Liquefaction Resistance and Internal Erosion Potential of Non-Plastic Silty Sand

Size: px
Start display at page:

Download "Liquefaction Resistance and Internal Erosion Potential of Non-Plastic Silty Sand"

Transcription

1 Liquefaction Resistance and Internal Erosion Potential of Non-Plastic Silty Sand Jing-Wen CHEN 1, Wei F. LEE 2, Chun-Chi CHEN 3 1 Professor, Department of Civil Engineering, National Chen-Kung University (No.1, University Road, Tainan City 701, Taiwan) geochen@mail.ncku.edu.tw 2 Research Associate Professor, National Taiwan University of Science and Technology ( ) weilee@mail.ntust.edu.tw 3 Ph.D. Candidate, Department of Civil Engineering, National Chen-Kung University (No.1, University Road, Tainan City 701, Taiwan) n @mail.ncku.edu.tw This paper is to introduce research progress on liquefaction resistance and internal erosion features of non-plastic silty sand. A new sampling technique that applied to field allowing sensitive and high fines content silty sand material to be retrieved in sounding condition is described. Laboratory tests on the liquefaction resistance of non-plastic silty sand that emphasized on the influence of fines content percentages are conducted. The utilizing of a specially designed test device, Flexible Wall Pin Hole Test Device for the investigation of the internal erosion of non-plastic silty sand is also illustrated. It concludes that higher non-plastic fines content of silty sand would result in lower cyclic liquefaction resistance as well as higher internal erodibility. Moreover, the indicated trends would become more obvious when such non-plastic silty sand was subjected to disturbance. Results of this study is hoped that will improve the understanding of engineering behavior of non-plastic silty sand. Key Words : non-plastic silty sand, liquefaction resistance, internal erosion 1. INTRODUCTION Engineering properties of non-plastic silty sand have attracted great interest on the research to soil liquefaction and internal erosion induced ground failures. During the 1999 Chi-Chi earthquake, serious soil liquefaction damages were observed in central Taiwan including Wu-Feng, Nan-Tou, and Yuen-Lin areas. The post-earthquake study indicated that most soil liquefaction occurred in silty sand deposits with high fines content. In 2004 to 2005, several catastrophic subway construction failures occurred in Kaohsiung City, Taiwan. Results of forensic investigations indicated that piping failure of non-plastic silty sand is the dominate factor causing serious tunnel and excavation pit collapses. Moreover, the Tokyo Bay area also suffered from serious soil liquefaction damage during the 2011 Great East Japan earthquake. Preliminary reconnaissance also concluded that majority of liquefaction occurred in the reclaimed silty sand deposits. However, difficulties occurred in undisturbed sampling of sensitive non-plastic silty sand material with high fines content and high water content. Shelby tube and freezing techniques tend to cause loss of fines and disturbance during penetration and drainage processes. In an effort to investigate the engineering properties of non-plastic silty sand, authors have adopted - gel-p sampler is capable of preserving fines content and effectively reducing intrusion friction by introducing polymer gel along the sampling tube while it is penetrated into intact soil deposits. - ly introduced to acquire undisturbed soil specimens. Series of laboratory dynamic triaxial tests were then conducted to identify strength

2 properties of non- -plastic silty sand. It was found that higher non-plastic fines content of silty sand would result in lower cyclic liquefaction resistance as well as higher internal erodibility. Moreover, the indicated trends would become more obvious when such non-plastic silty sand was subjected to di ineering behavior of non-plastic silty sand. 2. GEL-PUSH SAMPLING TECHNIQUE Undisturbed sampling of high fines content silty sand faced several technical difficulties in the past. Con- content silty sand specimens because the excessive friction generated during penetration tends to cause serious disturbance to the specimens. Therefore, the Shelby tube sampling technique often results in an incomplete, poor qulity soil sample. Moreover, the ground freezing or tube freezing process those generally were used for preserving sampled would cause drifting of fines content and disturbance to sensitive micro structure during freezing and de-freezing. Serious fines content loss can occur when such freezing methodologies are used. The Gel-Push sampling technique was firstly developed to retrieve gravel material as an alternative replacing ground freezing method in Japan in The Gel-Push sampler was then introduced to Taiwan by the authors (Lee and Ishihara) in 2006 in an attempt to obtain undisturbed high fines content silty sand during the forensic investigation of a subway construction failure. It was modified to accommodate the thin wall tube inside the sampler to become a triple tube system. The newly developed sampler was designed to allow polymer lubricant to seep into the tube wall while the tube was penetrated into the soil by hydraulic pressure. Figure 1 shows the schematic drawings of the Gel-Push sampler at different stages of sampling on process. As shown in the figure, the outer tube is designed to secure the borehole and to keep the penetration rod and piston fixed in alignment during penetration. The middle tube acts as the guiding tube to push sampler into soil. As the sampling process starts, polymer gel is squeezed out from the chamber and seep into both outer side of the guiding tube and the inner side of the thin wall tube. The sampler is also designed with a cutter which is attached to the guiding tube to allow smooth penetration, and a catcher fixed at the bottom of the thin wall tube to keep soil specimen falling out during uplifting. The polymer gel only contaminates limited superficial portions of the specimen because a very small amount of polymer gel is applied. Figure 2 shows that the silty sand specimen was obtained using Gel-Push technique. 3. SITE INFORMATION The high fines content silty sand exists extensively over central to southern parts of western Taiwan. The formation of such unique geological material is a result of rapid weathering and abrading processes. Figure 3 shows the Scanning Electron Microscope (SEM) image of fines particles that obtained from various studied sites. As shown in the figure, fines particles of such silty sand material have angular to sub-angular shapes. This evidence clearly indicates that such soils have almost no plasticity. Figures 4 and 5 show the location map and soil profile information of the studied site (HH01). The studied site in located in Hsin Hwa, Tainan, Taiwan. This site was selected because the widespread soil liquefaction was observed during a magnitude 6.4 earthquake that occurred in 2010 (Figure 5). As depicted in Figure 5, a silty sand layer located between 2m to 10m below the ground surface contains high fines content ranging from 10% to more than 50%. A total of four boreholes were drilled. Gel-Push sampling was conducted in three boreholes, and conventional Shelby tube sampling was conducted in the remaining borehole for purposes of comparison. 4. LABORATORY TESTS Two laboratory tests were conducted to preliminarily investigate the engineering properties of non-plastic

3 silty sand. Cyclic triaxial tests were conducted to investigate the dynamic properties of the non-plastic silty sand. Tests were performed on both undisturbed soil samples which obtained by the Gel-Push sampling technique and bulkily remolded samples. Effect of disturbance and fine contents are two major investigated factors. (FWPH) Test Device, developed in this study was used to observe the phenomena of internal erosion for remolded non-plastic silty sand with different fines contents under various confining pressures. (1) Cyclic Triaxial Test Figure 6 shows some typical test results from cyclic triaxial tests. As shown in the figure, the Gel-Push specimen is with high cyclic resistance and produces larger yielding strain than those of remolded specimen with the same density and deviator stress. The results of all cyclic triaxial tests are shown in Figure 7, as illustrated in the figure, undisturbed soil specimens have higher cyclic strengths than those of remolded specimens with the same fines contents and the same void ratios. Under the same void ratio condition, specimen with higher fines contents tends to have smaller cyclic strength. This phenomenon becomes more noticeable for the remolded specimens. Furthermore, results of the cyclic triaxial tests on undisturbed specimens were converted into field cyclic resistance ratio by taking the cyclic stress ratios at number of cycle of 20. Field standard penetration test N-values at locations of sampling were also converted to corrected blow count, N1-60, accordingly. Comparison of the test results with semi-empirical charts proposed by Youd and Idirss (1997) is shown in Figure 8. As shown in the figure, test results are quite deviated from the proposed curves. It was found that specimens with higher non-plastic fines content result in lower cyclic liquefaction resistance. Results of the cyclic triaxial tests verify that soil liquefaction can even occur in silty sand deposits with high non-plastic fines contents. Moreover, such non-plastic silty sand deposits would have less liquefaction resistance when such deposits subjected to disturbances. Fig. 1 Schematic drawings of Gel-Push sampling technique Fig. 2 Undisturbed sensitive silty sand specimen retrieved using Gel-Push sampling technique Fig. 3 Fines particles SEM images of studied silty sand

4 Fig. 4 Location map of the studied site HH01 Fig. 5 Soil profile and photos of the studied site (HH01) (a) undisturbed specimens (b) remolded specimens Fig. 6 Typical results of cyclic triaxial tests (a) undisturbed specimens Fig. 7 Summary of cyclic triaxial tests (b) remolded specimens (2) Flexible Wall Pin Hole Test In order to investigate internal erosion properties of the non-plastic silty sand, the Flexible Wall Pin Hole Test Device, was developed by combining concepts both of the conventional Pin Hole test and of the triaxial test. the conventional Pin Hole test is limited in condition with a constant hydraulic gradient and to be conducted in a rigid wall chamber. Movever, the confining pressure is not able to adjust to simulate field conditions. FWPH test device was designed to take advantages of both the specimen preparation and pressure control functions of the triaxial test so that confining pressure and internal erosion pressure can be controlled during testing. Figure 9 shows the details of FWPH device. It was modified from regular triaxial test chamber. The loading rod was adapted to accommodate a pin with 1mm diameter and allow controlled erosion pressure

5 to flow through. The chamber and top caps of FWPH device were also modified to have spaces for the erosion pin and still with the sealing for water tight. The lower cap was designed to allow fines to be drained out with the erosion flow. The FWPH test begins with applying cell and back pressures to the specimen. After completing both saturation and consolidation, the back pressure is then increased to the internal erosion pressure and in proportions to cell pressure until large amount of fines bleeding out of the specimen or 80% of original cell pressure is reached. Critical erosion pressure, Ue,cr, is defined as the internal erosion pressure when large amount of fines are observed and bottom of the specimen starts to cave in as shown in Figure 10. For each stage of internal erosion pressure applied, pore water drained from the specimen is collected to examine the level of internal erosion. Table 1 summarizes results of FWPH tests. Test specimens were prepared with two different relative densities to account for loose and dense states with different fines contents ranging from 0% to 40%. As depicted in the table, a non-plastic silty sand at loose a state has much higher internal erosion potential than that at its dense state. Moreover, when higher confining pressures are maintained, a non-plastic silty sand has less internal erosion potential. Most importantly, the higher the fines contents of the non-plastic silty sand, the higher the internal erosion potential is clearly observed. Fig. 8 Cyclic resistance ratio versus corrected blow count for non-plastic silty sand Fig. 9 Details of the Flexible Wall Pin Hole Test Device Fig. 10 Details of the Flexible Wall Pin Hole Test Device c ' (kpa) Table 1 Summary of FWPH test results Dr Ue,cr 60 % 85 % 0 % c ' c ' 20 % c ' c ' 40 % c ' c ' 0 % c ' c ' 20 % c ' c ' 40 % c ' c ' 0 % c ' c ' 20 % c ' c ' 40 % c ' c ' F C 5. CONCLISIONS The Gel-Push technique has been proven to be a better and more reliable sampling measure for retrieving the good quality non-plastic silty sand specimens. The triple tube system and polymer gel lining appear to be able

6 to effectively reduce sampling disturbance due to the wall friction. Results of cyclic triaxial tests on non-plastic silty sand indicate that, for specimens with the same void ratios, silty sand with higher fines contents tends to have smaller cyclic strength. This phenomenon becomes much more noticeable on the remolded soil specimens. Moreover, it was found that a higher non-plastic fines content of silty sand results in lower cyclic liquefaction resistance. Such non-plastic silty sand deposits have less liquefaction resistance when subjected to disturbance. FWPH test results show that internal erosion potential of non-plastic silty sand is affected by its density and confining pressure. Non-plastic silty sand at a loose state has much higher internal erosion potential than that at its dense state. Moreover, when higher confining pressures are maintained, non-plastic silty sand has less internal erosion potential. Most of all, the higher the fines contents of the non-plastic silty sand, the higher the internal erosion potential. This paper reports the preliminary progress of research efforts in investigating engineering properties of non-plastic silty sand. It includes the application of newly developed sampling technique, cyclic triaxial tests, and FWPH tests. Results of rties of non-plastic silty sand material. More efforts should be paid to similar research to generalize and to verify the findings and to obtain more knowledge on engineering behaviors of non-plastic silty sand. REFERENCES 1) S Seed, H. B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes, Journal of the Geotechnical Engineering Division, ASCE, Vol. 105 GT2, pp ) Technical Report NCEER (1997)

LIQUEFACTION POTENTIAL OF NON-PLASTIC SILTY SAND

LIQUEFACTION POTENTIAL OF NON-PLASTIC SILTY SAND Journal of Marine Science and Technology, Vol. 22, No. 2, pp. 137-14 (214 ) DOI: 1.6119/JMST-13-117-3 137 LIQUEFACTION POTENTIAL OF NON-PLASTIC SILTY SAND Chun-Chi Chen1, Wei F. Lee2, Jing-Wen Chen1, and

More information

the north from the 196s until the mid-198s. Essentially, the soil accumulated on the seabed of Tokyo Bay was dredged, transmitted through sand pipes t

the north from the 196s until the mid-198s. Essentially, the soil accumulated on the seabed of Tokyo Bay was dredged, transmitted through sand pipes t Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (215) USE OF GEL-PUSH SAMPLING TO OBTAIN UNDISTURBED SANDY SAMPLES FOR LIQUEFACTION ANALYSES Gabriele CHIARO 1, Takashi KIYOTA

More information

LIQUEFACTION RESISTANCE OF SILTYSAND BASED ON LABORATORY UNDISTURBED SAMPLE AND CPT RESULTS

LIQUEFACTION RESISTANCE OF SILTYSAND BASED ON LABORATORY UNDISTURBED SAMPLE AND CPT RESULTS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 75 LIQUEFACTION RESISTANCE OF SILTYSAND BASED ON LABORATORY UNDISTURBED SAMPLE AND CPT RESULTS Mehdi ESNA-ASHARI,

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3. Implementation Boreholes 1. Auger Boring 2. Wash Boring 3. Rotary Drilling Boring Boreholes may be excavated by one of these methods: 4. Percussion Drilling The right choice of method depends on: Ground

More information

SITE INVESTIGATION 1

SITE INVESTIGATION 1 SITE INVESTIGATION 1 Definition The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally referred to as site investigation.

More information

EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING

EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1506 EFFECT OF SILT CONTENT ON THE UNDRAINED ANISOTROPIC BEHAVIOUR OF SAND IN CYCLIC LOADING Hadi BAHADORI

More information

Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions

Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions Evaluation of the Liquefaction Potential by In-situ Tests and Laboratory Experiments In Complex Geological Conditions V. Sesov, K. Edip & J. Cvetanovska University Ss. Cyril and Methodius, Institute of

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS

SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS SOME OBSERVATIONS RELATED TO LIQUEFACTION SUSCEPTIBILITY OF SILTY SOILS Upul ATUKORALA 1, Dharma WIJEWICKREME 2 And Norman MCCAMMON 3 SUMMARY The liquefaction susceptibility of silty soils has not received

More information

EFFECT OF LOADING FREQUENCY ON CYCLIC BEHAVIOUR OF SOILS

EFFECT OF LOADING FREQUENCY ON CYCLIC BEHAVIOUR OF SOILS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 1315 EFFECT OF LOADING FREQUENCY ON CYCLIC BEHAVIOUR OF SOILS L.Govindaraju 1 and T.G.Sitharam 2 ABSTRACT Very

More information

Chapter 12 Subsurface Exploration

Chapter 12 Subsurface Exploration Page 12 1 Chapter 12 Subsurface Exploration 1. The process of identifying the layers of deposits that underlie a proposed structure and their physical characteristics is generally referred to as (a) subsurface

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

LIQUEFACTION INDUCED GROUND FAILURES CAUSED BY STRONG GROUND MOTION

LIQUEFACTION INDUCED GROUND FAILURES CAUSED BY STRONG GROUND MOTION Paper No. ASOLE LIQUEFACTION INDUCED GROUND FAILURES CAUSED BY STRONG GROUND MOTION Wei F. LEE 1, Kenji ISHIHARA 2, Cheng Hsin CHEN 3, B. L. Chu 4 ABSTRACT During the 1999 Chi-Chi earthquake, a site named

More information

Cyclic Behavior of Sand and Cyclic Triaxial Tests. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University

Cyclic Behavior of Sand and Cyclic Triaxial Tests. Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Cyclic Behavior of Sand and Cyclic Triaxial Tests Hsin-yu Shan Dept. of Civil Engineering National Chiao Tung University Causes of Pore Pressure Buildup due to Cyclic Stress Application Stress are due

More information

Investigation of Liquefaction Behaviour for Cohesive Soils

Investigation of Liquefaction Behaviour for Cohesive Soils Proceedings of the 3 rd World Congress on Civil, Structural, and Environmental Engineering (CSEE 18) Budapest, Hungary April 8-10, 2018 Paper No. ICGRE 134 DOI: 10.11159/icgre18.134 Investigation of Liquefaction

More information

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods ENCE 3610 Soil Mechanics Site Exploration and Characterisation Field Exploration Methods Geotechnical Involvement in Project Phases Planning Design Alternatives Preparation of Detailed Plans Final Design

More information

Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil

Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Effect of Plastic Fines on Liquefaction Characteristics of Gravelly Soil W. Qi 1, C. Guoxing

More information

Evaluation of liquefaction resistance of non-plastic silt from mini-cone calibration chamber tests

Evaluation of liquefaction resistance of non-plastic silt from mini-cone calibration chamber tests Evaluation of liquefaction resistance of non-plastic silt from mini-cone calibration chamber tests C.D.P. Baxter, M.S. Ravi Sharma, N.V. Seher, & M. Jander University of Rhode Island, Narragansett, USA

More information

UNDRAINED FLOW CHARACTERISTICS OF PARTIALLY SATURATED SANDY SOILS IN TRIAXIAL TESTS

UNDRAINED FLOW CHARACTERISTICS OF PARTIALLY SATURATED SANDY SOILS IN TRIAXIAL TESTS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1239 UNDRAINED FLOW CHARACTERISTICS OF PARTIALLY SATURATED SANDY SOILS IN TRIAXIAL TESTS Yoshimichi TSUKAMOTO

More information

walls, it was attempted to reduce the friction, while the friction angle mobilized at the interface in the vertical direction was about degrees under

walls, it was attempted to reduce the friction, while the friction angle mobilized at the interface in the vertical direction was about degrees under Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 8 (5) ANALYSIS OF RE-LIQUEFACTION PROPERTIES BASED ON ENERGY APPROACH Seto WAHYUDI and Junichi KOSEKI ABSTRACT: Analysis of re-liquefaction

More information

EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS

EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS VOL., NO., AUGUST 7 ISSN 119- -7 Asian Research Publishing Network (ARPN). All rights reserved. EARTHQUAKE-INDUCED SETTLEMENTS IN SATURATED SANDY SOILS C. Y. Lee Department of Civil Engineering, College

More information

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens)

YOUR HW MUST BE STAPLED YOU MUST USE A PENCIL (no pens) Spring 2008 CIVE 462 HOMEWORK #1 1. Print out the syllabus. Read it. Write the grade percentages in the first page of your notes. 2. Go back to your 301 notes, internet, etc. and find the engineering definition

More information

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS

EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3291 EARTHQUAKE-INDUCED SETTLEMENT AS A RESULT OF DENSIFICATION, MEASURED IN LABORATORY TESTS Constantine

More information

EFFECT OF CLAY PARTICLE CONTENT ON LIQUEFACTION OF SOIL

EFFECT OF CLAY PARTICLE CONTENT ON LIQUEFACTION OF SOIL 56 EFFECT OF CLAY PARTICLE CONTENT ON LIQUEFACTION OF SOIL RenWang LIANG, XiaoHong BAI 2 And JiaChen WANG 3 SUMMARY This paper presents the results of experimental research and analysis of liquefaction

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

The attitude he maintains in his relation to the engineer is very well stated in his own words:

The attitude he maintains in his relation to the engineer is very well stated in his own words: Su bsurface Soil Exploration, 53: 139 Foundation Engineering Geotechnical companies that have a history of experience in a given region usually have extensive boring logs and maps telling where the borings

More information

Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas

Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas Comparison of different methods for evaluating the liquefaction potential of sandy soils in Bandar Abbas M. Mosaffa¹ & M. Rafiee² 1.Geotechnical M.S. student Hormozgan University, Bandar Abbas, Iran(Email:Amestris@gmail.com).Geotechnical

More information

LIQUEFACTION STRENGTH OF COARSE WELL GRADED FILL UNDER TORSIONAL SIMPLE SHEAR

LIQUEFACTION STRENGTH OF COARSE WELL GRADED FILL UNDER TORSIONAL SIMPLE SHEAR 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1518 LIQUEFACTION STRENGTH OF COARSE WELL GRADED FILL UNDER TORSIONAL SIMPLE SHEAR Yasuo TANAKA 1, Takashi

More information

Some Observations on the Effect of Initial Static Shear Stress on Cyclic Response of Natural Silt from Lower Mainland of British Columbia

Some Observations on the Effect of Initial Static Shear Stress on Cyclic Response of Natural Silt from Lower Mainland of British Columbia 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Some Observations on the Effect of Initial Static Shear Stress on Cyclic Response of Natural

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

Liquefaction Potential Variations Influenced by Building Constructions

Liquefaction Potential Variations Influenced by Building Constructions Earth Science Research; Vol. 1, No. 2; 2012 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Liquefaction Potential Variations Influenced by Building Constructions

More information

Module 6 LIQUEFACTION (Lectures 27 to 32)

Module 6 LIQUEFACTION (Lectures 27 to 32) Module 6 LIQUEFACTION (Lectures 27 to 32) Lecture 31 Topics 6.6 EFFECTS OF LIQUEFACTION 6.6.1 Alteration of Ground Motion 6.6.2 Development of Sand Boils 6.6.3 Settlement 6.6.4 Settlement of Dry Sands

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

POST CYCLIC SHEAR STRENGTH OF FINE GRAINED SOILS IN ADAPAZARI TURKEY DURING 1999 KOCAELI EARTHQUAKE

POST CYCLIC SHEAR STRENGTH OF FINE GRAINED SOILS IN ADAPAZARI TURKEY DURING 1999 KOCAELI EARTHQUAKE POST CYCLIC SHEAR STRENGTH OF FINE GRAINED SOILS IN ADAPAZARI TURKEY DURING 1999 KOCAELI EARTHQUAKE A.Erken 1, Z.Kaya 2 and A.Şener 3 1 Professor Istanbul Technical University, Civil Engineering Faculty,

More information

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm

Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 25 mm 444 Chapter : Shear Strength of Soil Example. Following are the results of four drained direct shear tests on an overconsolidated clay: Diameter of specimen 50 mm Height of specimen 5 mm Normal Shear force

More information

POSSIBILITY OF UNDRAINED FLOW IN SUCTION-DEVELOPED UNSATURATED SANDY SOILS IN TRIAXIAL TESTS

POSSIBILITY OF UNDRAINED FLOW IN SUCTION-DEVELOPED UNSATURATED SANDY SOILS IN TRIAXIAL TESTS 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1289 POSSIBILITY OF UNDRAINED FLOW IN SUCTION-DEVELOPED UNSATURATED SANDY SOILS IN TRIAXIAL TESTS Toshiyuki

More information

Gotechnical Investigations and Sampling

Gotechnical Investigations and Sampling Gotechnical Investigations and Sampling Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Investigations for Structural Engineering 12 14 October, 2017 1 Purpose of

More information

A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas City

A comparison between two field methods of evaluation of liquefaction potential in the Bandar Abbas City American Journal of Civil Engineering 2015; 3(2-2): 1-5 Published online January 16, 2015 (http://www.sciencepublishinggroup.com/j/ajce) doi: 10.11648/j.ajce.s.2015030202.11 ISSN: 2330-8729 (Print); ISSN:

More information

Soils. Technical English - I 10 th week

Soils. Technical English - I 10 th week Technical English - I 10 th week Soils Soil Mechanics is defined as the branch of engineering science which enables an engineer to know theoretically or experimentally the behavior of soil under the action

More information

LIQUEFACTION OF SILT-CLAY MIXTURES

LIQUEFACTION OF SILT-CLAY MIXTURES LIQUEFACTION OF SILT-CLAY MIXTURES Tianqiang GUO 1 And Shamsher PRAKASH 2 SUMMARY No guidelines are available for evaluating the liquefaction potential of silt-clay mixtures during an earthquake, based

More information

CPT-BASED SIMPLIFIED LIQUEFACTION ASSESSMENT BY USING FUZZY-NEURAL NETWORK

CPT-BASED SIMPLIFIED LIQUEFACTION ASSESSMENT BY USING FUZZY-NEURAL NETWORK 326 Journal of Marine Science and Technology, Vol. 17, No. 4, pp. 326-331 (2009) CPT-BASED SIMPLIFIED LIQUEFACTION ASSESSMENT BY USING FUZZY-NEURAL NETWORK Shuh-Gi Chern* and Ching-Yinn Lee* Key words:

More information

Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands

Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands Effect of Frozen-thawed Procedures on Shear Strength and Shear Wave Velocity of Sands JongChan Kim 1), *Sang Yeob Kim 1), Shinhyun Jeong 2), Changho Lee 3) and Jong-Sub Lee 4) 1), 4) School of Civil, Environmental

More information

LOESS LIQUEFACTION: FROM THE POINT VIEW OF MICROSTURCTURE

LOESS LIQUEFACTION: FROM THE POINT VIEW OF MICROSTURCTURE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1153 LOESS LIQUEFACTION: FROM THE POINT VIEW OF MICROSTURCTURE Zhongxia YUAN 1, Lanmin WANG 2 ABSTRACT The

More information

RELIQUEFACTION POTENTIAL OF CEMENT-TREATED SANDY SOILS

RELIQUEFACTION POTENTIAL OF CEMENT-TREATED SANDY SOILS 2 RELIQUEFACTION POTENTIAL OF CEMENT-TREATED SANDY SOILS Tetsuro YAMAMOTO, Motoyuki SUZUKI 2, Akihiko DATE, Akira MATSUO 4 And Tomoya YAMAUCHI SUMMARY It is known that the cement-treated method is useful

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS 1 2 C. Vipulanandan 1, Ph.D., M. ASCE and Omer F. Usluogullari 2 Chairman, Professor, Director of Center for Innovative Grouting Materials

More information

A COMPARISON BETWEEN IN SITU AND LABORATORY MEASUREMENTS OF PORE WATER PRESSURE GENERATION

A COMPARISON BETWEEN IN SITU AND LABORATORY MEASUREMENTS OF PORE WATER PRESSURE GENERATION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1220 A COMPARISON BETWEEN IN SITU AND LABORATORY MEASUREMENTS OF PORE WATER PRESSURE GENERATION Kenan

More information

Evaluation of Cone Penetration Resistance in Loose Silty Sand Using Calibration Chamber

Evaluation of Cone Penetration Resistance in Loose Silty Sand Using Calibration Chamber Evaluation of Cone Penetration Resistance in Loose Silty Sand Using Calibration Chamber Downloaded from ijce.iust.ac.ir at 17:07 IRST on Wednesday October 31st 2018 Mohammad Hassan Baziar 1, Reza Ziaie_Moayed

More information

CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ IN INDIA

CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ IN INDIA 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 2375 CHARACTERISTICS OF LIQUEFIED SILTY SANDS FROM MEIZOSEISMAL REGION OF SHILLONG PLATEAU, ASSAM AND BHUJ

More information

Case Study - Undisturbed Sampling, Cyclic Testing and Numerical Modelling of a Low Plasticity Silt

Case Study - Undisturbed Sampling, Cyclic Testing and Numerical Modelling of a Low Plasticity Silt 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Case Study - Undisturbed Sampling, Cyclic Testing and Numerical Modelling of a Low Plasticity

More information

EFFECTS OF SAMPLING DISTURBANCE ON DYNAMIC PROPERTIES OF SATURATED SANDS

EFFECTS OF SAMPLING DISTURBANCE ON DYNAMIC PROPERTIES OF SATURATED SANDS EFFECTS OF SAMPLING DISTURBANCE ON DYNAMIC PROPERTIES OF SATURATED SANDS Carlos Funes MEE09191 Supervisor: Akio ABE ABSTRACT Disturbance effects on dynamic properties of saturated sand were evaluated in

More information

Characterization of Liquefaction Resistance in Gravelly Soil : Large Hammer Penetration Test and Shear Wave Velocity Approach

Characterization of Liquefaction Resistance in Gravelly Soil : Large Hammer Penetration Test and Shear Wave Velocity Approach Characterization of Liquefaction Resistance in Gravelly Soil : Large Hammer Penetration Test and Shear Wave Velocity Approach Ping-Sien Lin *,1, Chi-Wen Chang 1, Wen-Jong Chang 2 1 Department of Civil

More information

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE

EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1146 EVALUATION OF STRENGTH OF SOILS AGAINST LIQUEFACTION USING PIEZO DRIVE CONE Shun-ichi Sawada 1 ABSTRACT

More information

Cyclic Triaxial Testing of Water-Pluviated Fly Ash Specimens

Cyclic Triaxial Testing of Water-Pluviated Fly Ash Specimens 2013 World of Coal Ash (WOCA) Conference - April 22-25, 2013 in Lexington, KY http://www.flyash.info/ Cyclic Triaxial Testing of Water-Pluviated Fly Ash Specimens Jeffrey S. Dingrando 1, Michael E. Kalinski

More information

EXPERIMENTAL STUDY ON RECONSOLIDATION ON RECONSOLIDATION VOLUMETRIC BEHAVIOR OF SAND-GRAVEL COMPOSITES DUE TO DYNAMIC LOADING

EXPERIMENTAL STUDY ON RECONSOLIDATION ON RECONSOLIDATION VOLUMETRIC BEHAVIOR OF SAND-GRAVEL COMPOSITES DUE TO DYNAMIC LOADING EXPERIMENTAL STUDY ON RECONSOLIDATION ON RECONSOLIDATION VOLUMETRIC BEHAVIOR OF SAND-GRAVEL COMPOSITES DUE TO DYNAMIC LOADING Xu Bin, Zou Degao and Kong Xianjing 3, Lecture, School of Civil &Hydraulic

More information

Evaluation of Pore Water Pressure Characteristics in Embankment Model.

Evaluation of Pore Water Pressure Characteristics in Embankment Model. Evaluation of Pore Water Pressure Characteristics in Embankment Model. Abdoullah Namdar and Mehdi Khodashenas Pelkoo Mysore University, Mysore, India. 76. Amirkabir University, Department of Mining Engineering,

More information

Evaluation of Undrained Shear Strength of Loose Silty Sands Using CPT Results

Evaluation of Undrained Shear Strength of Loose Silty Sands Using CPT Results Evaluation of Undrained Shear Strength of Loose Silty Sands Using CPT Results Downloaded from ijce.iust.ac.ir at 3:55 IRST on Thursday October 18th 2018 S. A. Naeini 1, R. Ziaie_Moayed 2 1 Department of

More information

AGING EFFECT ON SAND LIQUEFACTION OBSERVED DURING THE 2011 EARTHQUAKE AND BASIC LABORATORY STUDIES

AGING EFFECT ON SAND LIQUEFACTION OBSERVED DURING THE 2011 EARTHQUAKE AND BASIC LABORATORY STUDIES Proceedings of the International Symposium on Engineering Lessons Learned from the 11 Great East Japan Earthquake, March 1-, 1, Tokyo, Japan AGING EFFECT ON SAND LIQUEFACTION OBSERVED DURING THE 11 EARTHQUAKE

More information

Effect of Geotextile on the Liquefaction Behavior of Sand in Cyclic Triaxial Test

Effect of Geotextile on the Liquefaction Behavior of Sand in Cyclic Triaxial Test Scientific Cooperations Journal of Civil Engineering and Architecture, Vol. 1, Issue. 1, August-2015 31 Effect of Geotextile on the Liquefaction Behavior of Sand in Cyclic Triaxial Test Naeini, Seyed Abolhasan

More information

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida

SOIL SHEAR STRENGTH. Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida SOIL SHEAR STRENGTH Prepared by: Dr. Hetty Muhammad Azril Fauziah Kassim Norafida What is shear strength Shear strength of a soil is the maximum internal resistance to applied shearing forces Why it is

More information

Study of Sand Boiling Characteristics Along Tokyo Bay During The 2011 Tohoku-Pacific Ocean Earthquake

Study of Sand Boiling Characteristics Along Tokyo Bay During The 2011 Tohoku-Pacific Ocean Earthquake Study of Sand Boiling Characteristics Along Tokyo Bay During The 2011 Tohoku-Pacific Ocean Earthquake Keisuke Ishikawa Tokyo Denki University, Japan Susumu Yasuda Tokyo Denki University, Japan SUMMARY

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE Proceedings of the International Symposium on Engineering Lessons Learned from the 211 Great East Japan Earthquake, March 1-4, 212, Tokyo, Japan EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT

More information

Time Rate of Consolidation Settlement

Time Rate of Consolidation Settlement Time Rate of Consolidation Settlement We know how to evaluate total settlement of primary consolidation S c which will take place in a certain clay layer. However this settlement usually takes place over

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

LIQUEFACTION POTENTIAL OF SABARMATI-RIVER SAND

LIQUEFACTION POTENTIAL OF SABARMATI-RIVER SAND ISET Journal of Earthquake Technology, Paper No. 516, Vol. 48, No. 2-4, June-Dec. 2011, pp. 61 71 LIQUEFACTION POTENTIAL OF SABARMATI-RIVER SAND S.V. Dinesh*, G. Mahesh Kumar*, Muttana S. Balreddy* and

More information

Cyclic Behavior of Soils

Cyclic Behavior of Soils Cyclic Behavior of Soils Antonios Vytiniotis Cyclic Shearing of Sands Dry Sand 1 Triaxial Undrained Monotonic Shearing CIUC tests Ishihara Critical State Toyoura Sand Ishihara 2 Critical State Ishihara

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL SHEAR STRENGTH OF SOIL Necessity of studying Shear Strength of soils : Soil failure usually occurs in the form of shearing along internal surface within the soil. Shear Strength: Thus, structural strength

More information

Excess Pore Pressure Generation in Sand Under Non-Uniform Strain Amplitudes

Excess Pore Pressure Generation in Sand Under Non-Uniform Strain Amplitudes 6 th International Conference on Earthquake Geotechnical Engineering -4 November 25 Christchurch, New Zealand Excess Pore Pressure Generation in Sand Under Non-Uniform Strain Amplitudes Saizhao DU, Siau

More information

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters.

Triaxial Shear Test. o The most reliable method now available for determination of shear strength parameters. TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane Mohr-Coulomb Failure Criterion Laboratory Shear Strength Testing Direct Shear Test Triaxial Compression Test

More information

Soil Behaviour in Earthquake Geotechnics

Soil Behaviour in Earthquake Geotechnics Soil Behaviour in Earthquake Geotechnics KENJI ISHIHARA Department of Civil Engineering Science University of Tokyo This publication was supported by a generous donation from the Daido Life Foundation

More information

Laboratory Testing Total & Effective Stress Analysis

Laboratory Testing Total & Effective Stress Analysis SKAA 1713 SOIL MECHANICS Laboratory Testing Total & Effective Stress Analysis Prepared by: Dr. Hetty Mohr Coulomb failure criterion with Mohr circle of stress 2 ' 2 ' ' ' 3 ' 1 ' 3 ' 1 Cot Sin c ' ' 2

More information

10th Asian Regional Conference of IAEG (2015)

10th Asian Regional Conference of IAEG (2015) 0th Asian Regional Conference of IAEG (05) Normalized Pore Water Pressure Ratio and Post-Cyclic Settlement of Saturated Clay Subjected to Undrained Uni-Directional and Multi-Directional Cyclic Shears TRAN

More information

Consolidation Properties of NAPL Contaminated Sediments

Consolidation Properties of NAPL Contaminated Sediments Consolidation Properties of NAPL Contaminated Sediments M. B. Erten 1, C. S. El Mohtar 2, D. D. Reible 3, R. B. Gilbert 4 1 Graduate Research Assistant, University of Texas at Austin, 1 University Station

More information

CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA

CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA ISET Journal of Earthquake Technology, Paper No. 45, Vol. 41, No. 2-4, June-December 24, pp. 249-26 CYCLIC AND MONOTONIC UNDRAINED SHEAR RESPONSE OF SILTY SAND FROM BHUJ REGION IN INDIA T.G. Sitharam,

More information

Behavior of Soft Riva Clay under High Cyclic Stresses

Behavior of Soft Riva Clay under High Cyclic Stresses Behavior of Soft Riva Clay under High Cyclic Stresses Mustafa Kalafat Research Assistant, Boğaziçi University, Istanbul, Turkey; mkalafat@boun.edu.tr Canan Emrem, Ph.D., Senior Engineer, ZETAS Zemin Teknolojisi

More information

Development of high precision direct shear apparatus for liquefaction testing

Development of high precision direct shear apparatus for liquefaction testing Japanese Geotechnical Society Special Publication The 5th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering Development of high precision direct shear apparatus for liquefaction

More information

Liquefaction. Ajanta Sachan. Assistant Professor Civil Engineering IIT Gandhinagar. Why does the Liquefaction occur?

Liquefaction. Ajanta Sachan. Assistant Professor Civil Engineering IIT Gandhinagar. Why does the Liquefaction occur? Liquefaction Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar Liquefaction What is Liquefaction? Why does the Liquefaction occur? When has Liquefaction occurred in the past? Where does

More information

Theory of Shear Strength

Theory of Shear Strength MAJ 1013 ADVANCED SOIL MECHANICS Theory of Shear Strength Prepared by, Dr. Hetty 1 Strength of different materials Steel Concrete Soil Tensile strength Compressive strength Shear strength Complex behavior

More information

True Triaxial Tests and Strength Characteristics Study on Silty Sand Liang MA and Ping HU

True Triaxial Tests and Strength Characteristics Study on Silty Sand Liang MA and Ping HU 217 2 nd International Conference on Test, Measurement and Computational Method (TMCM 217) ISBN: 978-1-6595-465- True Triaxial Tests and Strength Characteristics Study on Silty Sand Liang MA and Ping HU

More information

the tests under simple shear condition (TSS), where the radial and circumferential strain increments were kept to be zero ( r = =0). In order to obtai

the tests under simple shear condition (TSS), where the radial and circumferential strain increments were kept to be zero ( r = =0). In order to obtai Institute of Industrial Science, niversity of Tokyo Bulletin of ES, No. 4 (0) STESS-DILATANCY CHAACTEISTICS OF SAND IN DAINED CYLIC TOSIONAL SHEA TESTS Seto WAHYDI and Junichi KOSEKI ABSTACT: Stress-dilatancy

More information

A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING

A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 2006 Paper No. 038 A CASE STUDY OF LIQUEFACTION ASSESSMENT USING SWEDISH WEIGHT SOUNDING Mahdi Habibi 1, Akbar Cheshomi

More information

Cite this paper as follows:

Cite this paper as follows: Cite this paper as follows: Naughton P.J. and O Kelly B.C. 2001. An overview of the University College Dublin hollow cylinder apparatus. Proceedings of the 14th Young European Geotechnical Engineer s Conference,

More information

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading. Hatanaka and Uchida (1996); ' 20N 20 12N 20 ' 45 A lower bound for the above equation is given as; 12N 15 ' 45 Table 3. Empirical Coefficients for BS 8002 equation A Angularity 1) A (degrees) Rounded 0

More information

Cyclic strength testing of Christchurch sands with undisturbed samples

Cyclic strength testing of Christchurch sands with undisturbed samples Cyclic strength testing of Christchurch sands with undisturbed samples M.L. Taylor, M. Cubrinovski & B.A. Bradley Dept. Civil & Natural Resources Engineering, University of Canterbury, Christchurch, New

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 4 Dynamic Soil Properties Lecture - 23 Cyclic Stress Ratio, Evaluation of CRR, Correction

More information

CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING WITH SURCHARGE LOAD INDUCED CONSOLIDATION

CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING WITH SURCHARGE LOAD INDUCED CONSOLIDATION International Symposium on Geotechnical Engineering, Ground Improvement and Geosynthetics for Human Security and Environmental preservation, Bangkok, Thailand CHARACTERISTICS OF VACUUM CONSOLIDATION COMPARING

More information

The undrained cyclic strength of undisturbed and reconstituted Christchurch sands

The undrained cyclic strength of undisturbed and reconstituted Christchurch sands Taylor, M.L., Cubrinovski, M., Bradley, B.A., and Horikoshi, K. (2013) Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown The undrained cyclic strength of undisturbed and reconstituted Christchurch

More information

Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test

Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test Determination of Liquefaction Potential By Sub-Surface Exploration Using Standard Penetration Test 1 Sabih Ahmad, 2 M.Z.Khan, 3 Abdullah Anwar and 4 Syed Mohd. Ashraf Husain 1 Associate Professor and Head,

More information

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303 City of Newark - 36120 Ruschin Drive Project Draft Initial Study/Mitigated Negative Declaration Appendix C: Geologic Information FirstCarbon Solutions H:\Client (PN-JN)\4554\45540001\ISMND\45540001 36120

More information

Destructuration of soft clay during Shield TBM tunnelling and its consequences

Destructuration of soft clay during Shield TBM tunnelling and its consequences Destructuration of soft clay during Shield TBM tunnelling and its consequences Hirokazu Akagi Abstract It is very important to prevent ground settlement associated with shield TBM tunnelling in soft ground

More information

THE LIQUEFACTION POTENTIAL OF LOESS IN CHINA AND ITS PREVENTION

THE LIQUEFACTION POTENTIAL OF LOESS IN CHINA AND ITS PREVENTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3462 THE LIQUEFACTION POTENTIAL OF LOESS IN CHINA AND ITS PREVENTION Lanmin WANG 1 Yaqiang WANG 2 Jun

More information

LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY

LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY Pakistan Engineering Congress, 69th Annual Session Proceedings 219 LIQUEFACTION ASSESSMENT OF INDUS SANDS USING SHEAR WAVE VELOCITY Sohail Kibria 1, M. Javed 2, Muhammad Ali 3 ABSTRACT A host of procedures

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2011 Undrained response of mining sand with fines contents Thian S. Y, Lee C.Y Associate Professor, Department of Civil Engineering, Universiti Tenaga Nasional, Malaysia siawyin_thian@yahoo.com ABSTRACT This

More information

SIMPLIFIED METHOD IN EVALUATING LIQUEFACTION OCCURRENCE AGAINST HUGE OCEAN TRENCH EARTHQUAKE

SIMPLIFIED METHOD IN EVALUATING LIQUEFACTION OCCURRENCE AGAINST HUGE OCEAN TRENCH EARTHQUAKE October 12-17, 28, Beijing, China SIMPLIFIED METHOD IN EVALUATING LIQUEFACTION OCCURRENCE AGAINST HUGE OCEAN TRENCH EARTHQUAKE ABSTRACT : N. Yoshida 1, S. Sawada 2 and S. Nakamura 3 1 Professor, Dept.

More information

EFFECT OF VARIOUS PARAMETERS ON DYNAMIC PROPERTIES OF BABOLSAR SAND BY CYCLIC SIMPLE SHEAR DEVICE

EFFECT OF VARIOUS PARAMETERS ON DYNAMIC PROPERTIES OF BABOLSAR SAND BY CYCLIC SIMPLE SHEAR DEVICE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 27 Paper No. 274 EFFECT OF VARIOUS PARAMETERS ON DYNAMIC PROPERTIES OF BABOLSAR SAND BY CYCLIC SIMPLE SHEAR DEVICE Fardin

More information

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Mass Wasting. Revisit: Erosion, Transportation, and Deposition Mass Wasting Revisit: Erosion, Transportation, and Deposition While landslides are a normal part of erosion and surface processes, they can be very destructive to life and property! - Mass wasting: downslope

More information

EFFECT OF STORAGE CAPACITY ON VERTICAL DRAIN PERFORMANCE IN LIQUEFIABLE SAND DEPOSITS

EFFECT OF STORAGE CAPACITY ON VERTICAL DRAIN PERFORMANCE IN LIQUEFIABLE SAND DEPOSITS EFFECT OF STORAGE CAPACITY ON VERTICAL DRAIN PERFORMANCE IN LIQUEFIABLE SAND DEPOSITS Juan M. Pestana 1, M. ASCE Christopher E. Hunt 2, Student M. ASCE R. Robert Goughnour 3, M. ASCE Ann M. Kammerer 2,

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information