Deformation: Modification of Rocks by Folding and Fracturing

Size: px
Start display at page:

Download "Deformation: Modification of Rocks by Folding and Fracturing"

Transcription

1 CHAPTER 7 Deformation: Modification of Rocks by Folding and Fracturing Chapter Summary A geologic map is a scientific model of rock formations that are exposed on the Earth s surface showing outcrops, fault traces, and significant boundaries between rock bodies and geologic structures. The orientation of formations is indicated on geologic maps by angles of strike and dip (see Figure 7.3). A geologic cross section shows diagram features that would be visible if a vertical slice were made through the crust. All rocks may bend (behave ductilely) and break (behave brittlely) in response to the application of forces. Laboratory experiments have revealed that whether a rock exhibits ductile or brittle behavior depends on its composition, temperature, depth of burial (confining pressure), and rate with which tectonic processes apply force. In the field and on geologic maps, strike and dip of a formation shows its orientation at a particular place. Ductile behavior is more likely when a rock is exposed to higher temperatures, deeper burial, slower application of tectonic forces, and is a sedimentary rock. Brittle behavior is favored when rocks are cooler, closer to the Earth s surface, exposed to more rapid application of tectonic forces, and is an igneous or highgrade metamorphic rock. Folding is a result of ductile deformation. From the type of fold and its orientation geologists can interpret the orientation of the tectonic forces and characteristics of the rock layers during deformation. Faulting and jointing are a result of brittle deformation. Jointing occurs when a rock fractures but there is little movement along the fracture planes. Faults are fractures along which there is appreciable movement (offset). The type and orientation of faults and joints provides valuable information about the tectonic forces and the characteristics of the rock layers at the time of deformation. The type of fold or fault provides a basis for geologists to interpret the type of tectonic force acting on the rock during deformation. Tectonic forces can be of three types: compressive, tensional, and shearing forces. These same kinds of forces are active at all three types of plate tectonic boundaries: compressive forces dominate at convergent boundaries, where plates collide or subduct; tensional forces dominate at divergent boundaries, where plates are pulled apart; and shearing forces dominate at transform faults where plates slide horizontally past each other. 91

2 92 PART II CHAPTER 7 Geologic structures such as folds, faults, and joints occur on all scales from microscopic to the size of a mountainside. Geologists deduce the geologic history of a region in part by unraveling the history of deformation, thereby reconstructing what the rock units looked like before deformation. Regional deformational fabrics can help geologists decipher the plate tectonic history for the region. Learning Objectives In this section we provide a sampling of possible objectives for this chapter. No class could or should try to accomplish all of these objectives. Choose objectives based on your analysis of your class. Refer to Chapter 1: Learning Objectives How to Define Your Goals for Your Course in the Instructional Design section of this manual for thoughts and ideas about how to go about such an analysis. Knowledge Know the factors that determine whether a rock breaks or bends. Understand what geologic structures result from compressional, tensional, and shear stresses. Identify the major types of folds and faults. Know what styles of deformation are characteristic of each tectonic plate boundary. Geology Skills/Applications/Attitudes Measure and record a strike and dip of a planar rock feature. Given information about geologic structures in an outcrop or series of outcrops, interpret the geologic circumstances responsible for the deformation. General Education Skills Write an interesting piece for your local paper on a local example of deformation. Freshman Survival Skills Encourage Students to preview Chapter 7 by awarding credit for restating in their own words acceptable answers to all Chapter Preview Questions and turning in their answers before the lecture. (previewing/textbook reading) Sample Lecture Outline Sample lecture outlines highlight the important topics and concepts covered in the text. We suggest that you customize it to your own lecture before handing it out to students. At the end of each chapter outline consider adding a selection of review questions that represent a range of thinking levels. Chapter 7: Deformation Modification of Rocks by Folding and Fracturing Measuring strike and dip Constructing a geologic map and cross section

3 Deformation: Modification of Rocks by Folding and Fracturing 93 Forces types of stress Compressive Tensional Shearing Behavior (plastic, elastic, brittle) of rocks depends on Composition Temperature Confining pressure Rate at which stress is applied (time) Small amounts of fluids Deformation response to force Brittle Deformation Joints Faults normal, reverse, thrust, strike-slip, rift valley (horst and graben) Folds Symmetrical and Asymmetrical Monocline Syncline Anticline Overturned Plunging Domes Basins Teaching Tips Cooperative/Collaborative Exercises and In-Class Activities Refer to Chapter 4: Cooperative Learning Teaching Strategies in the Instructional Design section of this manual for general ideas about conducting cooperative learning exercises in your classroom. Practice Exercises 1 and 2 from Chapter 7 of the Student Study Guide (available in the Understanding Earth e-book) work well as a Think/Pair/Share. Present the exercise on the board or as an overhead, then ask student teams to fill in the blanks. Coop Exercise 1: Geologic Structures For each of the following five illustrations of deformed rocks, name (a) the geologic structure, e.g., normal fault, syncline; (b) the type of force, e.g., compressional, tensional, shearing force, responsible for producing each geologic structure; and (c) the plate tectonic boundary, e.g., convergent, divergent, or shear, with which the geologic structure is commonly associated. A. Geo structure B. Type of force C. Commonly associated plate tectonic boundary

4 94 PART II CHAPTER 7 A. Geo structure B. Type of force C. Commonly associated plate tectonic boundary D. Geo structure E. Type of force F. Commonly associated plate tectonic boundary G. Geo structure H. Type of force I. Commonly associated plate tectonic boundary J. Geo structure K. Type of force L. Commonly associated plate tectonic boundary M. Geo structure N. Type of force O. Commonly associated plate tectonic boundary

5 Deformation: Modification of Rocks by Folding and Fracturing 95 Coop Exercise 2: Silly Putty Silly Putty is a popular teaching aid (and toy) with geologists because it exhibits at room temperature all three kinds of deformation characteristic of solids. If you pull on the putty quickly, it will snap into two pieces. It is easy to bend and mold the putty into many shapes. Plus, if you throw a ball of it on the floor, the ball will bounce. Compare the properties of Silly Putty with the behavior of rocks by completing the table below. Behavior of Geologic Structure Produced Silly Putty Behavior of Rock Type of Force by This Style of Deformation snaps into pieces tensional bends ductile bounces Elastic rocks do Compressional The ball NOTE exhibit elastic behavior; of putty is compressed by Earthquakes are attributed more on this when we the impact with the floor. to the elastic properties of rocks. study earthquakes. Freshman Survival Skills Assignment If you encouraged your students to preview chapters before attending lecture it is a good idea to reinforce this idea from time to time. One good approach would be to preview Chapter 7 for extra credit. Tell the students they must write a brief paragraph in their own words for each of the Chapter Preview Questions. Credit should be given only for answers turned in before the lecture occurs. (previewing/textbook reading) Topics for Class Discussion Compare the behavior of rocks with that of Silly Putty. Discuss. Refer to Coop Exercise 2 above. Rocks behave (deform) in three different ways in the Earth s crust characterize each type of behavior. What factors influence how a rock deforms? What is the field evidence for each style of deformation? What kind of deformation occurs when a tall building sways in the wind? Deformation and metamorphism Rock deformation and metamorphism are closely linked. The following conceptual graph illustrates the relationship between rate of strain (deformation) and rate of (re-)crystallization (metamorphism). How a rock behaves (brittlely or plastically) under stress will depend in part on how quickly minerals within the rock can recrystallize, which depends on temperature, pressure and the rock s composition. As temperature increases, ion mobility increases, and rates of recrystallization increase. Note the relationship between cataclastic and mylonitic metamorphic rocks.

6 96 PART II CHAPTER 7 High Cataclastic (brittle) Rate of Strain Mylonite Ductile (plastic) Brittle = high rate of strain, low T & P Ductile = low rate of strain, high T & P Low Low Rate of Recrystallization High Strain Rate vs. Behavior of Solids Low strain rate elastic behavior Slow strain rate ductile behavior Fast strain rate brittle behavior Teaching Resources Student Study Guide Highlights (part of the Understanding Earth e-book) In Part I, chapters provide strategies for learning geology. Ideally, students would read these chapters early in the course. Chapter 1: Brief Preview of the Student Study Guide for Understanding Earth Chapter 2: Meet the Authors Chapter 3: How to Be Successful in Geology Part II, Chapter 7: Deformation Modification of Rocks by Folding and Fracturing Before Lecture: Study Tip Preview Questions and Brief Answers During Lecture: Note Taking Tip After Lecture: Check Your Notes Intensive Study Session Exam Prep: Chapter Summary Practice Exercises: Silly Putty Geologic Structures Anticline vs. Syncline Identifying Geologic Structures Review questions

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

Metamorphism: Alteration of Rocks by Temperature and Pressure

Metamorphism: Alteration of Rocks by Temperature and Pressure CHAPTER 6 Metamorphism: Alteration of Rocks by Temperature and Pressure Chapter Summary Metamorphism is the alteration in the solid state of preexisting rocks, including older metamorphic rocks. Increases

More information

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS ROCK DEFORMATION Tectonic forces exert different types of stress on rocks in different geologic environments. STRESS The first, called confining stress

More information

Crustal Deformation Earth - Chapter Pearson Education, Inc.

Crustal Deformation Earth - Chapter Pearson Education, Inc. Crustal Deformation Earth - Chapter 10 Structural Geology Structural geologists study the architecture and processes responsible for deformation of Earth s crust. A working knowledge of rock structures

More information

Lecture Outline Friday March 2 thru Wednesday March 7, 2018

Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Questions? Lecture Exam Friday March 9, 2018 Same time, Same room Bring Pencils and WSU ID 50 question Multiple Choice, Computer Graded Interlude

More information

CRUSTAL DEFORMATION. Chapter 10

CRUSTAL DEFORMATION. Chapter 10 CRUSTAL DEFORMATION and dgeologic Structures t Chapter 10 Deformation Df Deformation involves: Stress the amount of force applied to a given area. Types of Stress: Confining Stress stress applied equally

More information

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress Geologic Structures Changes in the shape and/or orientation of rocks in response to applied stress Figure 15.19 Can be as big as a breadbox Or much bigger than a breadbox Three basic types Fractures >>>

More information

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar Fold: A fold is a bend or wrinkle of rock layers or foliation; folds form as a sequence of ductile deformation. Folding is the processes by which crustal forces deform an area of crust so that layers of

More information

Structural Geology and Geology Maps Lab

Structural Geology and Geology Maps Lab Structural Geology and Geology Maps Lab Mesa College Geology 101 Lab Ray Rector: Instructor Structural Geology Lab Pre-Lab Resources Pre-Lab Internet Links 1) Fundamentals of Structural Geology 2) Visualizing

More information

What Causes Rock to Deform?

What Causes Rock to Deform? Crustal Deformation Earth, Chapter 10 Chapter 10 Crustal Deformation What Causes Rock to Deform? Deformation is a general term that refers to all changes in the shape or position of a rock body in response

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting. Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover

More information

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection?

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection? Chapter 16 Mountains and Plate Tectonics what s the connection? Mountain Building Most crustal deformation occurs along plate margins. S.2 Active Margin Passive Margin Mountain Building Factors Affecting

More information

Exploring Earth s Interior

Exploring Earth s Interior CHAPTER 14 Exploring Earth s Interior 154 Chapter Summary Seismic waves reveal that the Earth has a concentrically zoned internal structure. The silicate-rich crust lies on a denser mantle consisting of

More information

How mountains are made. We will talk about valleys (erosion and weathering later)

How mountains are made. We will talk about valleys (erosion and weathering later) How mountains are made We will talk about valleys (erosion and weathering later) http://www.ilike2learn.com/ilike2learn/mountainmaps/mountainranges.html Continent-continent plate convergence Less dense,

More information

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS This set of labs will focus on the structures that result from deformation in earth s crust, namely folds and faults. By the end of these labs you should be able

More information

11.1 Rock Deformation

11.1 Rock Deformation Tarbuck Lutgens Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

Part I. PRELAB SECTION To be completed before labs starts:

Part I. PRELAB SECTION To be completed before labs starts: Student Name: Physical Geology 101 Laboratory #13 Structural Geology II Drawing and Analyzing Folds and Faults Grade: Introduction & Purpose: Structural geology is the study of how geologic rock units

More information

Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting

Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting Crustal Deformation AKA Structural geology (adapted from Brunkel, 2012) Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting How Rocks Deform: 4 Controls

More information

Chapter 10: Deformation and Mountain Building. Fig. 10.1

Chapter 10: Deformation and Mountain Building. Fig. 10.1 Chapter 10: Deformation and Mountain Building Fig. 10.1 OBJECTIVES Describe the processes of rock deformation and compare and contrast ductile and brittle behavior in rocks. Explain how strike and dip

More information

Instructor s Manual Chapter 10. Deformation, Mountain Building, and the Continents

Instructor s Manual Chapter 10. Deformation, Mountain Building, and the Continents Chapter 10 Table of Contents Chapter Outline Learning Outcomes Chapter Summary Lecture Suggestions Enrichment Topics Common Misconceptions Consider This Key Terms Internet Sites, Videos, Software, and

More information

Landscape Development

Landscape Development CHAPTER 22 Landscape Development Chapter Summary Landscapes are described in terms of their topography: elevation, the altitude of the surface of the Earth above sea level; relief, the difference between

More information

How to Build a Mountain and other Geologic Structures. But first a short review

How to Build a Mountain and other Geologic Structures. But first a short review How to Build a Mountain and other Geologic Structures But first a short review Where do we see deep earthquakes? What is happening there? What can happen at a plate boundary? 1. Plates can move apart

More information

How to Build a Mountain and other Geologic Structures. But first, questions

How to Build a Mountain and other Geologic Structures. But first, questions How to Build a Mountain and other Geologic Structures But first, questions Questions your students might ask How were Montana s mountains formed? How old are the mountains? What are the different ways

More information

Faults, folds and mountain building

Faults, folds and mountain building Faults, folds and mountain building Mountain belts Deformation Orogens (Oro = Greek all changes for mountain, in size, shape, genesis orientation, = Greek for or formation) position of a rock mass Structural

More information

Unit 4 Lesson 7 Mountain Building

Unit 4 Lesson 7 Mountain Building Indiana Standards 7.2.4 Explain how convection currents in the mantle cause lithospheric plates to move causing fast changes like earthquakes and volcanic eruptions, and slow changes like creation of mountains

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Deformation of the Crust

Deformation of the Crust Deformation of the Crust Review Choose the best response. Write the letter of that choice in the space provided. 1. The state of balance between the thickness of the crust and the depth at which it rides

More information

Mountains are then built by deforming crust: Deformation & Mountain Building. Mountains form where stresses are high!

Mountains are then built by deforming crust: Deformation & Mountain Building. Mountains form where stresses are high! Deformation & Mountain Building Where are mountains located? Deformation and Folding Mountain building Mountains form where stresses are high! Mountains form at all three types of plate boundaries where

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

Crustal Deformation. (Building Earth s Surface, Part 1) Science 330 Summer Mapping geologic structures

Crustal Deformation. (Building Earth s Surface, Part 1) Science 330 Summer Mapping geologic structures Crustal Deformation (Building Earth s Surface, Part 1) Science 330 Summer 2005 Mapping geologic structures When conducting a study of a region, a geologist identifies and describes the dominant rock structures

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

Mountains and Mountain Building: Chapter 11

Mountains and Mountain Building: Chapter 11 Mountains and Mountain Building: Chapter 11 Objectives: 1)Explain how some of Earth s major mountain belts formed 2) Compare and contrast active and passive continental margins 3) Explain how compression,

More information

You must take the exam in the lecture section for which you are registered. Any exceptions must be cleared with the instructor in advance.

You must take the exam in the lecture section for which you are registered. Any exceptions must be cleared with the instructor in advance. Geo 101, Fall 2000 Review Questions for Final Exam GEOLOGIC TIME AND FOLDING AND FAULTING THE FINAL EXAM FOR MWF CLASS WILL BE TUESDAY 1400 THE FINAL EXAM FOR TR CLASS WILL BE FRIDAY 930 These questions

More information

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B GEOLOGY 12 KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B CHAPTER 12 Isostacy and Structural Geology 1. Using the terms below, label the following diagrams and

More information

Lab 6: Plate tectonics, structural geology and geologic maps

Lab 6: Plate tectonics, structural geology and geologic maps Geology 103 Name(s): Lab 6: Plate tectonics, structural geology and geologic maps Objective: To show the effects of plate tectonics on a large-scale set of rocks and to reconstruct the geological history

More information

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information.

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information. P a g e 1 Name A Fault Model Purpose: To explore the types of faults and how they affect the geosphere Background Information: A fault is an area of stress in the earth where broken rocks slide past each

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

Geomorphology Final Exam Study Guide

Geomorphology Final Exam Study Guide Geomorphology Final Exam Study Guide Geologic Structures STRUCTURAL GEOLOGY concerned with shapes, arrangement, interrelationships of bedrock units & endogenic (within) forces that cause them. Tectonic

More information

GEOLOGIC MAPS PART II

GEOLOGIC MAPS PART II EARTH AND ENVIRONMENT THROUGH TIME LABORATORY - EES 1005 LABORATORY FIVE GEOLOGIC MAPS PART II Introduction Geologic maps of orogenic belts are much more complex than maps of the stable interior. Just

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

Unit 4 Lesson 3 Mountain Building. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 3 Mountain Building. Copyright Houghton Mifflin Harcourt Publishing Company Stressed Out How can tectonic plate motion cause deformation? The movement of tectonic plates causes stress on rock structures. Stress is the amount of force per unit area that is placed on an object.

More information

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms.

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Chapter 10 Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms. Reading Strategy Previewing Before you read the section,

More information

Chapter. Mountain Building

Chapter. Mountain Building Chapter Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock type, and

More information

Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea:

Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea: Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # A. Viscosity Group # B. Dissolved Gases Group # II. Volcanic Material

More information

Winds and Deserts CHAPTER 19. Chapter Summary

Winds and Deserts CHAPTER 19. Chapter Summary CHAPTER 19 Winds and Deserts Chapter Summary Deserts are regions where evaporation exceeds precipitation. Desert regions on Earth are the result of: global air circulation patterns which generate a relatively

More information

Forces in Earth s Crust

Forces in Earth s Crust Forces in Earth s Crust This section explains how stresses in Earth s crust cause breaks, or faults, in the crust. The section also explains how faults and folds in Earth s crust form mountains. Use Target

More information

Geology of Landscapes Chapter 6 (Building Earth s Surface Faulting and Folding)

Geology of Landscapes Chapter 6 (Building Earth s Surface Faulting and Folding) Geology of Landscapes Chapter 6 (Building Earth s Surface Faulting and Folding) Process of _ that the earth s Stress and Strain Any solid material responds to a force in a way that depends on: pressure

More information

Learning Objectives (LO) What we ll learn today:!

Learning Objectives (LO) What we ll learn today:! Learning Objectives (LO) Lecture 13: Mountain Building Read: Chapter 10 Homework #11 due Tuesday 12pm What we ll learn today:! 1. Define the types of stress that are present in the crust! 2. Define the

More information

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis)

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis) Geology 101 Staple this part to part one of lab 6 and turn in Lab 6, part two: Structural geology (analysis) Recall that the objective of this lab is to describe the geologic structures of Cougar Mountain

More information

Theme 7. Metamorphic rocks. Distinguishing rock types

Theme 7. Metamorphic rocks. Distinguishing rock types Theme 7. Metamorphic rocks. Distinguishing rock types 7.1. Metamorphic rocks formation 7.2. Classification of metamorphic rocks 7.3. Distinguishing rock types 7.1. Metamorphic rocks formation 7.1. Metamorphic

More information

Lecture Outlines PowerPoint. Chapter 10 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 10 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 10 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Quiz Seven (2:00 to 2:02 PM)

Quiz Seven (2:00 to 2:02 PM) Quiz Seven (2:00 to 2:02 PM) UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 22: Agents of Metamorphism Instructor: Dr. Douglas W. Haywick Last Time Rock Deformation A) Confining pressure

More information

6.1 Geological Stresses

6.1 Geological Stresses www.ck12.org Chapter 6. Geological Activity from Plate Tectonics Processes 6.1 Geological Stresses Define the types of geological stress and describe their affect on various types of rock under a range

More information

Plate Tectonics - Demonstration

Plate Tectonics - Demonstration Name: Reference: Prof. Larry Braile - Educational Resources Copyright 2000. L. Braile. Permission granted for reproduction for non-commercial uses. http://web.ics.purdue.edu/~braile/indexlinks/educ.htm

More information

Plate Tectonics. entirely rock both and rock

Plate Tectonics. entirely rock both and rock Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,

More information

Chapter Review USING KEY TERMS. asthenosphere uplift continental drift. known as. tectonic plates move. object. UNDERSTANDING KEY IDEAS

Chapter Review USING KEY TERMS. asthenosphere uplift continental drift. known as. tectonic plates move. object. UNDERSTANDING KEY IDEAS Skills Worksheet Chapter Review USING KEY TERMS 1. Use the following terms in the same sentence: crust, mantle, and core. Complete each of the following sentences by choosing the correct term from the

More information

Shape Earth. Plate Boundaries. Building. Building

Shape Earth. Plate Boundaries. Building. Building Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Lesson 4 Chapter Wrap-Up Forces That Shape Earth Landforms at Plate Boundaries Mountain Building Continent Building How is Earth s surface shaped by plate

More information

PHYSICAL GEOLOGY Geology 110 Spring Semester, 2018 Syllabus

PHYSICAL GEOLOGY Geology 110 Spring Semester, 2018 Syllabus James Madison University Dept of Geology & Environmental Science PHYSICAL GEOLOGY Geology 110 Spring Semester, 2018 Syllabus Instructor: Dr. L. Scott Eaton Office: Memorial Hall 7305E E-mail: eatonls@jmu.edu

More information

Forces in Earth s Crust

Forces in Earth s Crust Forces in Earth s Crust (pages 180 186) Types of Stress (page 181) Key Concept: Tension, compression, and shearing work over millions of years to change the shape and volume of rock. When Earth s plates

More information

Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface?

Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface? Boundaries, Stresses, and Faults OH MY! How do geologic events change and shape Earth s surface? Remember The Lithosphere is made of The CRUST + The Upper Rigid Mantle Plates may be called by different

More information

Section 3 Deforming Earth s Crust

Section 3 Deforming Earth s Crust Section 3 Deforming Earth s Crust Key Concept Tectonic plate motions deform Earth s crust. Deformation causes rock layers to bend and break and causes mountains to form. What You Will Learn Stress is placed

More information

Using An Introduction to Structural Methods - An Interactive CD-ROM - In and Out of the Classroom

Using An Introduction to Structural Methods - An Interactive CD-ROM - In and Out of the Classroom Using An to Structural Methods - An Interactive CD-ROM - In and Out of the Classroom Tekla A. Harms, Amherst College taharms@amherst.edu H. Robert Burger, Smith College rburger@email.smith.edu TYPE OF

More information

GCE AS/A level 1211/01 GEOLOGY GL1 Foundation Unit

GCE AS/A level 1211/01 GEOLOGY GL1 Foundation Unit Surname Centre Number Candidate Number Other Names 2 GCE AS/A level 1211/01 GEOLOGY GL1 Foundation Unit S15-1211-01 A.M. MONDAY, 11 May 2015 1 hour For s use Question Maximum Mark 1. 15 2. 14 Mark Awarded

More information

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials I. Properties of Earth Materials GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps Name When rocks are subjected to differential stress the resulting build-up in strain can

More information

December 21, Chapter 11 mountain building E.notebook. Feb 19 8:19 AM. Feb 19 9:28 AM

December 21, Chapter 11 mountain building E.notebook. Feb 19 8:19 AM. Feb 19 9:28 AM Mountains form along convergent plate boundaries. Typically (usually) if you look at a mountain range, you know that it is at a plate boundary (active continental margin) or has been some time in the past

More information

The University of Jordan. Accreditation & Quality Assurance Center. Course Name: Structural Geology COURSE Syllabus

The University of Jordan. Accreditation & Quality Assurance Center. Course Name: Structural Geology COURSE Syllabus The University of Jordan Accreditation & Quality Assurance Center COURSE Syllabus Course Name: Structural Geology 0305341 1 Course title Structural Geology 2 Course number 0305341 3 Credit hours (theory,

More information

Earth s Changing Surface

Earth s Changing Surface Earth s Changing Surface Tectonics What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or

More information

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC Crustal Deformation Reading: Chapter 10 Pages 283-294 FINAL EXAM 8 to 10 AM, THURSDAY DEC. 6 HERE: Natural Science 101 BRING A SCAN TRON TURN IN YOUR REVIEW QUESTIONS BEFORE THE TEST, PICK UP WHEN YOU

More information

Convergent plate boundary.

Convergent plate boundary. Crustal Deformation Convergent plate boundary http://my.execpc.com/~acmelasr/mountains/geogramsnf.html Plate Tectonic Settings and Magma Where plates CONVERGE, water is driven off the subducting plate,

More information

1 Forces in Earth s Crust

1 Forces in Earth s Crust Section 1 Forces in Earth s Crust 1 Forces in Earth s Crust Objectives After this lesson, students will be able to F.2.1.1 explain how stress in the crust changes Earth s surface F.2.1.2 describe where

More information

GEOL 321 Structural Geology and Tectonics

GEOL 321 Structural Geology and Tectonics GEOL 321 Structural Geology and Tectonics Geology 321 Structure and Tectonics will be given in Spring 2017. The course provides a general coverage of the structures produced by brittle and ductile rock

More information

1. classic definition = study of deformed rocks in the upper crust

1. classic definition = study of deformed rocks in the upper crust Structural Geology I. Introduction 1. classic definition = study of deformed rocks in the upper crust deformed includes translation, rotation, and strain (change of shape) All rocks are deformed in some

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Crustal Deformation and Mountain Building Chapter 17 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Jennifer

More information

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault.

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault. Strike-Slip Faults! Fault motion is parallel to the strike of the fault.! Usually vertical, no hanging-wall/footwall blocks.! Classified by the relative sense of motion. " Right lateral opposite block

More information

Answer sheet for question 1 Answer question 1 as soon as the sample arrives at your desk.

Answer sheet for question 1 Answer question 1 as soon as the sample arrives at your desk. EAS 233 Geologic structures. Final test. April 2012. 3 hours. Answer question 1 and 2 and three other questions. If you start more than the required number of questions, clearly delete the answers you

More information

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle?

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Forces That Shape Earth How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Plate Motion Mountain ranges are produced by plate tectonics. The theory of plate

More information

Depth Study Module 2

Depth Study Module 2 Year 11 Earth and Environmental Science Depth Study Module 2 Making and using Scientific Models Content Outcomes of Module Two Inquiry question: What occurs at plate boundaries? Students: Use geological

More information

Paper models in geography teaching Author(s) Merrick, Brian Source Teaching and Learning, 12(1),58-67 Published by Institute of Education (Singapore)

Paper models in geography teaching Author(s) Merrick, Brian Source Teaching and Learning, 12(1),58-67 Published by Institute of Education (Singapore) Title Paper models in geography teaching Author(s) Merrick, Brian Source Teaching and Learning, 12(1),58-67 Published by Institute of Education (Singapore) This document may be used for private study or

More information

Lecture # 6. Geological Structures

Lecture # 6. Geological Structures 1 Lecture # 6 Geological Structures ( Folds, Faults and Joints) Instructor: Dr. Attaullah Shah Department of Civil Engineering Swedish College of Engineering and Technology-Wah Cantt. 2 The wavy undulations

More information

ANNOUNCEMENTS. Neighbor MEET & GREET. Turn to Neighbor: What is the difference between accretionary wedges and terranes?

ANNOUNCEMENTS. Neighbor MEET & GREET. Turn to Neighbor: What is the difference between accretionary wedges and terranes? ANNOUNCEMENTS THIS WEEK Thursday class: Please bring scissors! NEXT WEEK Wed CLASS: Bring a mechanical compass if have one. Neighbor MEET & GREET 1. Each person take out a sheet of paper and write LEGIBLY

More information

Dynamic analysis. 1. Force and stress

Dynamic analysis. 1. Force and stress Dynamic analysis 1. Force and stress Dynamics is the part of structural geology that involves energy, force, stress, and strength. It's very important to distinguish dynamic concepts from kinematic ones.

More information

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA A map that shows Earth s Topographic Map surface topography, which is Earth s shape and features Contour

More information

Name Student ID Exam 2c GEOL 1113 Fall 2009

Name Student ID Exam 2c GEOL 1113 Fall 2009 Name Student ID Exam 2c GEOL 1113 Fall 2009 1. When a marine geologist collects a core of undeformed ocean-floor sediment, she knows that the youngest layer is on the top of the core and the oldest is

More information

Mountains, like those shown in Figure 1, provide some of the most

Mountains, like those shown in Figure 1, provide some of the most Section 11.1 11.1 Rock Deformation 1 FOCUS Section Objectives 11.1 Identify the factors that determine the strength of a rock and how it will deform. 11.2 Explain how rocks permanently deform. 11.3 Distinguish

More information

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Geology for Engineers Rock Mechanics and Deformation of Earth Materials 89.325 Geology for Engineers Rock Mechanics and Deformation of Earth Materials Why do rocks break? Rock mechanics experiments a first order understanding. Faults and Fractures Triaxial load machine. a)

More information

Earth s Interior. Use Target Reading Skills. Exploring Inside Earth

Earth s Interior. Use Target Reading Skills. Exploring Inside Earth Plate Tectonics Name Date Class Earth s Interior This section explains how scientists learn about Earth s interior. The section also describes the layers that make up Earth and explains why Earth acts

More information

GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS

GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS GEOL104: Exploring the Planets LAB 5: PLANETARY TECTONICS OBJECTIVES: I. Understand the three basic types of tectonic interactions that can occur II. Identify tectonic interactions on other planets MATERIALS:

More information

Chapter 7 Plate Tectonics

Chapter 7 Plate Tectonics Chapter 7 Plate Tectonics Earthquakes Earthquake = vibration of the Earth produced by the rapid release of energy. Seismic Waves Focus = the place within the Earth where the rock breaks, producing an earthquake.

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

Strike & Dip. Structural Geology I: Folds & Faults 2009 Lect. 18, J. Steven Kite, West Virginia University

Strike & Dip. Structural Geology I: Folds & Faults 2009 Lect. 18, J. Steven Kite, West Virginia University 2 Apr Structural Geology I: Folds & Faults 2009 Lect. 18, J. Steven Kite, West Virginia University Steeply dipping axial plane cleavage. These folded sedimentary layers exposed near Sullivan River in southeastern

More information

2) What type of motion of the plates created the mountain range in the picture below?

2) What type of motion of the plates created the mountain range in the picture below? Name Geo 4&5 Practice 5 Target 1 2 (all of 1 plus) 3 (all of 2 plus) 4 (all of 3 plus) LE 5.7 Preparedness Does not complete formative or summative in an effortful and timely manner, is not engaged, does

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

Location and Distance on Earth (Chapter 22 part 1)

Location and Distance on Earth (Chapter 22 part 1) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Location and Distance on Earth (Chapter 22 part 1) For this assignment you will require: a calculator, protractor, and a metric ruler, and an

More information

1. occurs when the oceanic crust slides under the continental crust.

1. occurs when the oceanic crust slides under the continental crust. 1. occurs when the oceanic crust slides under the continental crust. 2. What type of stress is shown? 3. Where two plates slide past one another is called a boundary. 4. What type of stress is shown? 5.

More information

Faults. Strike-slip fault. Normal fault. Thrust fault

Faults. Strike-slip fault. Normal fault. Thrust fault Faults Strike-slip fault Normal fault Thrust fault Fault any surface or narrow zone with visible shear displacement along the zone Normal fault Strike-slip fault Reverse fault Thrust fault

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

1 Introduction. 1.1 Aims. 1.2 Rock fractures

1 Introduction. 1.1 Aims. 1.2 Rock fractures 1 Introduction 1.1 Aims Rock fractures occur in a variety of geological processes and range in size from plate boundaries at the scale of hundreds of kilometres to microcracks in crystals at the scale

More information