 2012); P. D129 D140, 15 FIGS., 2 TABLES. 10.1190/GEO2011-0331.1 Effects of fluid changes on seismic reflections: Predicting amplitudes at gas reservoir directly

More information

Role of Data Analysis in fixing parameters for petrophysics & rockphysics modeling for effective seismic reservoir characterization A case study

Role of Data Analysis in fixing parameters for petrophysics & rockphysics modeling for effective seismic reservoir characterization A case study 10 th Biennial International Conference & Exposition P 145 Role of Data Analysis in fixing parameters for petrophysics & rockphysics modeling for effective seismic reservoir characterization A case study

More information

DETECTION AND QUANTIFICATION OF ROCK PHYSICS PROPERTIES FOR IMPROVED HYDRAULIC FRACTURING IN HYDROCARBON-BEARING SHALE

DETECTION AND QUANTIFICATION OF ROCK PHYSICS PROPERTIES FOR IMPROVED HYDRAULIC FRACTURING IN HYDROCARBON-BEARING SHALE DETECTION AND QUANTIFICATION OF ROCK PHYSICS PROPERTIES FOR IMPROVED HYDRAULIC FRACTURING IN HYDROCARBON-BEARING SHALE Antoine Montaut, Paul Sayar, and Carlos Torres-Verdín The University of Texas at Austin

More information

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 582-587 and Formation Resistivity Factor Majid Nabi-Bidhendi Institute of Geophysics, University of Tehran, P.O. Box 14155-6466,

More information

Shaly Sand Rock Physics Analysis and Seismic Inversion Implication

Shaly Sand Rock Physics Analysis and Seismic Inversion Implication Shaly Sand Rock Physics Analysis and Seismic Inversion Implication Adi Widyantoro (IkonScience), Matthew Saul (IkonScience/UWA) Rock physics analysis of reservoir elastic properties often assumes homogeneity

More information

SEG Houston 2009 International Exposition and Annual Meeting. that the project results can correctly interpreted.

SEG Houston 2009 International Exposition and Annual Meeting. that the project results can correctly interpreted. Calibration of Pre-Stack Simultaneous Impedance Inversion using Rock Physics Scott Singleton and Rob Keirstead, Rock Solid Images Log Conditioning and Rock Physics Modeling Summary Geophysical Well Log

More information

IDENTIFYING PATCHY SATURATION FROM WELL LOGS Short Note. / K s. + K f., G Dry. = G / ρ, (2)

IDENTIFYING PATCHY SATURATION FROM WELL LOGS Short Note. / K s. + K f., G Dry. = G / ρ, (2) IDENTIFYING PATCHY SATURATION FROM WELL LOGS Short Note JACK DVORKIN, DAN MOOS, JAMES PACKWOOD, AND AMOS NUR DEPARTMENT OF GEOPHYSICS, STANFORD UNIVERSITY January 5, 2001 INTRODUCTION Gassmann's (1951)

More information

Th SBT1 14 Seismic Characters of Pore Pressure Due to Smectite-to-illite Transition

Th SBT1 14 Seismic Characters of Pore Pressure Due to Smectite-to-illite Transition Th SBT1 14 Seismic Characters of Pore Pressure Due to Smectite-to-illite Transition X. Qin* (University of Houston) & D. Han (University of Houston) SUMMARY In this study, we strive to understand unloading

More information

Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties

Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties Amaro C. 1 Abstract: The main goal of reservoir modeling and characterization is the inference of

More information

SPE These in turn can be used to estimate mechanical properties.

SPE These in turn can be used to estimate mechanical properties. SPE 96112 Pressure Effects on Porosity-Log Responses Using Rock Physics Modeling: Implications on Geophysical and Engineering Models as Reservoir Pressure Decreases Michael Holmes, SPE, Digital Formation,

More information

SRC software. Rock physics modelling tools for analyzing and predicting geophysical reservoir properties

SRC software. Rock physics modelling tools for analyzing and predicting geophysical reservoir properties SRC software Rock physics modelling tools for analyzing and predicting geophysical reservoir properties Outline About SRC software. Introduction to rock modelling. Rock modelling program structure. Examples

More information

VELOCITY MODELING TO DETERMINE PORE ASPECT RATIOS OF THE HAYNESVILLE SHALE. Kwon Taek Oh

VELOCITY MODELING TO DETERMINE PORE ASPECT RATIOS OF THE HAYNESVILLE SHALE. Kwon Taek Oh VELOCITY MODELING TO DETERMINE PORE ASPECT RATIOS OF THE HAYNESVILLE SHALE. Kwon Taek Oh Department of Geological Sciences The University of Texas at Austin ABSTRACT This work estimates pore shapes from

More information

CHARACTERIZING RESERVOIR PROPERTIES OF THE HAYNESVILLE SHALE USING THE SELF-CONSISTENT MODEL AND A GRID SEARCH METHOD.

CHARACTERIZING RESERVOIR PROPERTIES OF THE HAYNESVILLE SHALE USING THE SELF-CONSISTENT MODEL AND A GRID SEARCH METHOD. CHARACTERIZING RESERVOIR PROPERTIES OF THE HAYNESVILLE SHALE USING THE SELF-CONSISTENT MODEL AND A GRID SEARCH METHOD Meijuan Jiang Department of Geological Sciences The University of Texas at Austin ABSTRACT

More information

A look into Gassmann s Equation

A look into Gassmann s Equation A look into Gassmann s Equation Nawras Al-Khateb, CHORUS Heavy Oil Consortium, Department of Geoscience, University of Calgary nawras.alkhateb@ucalgary.ca Summary By describing the influence of the pore

More information

Calibration of the petro-elastic model (PEM) for 4D seismic studies in multi-mineral rocks Amini, Hamed; Alvarez, Erick Raciel

Calibration of the petro-elastic model (PEM) for 4D seismic studies in multi-mineral rocks Amini, Hamed; Alvarez, Erick Raciel Heriot-Watt University Heriot-Watt University Research Gateway Calibration of the petro-elastic model (PEM) for 4D seismic studies in multi-mineral rocks Amini, Hamed; Alvarez, Erick Raciel DOI: 10.3997/2214-4609.20132136

More information

P314 Anisotropic Elastic Modelling for Organic Shales

P314 Anisotropic Elastic Modelling for Organic Shales P314 Anisotropic Elastic Modelling for Organic Shales X. Wu* (British Geological Survey), M. Chapman (British Geological Survey), X.Y. Li (British Geological Survey) & H. Dai (British Geological Survey)

More information

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston ain enu Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston Summary When S-wave velocity is absent, approximate Gassmann

More information

ROCK PHYSICS MODELING FOR LITHOLOGY PREDICTION USING HERTZ- MINDLIN THEORY

ROCK PHYSICS MODELING FOR LITHOLOGY PREDICTION USING HERTZ- MINDLIN THEORY ROCK PHYSICS MODELING FOR LITHOLOGY PREDICTION USING HERTZ- MINDLIN THEORY Ida Ayu PURNAMASARI*, Hilfan KHAIRY, Abdelazis Lotfy ABDELDAYEM Geoscience and Petroleum Engineering Department Universiti Teknologi

More information

GRAIN SORTING, POROSITY, AND ELASTICITY. Jack Dvorkin and Mario A. Gutierrez Geophysics Department, Stanford University ABSTRACT

GRAIN SORTING, POROSITY, AND ELASTICITY. Jack Dvorkin and Mario A. Gutierrez Geophysics Department, Stanford University ABSTRACT GRAIN SORTING, POROSITY, AND ELASTICITY Jack Dvorkin and Mario A. Gutierrez Geophysics Department, Stanford University July 24, 2001 ABSTRACT Grain size distribution (sorting) is determined by deposition.

More information

THE ROCK PHYSICS HANDBOOK

THE ROCK PHYSICS HANDBOOK THE ROCK PHYSICS HANDBOOK TOOLS FOR SEISMIC ANALYSIS IN POROUS MEDIA Gary Mavko Tapan Mukerji Jack Dvorkin Stanford University Stanford University Stanford University CAMBRIDGE UNIVERSITY PRESS CONTENTS

More information

Pre-Stack Seismic Inversion and Amplitude Versus Angle Modeling Reduces the Risk in Hydrocarbon Prospect Evaluation

Pre-Stack Seismic Inversion and Amplitude Versus Angle Modeling Reduces the Risk in Hydrocarbon Prospect Evaluation Advances in Petroleum Exploration and Development Vol. 7, No. 2, 2014, pp. 30-39 DOI:10.3968/5170 ISSN 1925-542X [Print] ISSN 1925-5438 [Online] www.cscanada.net www.cscanada.org Pre-Stack Seismic Inversion

More information

Seismic modelling of unconventional reservoirs

Seismic modelling of unconventional reservoirs FOCUS ARTICLE Coordinated by Satinder Chopra / Meghan Brown Seismic modelling of unconventional reservoirs Marco Perez Apache Canada Ltd., Calgary, Alberta, Canada Introduction Unconventional resource

More information

Rock Physics of Organic Shale and Its Implication

Rock Physics of Organic Shale and Its Implication Rock Physics of Organic Shale and Its Implication Lev Vernik, Marathon Oil Corporation, Houston, USA lvernik@marathonoil.com Yulia Khadeeva, Marathon Oil Corporation, Houston, USA Cris Tuttle, Marathon

More information

Seismic reservoir characterization in offshore Nile Delta.

Seismic reservoir characterization in offshore Nile Delta. Seismic reservoir characterization in offshore Nile Delta. Part II: Probabilistic petrophysical-seismic inversion M. Aleardi 1, F. Ciabarri 2, B. Garcea 2, A. Mazzotti 1 1 Earth Sciences Department, University

More information

Rock Physics & Formation Evaluation. Special Topic

Rock Physics & Formation Evaluation. Special Topic Volume 30 Issue 5 May 2012 Special Topic Technical Articles Dual representation of multiscale fracture network modelling for UAE carbonate field AVO and spectral decomposition for derisking Palaeogene

More information

RP 2.6. SEG/Houston 2005 Annual Meeting 1521

RP 2.6. SEG/Houston 2005 Annual Meeting 1521 Ludmila Adam 1, Michael Batzle 1, and Ivar Brevik 2 1 Colorado School of Mines, 2 Statoil R&D Summary A set of carbonate plugs of different porosity, permeability, mineralogy and texture are measured at

More information

Rock physics and AVO applications in gas hydrate exploration

Rock physics and AVO applications in gas hydrate exploration Rock physics and AVO applications in gas hydrate exploration ABSTRACT Yong Xu*, Satinder Chopra Core Lab Reservoir Technologies Division, 301,400-3rd Ave SW, Calgary, AB, T2P 4H2 yxu@corelab.ca Summary

More information

Exploration / Appraisal of Shales. Petrophysics Technical Manager Unconventional Resources

Exploration / Appraisal of Shales. Petrophysics Technical Manager Unconventional Resources Exploration / Appraisal of Shales Rick Lewis Petrophysics Technical Manager Unconventional Resources Organic Shale Factors Controlling Gas Reservoir Quality Conventional sandstone Mineral framework Gas

More information

Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field

Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field Downloaded 09/12/14 to 84.215.159.82. Redistribution subject to SEG license or copyright; see Terms of Use

More information

Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field.

Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field. Rock physics integration of CSEM and seismic data: a case study based on the Luva gas field. Peter Harris*, Zhijun Du, Harald H. Soleng, Lucy M. MacGregor, Wiebke Olsen, OHM-Rock Solid Images Summary It

More information

The elastic properties such as velocity, density, impedance,

The elastic properties such as velocity, density, impedance, SPECIAL SECTION: Rr ock Physics physics Lithology and fluid differentiation using rock physics template XIN-GANG CHI AND DE-HUA HAN, University of Houston The elastic properties such as velocity, density,

More information

Researcher 2015;7(9)

Researcher 2015;7(9) 4D Seismic Feasibility Study using well Logs in Sienna gas Field, West Delta Deep Marine concession, Egypt Helal, A., Shebl, A. 1, ElNaggar, S. 2 and Ezzat, A. 3 1 Faculty of Science, Ain Shams University,

More information

The effect of CO 2 -fluid-rock interactions on the porosity and permeability of calcite-bearing sandstone

The effect of CO 2 -fluid-rock interactions on the porosity and permeability of calcite-bearing sandstone The effect of CO 2 -fluid-rock interactions on the porosity and permeability of calcite-bearing sandstone Benoit Lamy-Chappuis, Bruce Yardley, Carlos Grattoni School of Earth and Environment, University

More information

RESERVOIR SEISMIC CHARACTERISATION OF THIN SANDS IN WEST SYBERIA

RESERVOIR SEISMIC CHARACTERISATION OF THIN SANDS IN WEST SYBERIA www.senergyltd.com RESERVOIR SEISMIC CHARACTERISATION OF THIN SANDS IN WEST SYBERIA Erick Alvarez, Jaume Hernandez, Bolkhotivin E.A., Belov A.V., Hakima Ben Meradi,Jonathan Hall, Olivier Siccardi, Phil

More information

Seismic characterization of Montney shale formation using Passey s approach

Seismic characterization of Montney shale formation using Passey s approach Seismic characterization of Montney shale formation using Passey s approach Ritesh Kumar Sharma*, Satinder Chopra and Amit Kumar Ray Arcis Seismic Solutions, Calgary Summary Seismic characterization of

More information

Effective Medium Theories Effective Medium Models

Effective Medium Theories Effective Medium Models Effective Medium Models 3 Bounding Methods for Estimating Effective Elastic Moduli For many reasons we would like to be able to model or estimate the effective elastic moduli of rocks in terms of the properties

More information

A Regional Diagenetic and Petrophysical Model for the Montney Formation, Western Canada Sedimentary Basin*

A Regional Diagenetic and Petrophysical Model for the Montney Formation, Western Canada Sedimentary Basin* A Regional Diagenetic and Petrophysical Model for the Montney Formation, Western Canada Sedimentary Basin* Noga Vaisblat 1, Nicholas B. Harris 1, Vincent Crombez 2, Tristan Euzen 3, Marta Gasparrini 2,

More information

Seismic reservoir characterization using the multiattribute rotation scheme: Case study in the South Falkland Basin

Seismic reservoir characterization using the multiattribute rotation scheme: Case study in the South Falkland Basin Seismic reservoir characterization using the multiattribute rotation scheme: Case study in the South Falkland Basin Pedro Alvarez 1, Bruce Farrer 2, and Doyin Oyetunji 1 Downloaded 08/15/16 to 50.207.209.154.

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway 4D seismic feasibility study for enhanced oil recovery (EOR) with CO2 injection in a mature North Sea field Amini, Hamed; Alvarez, Erick Raciel;

More information

Characterization of Heterogeneities in Carbonates Ravi Sharma* and Manika Prasad, Colorado School of Mines

Characterization of Heterogeneities in Carbonates Ravi Sharma* and Manika Prasad, Colorado School of Mines Characterization of Heterogeneities in Carbonates Ravi Sharma* and Manika Prasad, Colorado School of Mines Summary Heterogeneity in carbonate rock is the principal reason for its improper characterization

More information

1: Research Institute of Petroleum Industry, RIPI, Iran, 2: STATOIL ASA, Norway,

1: Research Institute of Petroleum Industry, RIPI, Iran, 2: STATOIL ASA, Norway, SCA2005-42 1/12 INTEGRATED ANALYSIS OF CORE AND LOG DATA TO DETERMINE RESERVOIR ROCK TYPES AND EXTRAPOLATION TO UNCORED WELLS IN A HETEROGENEOUS CLASTIC AND CARBONATE RESERVOIR A. M. Bagheri 1, B. Biranvand

More information

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field Amit Suman and Tapan Mukerji Department of Energy Resources Engineering Stanford University

More information

IMPROVED RESERVOIR CHARACTERISATION USING NOVEL UNCONVENTIONAL CROSSPLOTS BETWEEN MAGNETIC SUSCEPTIBILITY AND DOWNHOLE WIRELINE LOG DATA

IMPROVED RESERVOIR CHARACTERISATION USING NOVEL UNCONVENTIONAL CROSSPLOTS BETWEEN MAGNETIC SUSCEPTIBILITY AND DOWNHOLE WIRELINE LOG DATA SCA2013-075 1/6 IMPROVED RESERVOIR CHARACTERISATION USING NOVEL UNCONVENTIONAL CROSSPLOTS BETWEEN MAGNETIC SUSCEPTIBILITY AND DOWNHOLE WIRELINE LOG DATA *Salem Abdalah, + Arfan Ali, and David K. Potter

More information

We Density/Porosity Versus Velocity of Overconsolidated Sands Derived from Experimental Compaction SUMMARY

We Density/Porosity Versus Velocity of Overconsolidated Sands Derived from Experimental Compaction SUMMARY We 6 Density/Porosity Versus Velocity of Overconsolidated Sands Derived from Experimental Compaction S. Narongsirikul* (University of Oslo), N.H. Mondol (University of Oslo and Norwegian Geotechnical Inst)

More information

Poisson's Ration, Deep Resistivity and Water Saturation Relationships for Shaly Sand Reservoir, SE Sirt, Murzuq and Gadames Basins, Libya (Case study)

Poisson's Ration, Deep Resistivity and Water Saturation Relationships for Shaly Sand Reservoir, SE Sirt, Murzuq and Gadames Basins, Libya (Case study) Journal of Geography and Geology; Vol. 7, No. 1; 2015 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education Poisson's Ration, Deep Resistivity and Water Saturation Relationships

More information

McMAT 2007 Micromechanics of Materials Austin, Texas, June 3 7, 2007

McMAT 2007 Micromechanics of Materials Austin, Texas, June 3 7, 2007 McMAT 2007 Micromechanics of Materials Austin, Texas, June 3 7, 2007 RANDOM POLYCRYSTALS OF GRAINS WITH CRACKS: MODEL OF ELASTIC BEHAVIOR FOR FRACTURED SYSTEMS James G. Berryman Earth Sciences Division

More information

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration Title 4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration Authors Bloomer, D., Ikon Science Asia Pacific Reynolds, S., Ikon Science Asia Pacific Pavlova, M., Origin

More information

SEG/New Orleans 2006 Annual Meeting

SEG/New Orleans 2006 Annual Meeting On the applicability of Gassmann model in carbonates Ravi Sharma*, Manika Prasad and Ganpat Surve (Indian Institute of Technology, Bombay), G C Katiyar (Third Eye Centre, Oil and Natural Gas Corporation

More information

Theoretical Approach in Vp/Vs Prediction from Rock Conductivity in Gas Saturating Shaly Sand

Theoretical Approach in Vp/Vs Prediction from Rock Conductivity in Gas Saturating Shaly Sand Modern Applied Science; Vol. 13, No. 1; 2019 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education Theoretical Approach in Vp/Vs Prediction from Rock Conductivity in Gas

More information

Estimation of shale reservoir properties based on anisotropic rock physics modelling

Estimation of shale reservoir properties based on anisotropic rock physics modelling Estimation of shale reservoir properties based on anisotropic rock physics modelling K. Qian* (China University of Petroleum,Beijing), F. Zhang (China University of Petroleum,Beijing), X.Y. Li (British

More information

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait Osman Khaled, Yousef Al-Zuabi, Hameed Shereef Summary The zone under study is Zubair formation of Cretaceous

More information

Quantitative Interpretation

Quantitative Interpretation Quantitative Interpretation The aim of quantitative interpretation (QI) is, through the use of amplitude analysis, to predict lithology and fluid content away from the well bore. This process should make

More information

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E.

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E. Rock Physics and Quantitative Wavelet Estimation for Seismic Interpretation: Tertiary North Sea R.W.Simm 1, S.Xu 2 and R.E.White 2 1. Enterprise Oil plc, Grand Buildings, Trafalgar Square, London WC2N

More information

Neutron Log. Introduction

Neutron Log. Introduction Neutron Log Introduction This summary focuses on the basic interactions between the tool s signal and measured information, that help characterize the formation. It is not intended to be a comprehensive

More information

Integrating rock physics modeling, prestack inversion and Bayesian classification. Brian Russell

Integrating rock physics modeling, prestack inversion and Bayesian classification. Brian Russell Integrating rock physics modeling, prestack inversion and Bayesian classification Brian Russell Introduction Today, most geoscientists have an array of tools available to perform seismic reservoir characterization.

More information

BPM37 Linking Basin Modeling with Seismic Attributes through Rock Physics

BPM37 Linking Basin Modeling with Seismic Attributes through Rock Physics BPM37 Linking Basin Modeling with Seismic Attributes through Rock Physics W. AlKawai* (Stanford University), T. Mukerji (Stanford University) & S. Graham (Stanford University) SUMMARY In this study, we

More information

Rock Physics Interpretation of microstructure Chapter Jingqiu Huang M.S. Candidate University of Houston

Rock Physics Interpretation of microstructure Chapter Jingqiu Huang M.S. Candidate University of Houston Rock Physics Interpretation of microstructure Chapter2.1 2.2 2.3 Jingqiu Huang M.S. Candidate University of Houston Introduction Theory and models Example in North Sea Introduction Theoretical models Inclusion

More information

Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses

Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses PROC. ITB Eng. Science Vol. 38 B, No. 2, 2006, 159-170 159 Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses Fatkhan Program Studi Teknik Geofisika FIKTM-ITB

More information

B-31 Combining 4D seismic and reservoir

B-31 Combining 4D seismic and reservoir B-31 Combining 4D seismic and reservoir simulation: key to effective reservoir management ANDREY BAKULIN 1, NICK DRINKWATER 1, CLAUDE SIGNER 1, SARAH RYAN 2 & ANDY O DONOVAN 3 1 Schlumberger Cambridge

More information

URTeC: Summary

URTeC: Summary URTeC: 2665754 Using Seismic Inversion to Predict Geomechanical Well Behavior: a Case Study From the Permian Basin Simon S. Payne*, Ikon Science; Jeremy Meyer*, Ikon Science Copyright 2017, Unconventional

More information

water L v i Chapter 4 Saturation

water L v i Chapter 4 Saturation 4. Resistivity The presence of hydrocarbons is identified by the electrical resistance of the formation. These electrical properties of rocks depend on the pore geometry and fluid distribution. That is,

More information

From loose grains to stiff rocks The rock-physics "life story" of a clastic sediment, and its significance in QI studies

From loose grains to stiff rocks The rock-physics life story of a clastic sediment, and its significance in QI studies From loose grains to stiff rocks The rock-physics "life story" of a clastic sediment, and its significance in QI studies Prof. Per Avseth, NTNU/G&G Resources Burial depth/temp. Elastic Modulus The rock

More information

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS

THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS THE USE OF SEISMIC ATTRIBUTES AND SPECTRAL DECOMPOSITION TO SUPPORT THE DRILLING PLAN OF THE URACOA-BOMBAL FIELDS Cuesta, Julián* 1, Pérez, Richard 1 ; Hernández, Freddy 1 ; Carrasquel, Williams 1 ; Cabrera,

More information

Quantitative interpretation using inverse rock-physics modeling on AVO data

Quantitative interpretation using inverse rock-physics modeling on AVO data Quantitative interpretation using inverse rock-physics modeling on AVO data Erling Hugo Jensen 1, Tor Arne Johansen 2, 3, 4, Per Avseth 5, 6, and Kenneth Bredesen 2, 7 Downloaded 08/16/16 to 129.177.32.62.

More information

Stochastic Modeling & Petrophysical Analysis of Unconventional Shales: Spraberry-Wolfcamp Example

Stochastic Modeling & Petrophysical Analysis of Unconventional Shales: Spraberry-Wolfcamp Example Stochastic Modeling & Petrophysical Analysis of Unconventional Shales: Spraberry-Wolfcamp Example Fred Jenson and Howard Rael, Fugro-Jason Introduction Recent advances in fracture stimulation techniques

More information

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION

SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION The Society gratefully acknowledges those companies that support the program by allowing their professionals

More information

Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics

Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics Net-to-gross from Seismic P and S Impedances: Estimation and Uncertainty Analysis using Bayesian Statistics Summary Madhumita Sengupta*, Ran Bachrach, Niranjan Banik, esterngeco. Net-to-gross (N/G ) is

More information

Recent advances in application of AVO to carbonate reservoirs: case histories

Recent advances in application of AVO to carbonate reservoirs: case histories Recent advances in application of AVO to reservoirs: case histories Yongyi Li, Bill Goodway*, and Jonathan Downton Core Lab Reservoir Technologies Division *EnCana Corporation Summary The application of

More information

Th LHR2 08 Towards an Effective Petroelastic Model for Simulator to Seismic Studies

Th LHR2 08 Towards an Effective Petroelastic Model for Simulator to Seismic Studies Th LHR2 08 Towards an Effective Petroelastic Model for Simulator to Seismic Studies A. Briceno* (Heriot-Watt University), C. MacBeth (Heriot-Watt University) & M.D. Mangriotis (Heriot-Watt University)

More information

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field P-305 The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field Summary V B Singh*, Mahendra Pratap, ONGC The objective of the modeling was to

More information

Reservoir Characteristics of a Quaternary Channel: Incorporating Rock Physics in Seismic and DC Resistivity Surveys

Reservoir Characteristics of a Quaternary Channel: Incorporating Rock Physics in Seismic and DC Resistivity Surveys Reservoir Characteristics of a Quaternary Channel: Incorporating Rock Physics in Seismic and DC Resistivity Surveys Jawwad Ahmad* University of Alberta, Edmonton, Alberta, Canada jahmad@phys.ualberta.ca

More information

Advances in Elemental Spectroscopy Logging: A Cased Hole Application Offshore West Africa

Advances in Elemental Spectroscopy Logging: A Cased Hole Application Offshore West Africa Journal of Geography and Geology; Vol. 9, No. 4; 2017 ISSN 1916-9779 E-ISSN 1916-9787 Published by Canadian Center of Science and Education Advances in Elemental Spectroscopy Logging: A Cased Hole Application

More information

Generation of synthetic shear wave logs for multicomponent seismic interpretation

Generation of synthetic shear wave logs for multicomponent seismic interpretation 10 th Biennial International Conference & Exposition P 116 Generation of synthetic shear wave logs for multicomponent seismic interpretation Amit Banerjee* & A.K. Bakshi Summary Interpretation of Multicomponent

More information

The Weyburn Field in southeastern Saskatchewan,

The Weyburn Field in southeastern Saskatchewan, SPECIAL 2 SECTION: C O 2 AVO modeling of pressure-saturation effects in Weyburn sequestration JINFENG MA, State Key Laboratory of Continental Dynamics, Northwest University, China IGOR MOROZOV, University

More information

QUANTITATIVE INTERPRETATION

QUANTITATIVE INTERPRETATION QUANTITATIVE INTERPRETATION THE AIM OF QUANTITATIVE INTERPRETATION (QI) IS, THROUGH THE USE OF AMPLITUDE ANALYSIS, TO PREDICT LITHOLOGY AND FLUID CONTENT AWAY FROM THE WELL BORE This process should make

More information

Elements of 3D Seismology Second Edition

Elements of 3D Seismology Second Edition Elements of 3D Seismology Second Edition Copyright c 1993-2003 All rights reserved Christopher L. Liner Department of Geosciences University of Tulsa August 14, 2003 For David and Samantha And to the memory

More information