Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 Niigata Chuetsu and the 2011 Fukushima Hamado ri Earthquakes

Size: px
Start display at page:

Download "Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 Niigata Chuetsu and the 2011 Fukushima Hamado ri Earthquakes"

Transcription

1 Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 and the 2011 Fukushima Hamado ri Earthquakes Yuka Esashi Supervisors: Kazuki Koketsu and Yujia Guo Department of Earth and Planetary Science, University of Tokyo, Japan (Dated: August 27, 2015) Amplification effects by the Kanto basin of the 2004 and the 2011 Fukushima Hamado ri earthquakes were compared. It was found that the predominant period was longer and amplification larger for waves of the earthquake, which entered the basin from the north-western direction, compared to those of the Fukushima Hamado ri earthquake, which entered from the north-eastern direction. These differences may have been due to the steeper north-western basin edge that is more suited to produce basin-induced surface waves. Also, correspondence was seen between long-period amplification and the depth of the bottom two layers of the basin (at 900 m/s and 1 S-wave velocities), both at depths of 1 km or deeper. I. INTRODUCTION Long-period ground motions are typically defined to have periods longer than 2 or 3 seconds. They have been studied as a topic in seismology because they cause damage in tall buildings and liquid storage tanks by resonance [1]. Long-period waves are often generated by shallow earthquakes, as the main component of long-period waves tend to be surface waves. They are also generated by large earthquakes that have rupture durations of sufficient lengths. Long-period waves are attenuated less compared to short-period waves, and in addition tend to be affected more by deep ground structures since their displacements are not as reduced by depth as short period waves. 4 km, and it has been said that the predominant period is around 7 seconds or above [3]. The basin has an irregular shape with two strips stretching to the north, and another one to the north-west. Additionally, the basin slope is gentler at the north-eastern edge compared to the north-western edge. Previous research has suggested the possibility that the degree of wave amplification caused by the basin differs depending on the direction of the incoming waves [4, 5]. X Niigata Chuetsu X Fukushima Hamadōri FIG. 1. Oil tanks damaged by long-period ground motions and the resulting fire in the Tokachi-oki Earthquake of [2] Because sedimentary basins have low density, when long-period waves are generated near a basin or when they enter a basin, they are often amplified. This study investigated this amplification effect in the Kanto basin. The Kanto basin lies underneath Tokyo and the greater Kanto area in Japan (FIG. 2). The deepest parts exceed FIG. 2. Distribution map of network of K-net and KiK-net stations. The color gradient shows the bedrock depth under the Kanto basin. The epicenter locations of the two earthquakes are shown by two crosses. Based on map. Therefore, this study compared two earthquakes that occurred in different directions relative to the Kanto basin, and investigated the differences in wave amplification with respect to the basin structure. The main source of data was the K-net and KiK-net seismometer stations that are located in high density throughout Japan.

2 2 II. THE TWO EARTHQUAKES The two earthquakes chosen for this study were the Niigata Chuetsu earthquake that occurred on 2004/10/23 17:56 with M w 6.6 at a depth of 13 km, and the earthquake that occurred on 2011/04/11 17:16 with M w 6.6 at a depth of 6 km (FIG. 2). They occurred north-west and north-east of the Kanto basin respectively. They were chosen because of their similarity in magnitude, depth and distance from the Kanto basin [6]. The Niigata earthquake is said to have generated strong long-period ground motion in the Kanto basin [7], and this has been predicted for earthquakes that occur north-west of the Kanto basin in general [4]. On the other hand, the Fukushima earthquake is said to have generated less long-period ground motion [5], and this has again been predicted for earthquakes that occur northeast of the Kanto basin [4]. III. WAVEFORM COMPARISON First, waveform data were analyzed to capture the characteristics of long-period waves that were generated during each of the earthquakes. Acceleration data from multiple sets of K-net and KiK-net stations that lie in straight lines from the epicenters through the Kanto basin were taken for each of the earthquakes. The most representative sets of accelerograms were chosen for each of the two earthquakes and are shown in FIG. 3. Acceleration data are typically used to look at shortperiod components of the wave, but in this case longperiod ground motion could be seen for the Niigata earthquake, especially at SIT003 and CHB016. This shows that long-period waves were prominent in the Niigata earthquake. However, such long-period waves were not seen in the Fukushima accelerograms. Next, the acceleration data were integrated to obtain velocity data, and a filter applied to include only wave components with periods of 3-10 seconds (FIG. 4). Here, the long-period waves can be seen with more clarity. Only the radial component result is shown here, however a similar result could be obtained from the transverse component. In the Niigata graph of FIG. 4 (a), long-period surface waves first seem to have been generated around IBR009 and SIT003, where the basin depth sharply increases. As the waves travel through the basin, they increase in period and also in amplitude relative to the S-waves. The group velocity of the waves seem to decrease at around CHB003, when the bottom two layers of the basin (900m/s and 1500m/s S-wave velocity layers) increase in depth once again. On the other hand, in the Fukushima graph of FIG. 4 (a), the periods of the waves were much shorter compared to Niigata. Surface waves were generated around CHB003, again where the bottom two layers of the basin increase in depth. As they traveled through the basin, the period remained short, and the amplitude did not exceed that of the S-waves. The peak velocities at each station in FIG. 4 (a) are plotted in (b), but with finer filters of 3-5, 5-7, and 7-10 seconds applied, and with peak velocities plotted separately. In the Niigata graph, waves of all three period ranges were greatly amplified in the first peak in the basin depth, around GNM010, IBR009, and SIT003. Waves in the 7-10 seconds range seem to be amplified around CHBH10 as well, again displaying correspondence with the bottom two layers of the basin. This correspondence was seen in the Fukushima graph where there was amplification around IBR006, and again at CHB028 and TKY025. However these amplifications were not as strong as the ones seen in the Niigata case. Also, the predominant period seems to have been around 3-5 seconds for the Fukushima case, but 5-7 seconds for the Niigata case. One possible cause of the differences noted above between the two earthquakes is that the basin edge is much steeper in the Niigata basin profile than it is in the Fukushima profile. It has previously been noted that sharper basin edges are more likely to generate stronger basin induced waves [8]. IV. VELOCITY RESPONSE SPECTRA A velocity response spectrum is a spectrum of maximum velocity response of a series of oscillators, each with slightly different natural frequencies, subjected to seismic waves. The distribution of mean response in the different period ranges in the spectra was mapped out in FIG. 5. The largest response occurred at the 5-7 seconds period range for the Niigata earthquake, but at 3-5 seconds for the Fukushima earthquake. This confirmed that the predominant period is longer for the Niigata earthquake than for the Fukushima earthquake. This was also confirmed by the individual response spectra at three stations at some of the deepest parts of the basin (FIG. 6). There were clear peaks around period of 7 seconds in the Niigata spectra; on the other hand, the Fukushima spectra did not have any peaks. The response was higher for the Fukushima earthquake at shorter periods of 1-5 seconds, but this was probably due to the fact that the three stations that were chosen were closer to the Fukushima epicenter than the Niigata epicenter, meaning that the shorter period waves had less distance to be attenuated over. Correspondence with the bottom two layers of the basin was again apparent in the maps of FIG. 5 as well; while the response radially decreased from the epicenter in the Fukushima case, the distribution of the high response sites mapped out the bottom two layers of the basin.

3 3 (a) Niigata Chuestu Epicenter! Through the center of the basin Niigata!Gunma!Saitama!Chiba Radial Acceleration Transverse Acceleration Vs layer 1 (b) Epicenter! Through the center of the basin Ibaraki!Chiba!Tokyo!Kanagawa Radial Acceleration Transverse Acceleration Vs layer 1 FIG. 3. Accelerograms of stations that lie in a straight line from each of the (a) and (b) Fukushima Hamado ri epicenters through the basin. Shown together are the maps of the stations, peak acceleration at each station (individual waveform graphs are normalized), and the underlying basin profile.

4 4 (a) Filter: 3 10 seconds, Radial Velocity 1 1 (b) Filter: 3-5, 5-7, 7-10 seconds, Radial Component sec 5-7 sec 7-10 sec 3-5 sec 5-7 sec 7-10 sec FIG. 4. (a) Integrated velocity data from the same stations shown in FIG. 3. Filter of 3-10 seconds period have been applied. (b) Peak velocity for each of the stations in (a), separately shown for three period ranges of 3-5,5-7, and 7-10 seconds.

5 5 3-5 sec 5-7 sec 7-10 sec h=5% Vs Layer Depth 1 FIG. 5. Mean velocity response distribution for the two earthquakes, separately shown for three period ranges of 3-5, 5-7, and 7-10 seconds. On the right are the maps showing the depth of each layer in the Kanto basin. TKY007 KNG006 h=5% CHBH10 FIG. 6. Velocity response spectra at three stations at the deepest parts of the basin (shown on the top right map) for the two earthquakes.

6 6 V. CONCLUSION AND FUTURE WORK This study showed that long-period ground motion was amplified by the Kanto basin both in the 2004 Niigata Chuetsu and the 2011 earthquakes, but the predominant period was longer and amplification larger for waves from the earthquake, which entered the Kanto basin from the north-western direction. These differences may have been due to the steeper north-western basin edge that is more suited to generating basin-induced surface waves. Correspondence was seen between long-period propagation and the bottom two layers of the basin, at and 1 S-wave velocities, at depths of 1 km or deeper. This may suggest that long-period wave are affected by deeper ground structures. Future work should investigate a greater number of earthquakes around the Kanto basin, although the number of earthquakes around the Kanto basin with sufficiently large magnitude and good seismic records is limited. Similar analysis should be done on other basins too to investigate whether the same conclusions can be generalized across multiple basins. Furthermore, a previous study has suggested that wave conversion within the Kanto basin may be one reason why wave amplification was so large in the Niigata earthquake [7], arguing that seismic waves were refracted in such a way that they interfered with one other in the center of the basin. Another study has also suggested the effect of basin shape in directing waves to certain parts of the basin through refraction [9]. It would be interesting to repeat a similar analysis on the Fukushima earthquake, since the concave north eastern basin edge may refract waves in such a way that the waves do not converge within the basin. [1] Koketsu, K., and Miyake, H. A seismological overview of long-period ground motion. Journal of Seismology Vol. 12, Issue 2, pp , April [2] Koketsu, K., Hatayama, K., Furumura, T., Ikegami, Y., and Akiyama, S. Damaging Long-period Ground Motions from the 2003 Mw8.3 Tokachi-oki, Japan Earthquake. Seismological Research Letters Vol. 76, No.1, pp , January/February [3] Yoshimoto, K., and Takemura, S. A study on the predominant period of long-period ground motions in the Kanto Basin, Japan. Earth, Planet and Space 66: [4] Denolle, M. A., H. Miyake, S. Nakagawa, N. Hirata, and G. C. Beroza Long-period seismic amplification in the Kanto Basin from the ambient seismic field. AGU Geophysical Research Letters Vol. 41, Issue 7, pp , [5] Tsuno, S., Yamanaka, H., Midorikawa, S., Yamamoto, S., Miura, H., Sakai, S., Hirata, N., Kasahara, K., Kumura, H., and Aketagawa, T. Characteristics of Long- Period Ground Motions in the Tokyo Metropolitan Area and its Vicinity, by Recording Data of the 2011 Off the Pacific Coast of Tohoku Earthquake (Mw 9.0) and the Aftershocks. JAEE Journal Vol. 12, No. 5, pp , [6] NIED F-net. [7] Furumura, T., and Hayakawa, T. Anomalous Propagation of Long-Period Ground Motions Recorded in Tokyo during the 23 October 2004 Mw 6.6 Niigata-ken Chuetsu, Japan, Earthquake. Bulletin of the Seismological Society of America Vol. 97, No. 3, pp , June [8] Graves, R. W., Pitarka, A., and Somerville, P. G. Ground- Motion Amplification in the Santa Monica Area: Effects of Shallow Basin-Edge Structure. Bulletin of the Seismological Society of America Vol. 88, No. 5, pp , October [9] Koketsu, K., and Kikuchi, M. Propagation of Seismic Ground Motion in the Kanto Basin, Japan. SCIENCE Vol. 288, pp , May 2000.

Strong ground motions from the 2011 off-the Pacific-Coast-of-Tohoku, Japan (Mw=9.0) earthquake obtained from a dense nationwide seismic network

Strong ground motions from the 2011 off-the Pacific-Coast-of-Tohoku, Japan (Mw=9.0) earthquake obtained from a dense nationwide seismic network Landslides (2011) 8:333 338 DOI 10.1007/s10346-011-0279-3 Received: 10 June 2011 Accepted: 5 July 2011 Published online: 23 July 2011 The Author(s) 2011. This article is published with open access at Springerlink.com

More information

Effects of subsurface structures of source regions on long period ground motions observed in the Tokyo Bay area, Japan

Effects of subsurface structures of source regions on long period ground motions observed in the Tokyo Bay area, Japan Uetake Earth, Planets and Space (27) 69:7 DOI.86/s4623-7-6-x LETTER Open Access Effects of subsurface structures of source regions on long period ground motions observed in the Tokyo Bay area, Japan Tomiichi

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara TUNING THE DEEP VELOCITY STRUCTURE MODEL OF THE TOKYO

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara LONG-PERIOD (3 TO 10 S) GROUND MOTIONS IN AND AROUND THE

More information

A study on the predominant period of long-period ground motions in the Kanto Basin, Japan

A study on the predominant period of long-period ground motions in the Kanto Basin, Japan Yoshimoto and Takemura Earth, Planets and Space 2014, 66:100 LETTER Open Access A study on the predominant period of long-period ground motions in the Kanto Basin, Japan Kazuo Yoshimoto * and Shunsuke

More information

Ground Motion Validation of the +3,- Kanto Earthquake Using the New Geometry of the Philippine Sea Slab and Integrated -D Velocity-Structure Model

Ground Motion Validation of the +3,- Kanto Earthquake Using the New Geometry of the Philippine Sea Slab and Integrated -D Velocity-Structure Model Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2+,**0 pp.,01,1, Ground Motion Validation of the +3,- Kanto Earthquake Using the New Geometry of the Philippine Sea Slab and Integrated -D Velocity-Structure Model

More information

Anomalous Propagation of Long-Period Ground Motions Recorded in Tokyo during the 23 October 2004 M w 6.6 Niigata-ken Chuetsu, Japan, Earthquake

Anomalous Propagation of Long-Period Ground Motions Recorded in Tokyo during the 23 October 2004 M w 6.6 Niigata-ken Chuetsu, Japan, Earthquake Bulletin of the Seismological Society of America, Vol. 97, No. 3, pp. 863 880, June 2007, doi: 10.1785/0120060166 Anomalous Propagation of Long-Period Ground Motions Recorded in Tokyo during the 23 October

More information

Long-period ground motions from a large offshore earthquake: The case of the 2004 off the Kii peninsula earthquake, Japan

Long-period ground motions from a large offshore earthquake: The case of the 2004 off the Kii peninsula earthquake, Japan LETTER Earth Planets Space, 57, 203 207, 2005 Long-period ground motions from a large offshore earthquake: The case of the 200 off the Kii peninsula earthquake, Japan Hiroe Miyake and Kazuki Koketsu Earthquake

More information

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes LETTER Earth Planets Space, 57, 197 202, 2005 Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes Nobuyuki Yamada and Tomotaka

More information

Scenario Earthquake Shaking Maps in Japan

Scenario Earthquake Shaking Maps in Japan 1 Scenario Earthquake Shaking Maps in Japan Nobuyuki Morikawa National Research Institute for Earth Science and Disaster Prevention (NIED), JAPAN Scenario Earthquake Shaking Maps (SESMs) The shaking maps

More information

SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA

SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA ABSTRACT : Hiroe Miyake 1, Kazuki Koketsu 2, and Takashi Furumura 3,2 1 Assistant

More information

THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF LONG-PERIOD GROUND MOTION IN THE KANTO PLAIN, JAPAN

THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF LONG-PERIOD GROUND MOTION IN THE KANTO PLAIN, JAPAN THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF LONG-PERIOD GROUND MOTION IN THE KANTO PLAIN, JAPAN Nobuyuki YAMADA 1 And Hiroaki YAMANAKA 2 SUMMARY This study tried to simulate the long-period earthquake

More information

Strong Ground Motion Evaluation in the Tokyo Metropolitan Area: The 1923 Kanto Earthquake and Future Subduction-Zone Earthquakes

Strong Ground Motion Evaluation in the Tokyo Metropolitan Area: The 1923 Kanto Earthquake and Future Subduction-Zone Earthquakes Strong Ground Motion Evaluation in the Tokyo Metropolitan Area: The 1923 Kanto Earthquake and Future Subduction-Zone Earthquakes Kazuki Koketsu 1) and Hiroe Miyake 2) 1) Earthquake Research Institute,

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara PERIOD-DEPENDENT SITE AMPLIFICATION FOR THE 2008 IWATE-MIYAGI

More information

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3229 THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION Ken HATAYAMA 1 SUMMARY I evaluated

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara DEEP S-WAVE VELOCITY STRUCTURES IN THE TOKYO METROPOLITAN

More information

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS Third International Symposium on the Effects of Surface Geology on Seismic Motion Grenoble, France, 30 August - 1 September 2006 Paper Number: 105 BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA-

More information

Pure and Applied Geophysics. TAKASHI FURUMURA, 1 TOSHIHIKO HAYAKAWA, 1 MISAO NAKAMURA, 2 KAZUKI KOKETSU, 1 and TOSHITAKA BABA 3. 1.

Pure and Applied Geophysics. TAKASHI FURUMURA, 1 TOSHIHIKO HAYAKAWA, 1 MISAO NAKAMURA, 2 KAZUKI KOKETSU, 1 and TOSHITAKA BABA 3. 1. Pure appl. geophys. jj (2008) 1 23 Ó Birkhäuser Verlag, Basel, 2008 DOI 10.1007/s00024-008-0318-8 Pure and Applied Geophysics Development of Long-period Ground Motions from the Nankai Trough, Japan, Earthquakes:

More information

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT Shunroku YAMAMOTO SUMMARY Waveform simulations of the 995 Hyogo-ken Nanbu earthquake were carried out to study

More information

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model T. Iwata, K. Asano & H. Sekiguchi Disaster Prevention Research Institute, Kyoto

More information

LONG-PERIOD GROUND MOTION SIMULATION OF OSAKA SEDIMENTARY BASIN FOR A HYPOTHETICAL NANKAI SUBDUCTION EARTHQUAKE

LONG-PERIOD GROUND MOTION SIMULATION OF OSAKA SEDIMENTARY BASIN FOR A HYPOTHETICAL NANKAI SUBDUCTION EARTHQUAKE JOINT CONFERENCE PROCEEDINGS 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE) March 3-5, 2010, Tokyo Institute of Technology,

More information

2011/3/11 14:46, Depth 24km, M9.0 (JMA)

2011/3/11 14:46, Depth 24km, M9.0 (JMA) Off the Pacific Coast of Tohoku earthquake, Strong Ground Motion /3/ 4:46, Depth 4km, M9. (JMA) Peak Ground Acceleration (surface) Peak Ground Velocity (surface) 45 45 4 4 PGA [gal].. 5... 5... 5....5.

More information

Borehole Strong Motion Observation along the Itoigawa-Shizuoka Tectonic Line

Borehole Strong Motion Observation along the Itoigawa-Shizuoka Tectonic Line Borehole Strong Motion Observation along the Itoigawa-Shizuoka Tectonic Line Hiroe Miyake, Minoru Sakaue & Kazuki Koketsu Earthquake Research Institute, University of Tokyo, Japan Yasuo Izutani Shinshu

More information

Preliminary Analysis for Characteristics of Strong Ground Motion from Gigantic Earthquakes

Preliminary Analysis for Characteristics of Strong Ground Motion from Gigantic Earthquakes Preliminary Analysis for Characteristics of Strong Ground Motion from Gigantic Earthquakes S. Midorikawa, H. Miura Interdisciplinary Graduate School of Science & Engineering, Tokyo Institute of Technology,

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara ESTIMATION OF SITE EFFECTS BASED ON RECORDED DATA AND

More information

Frequency-dependent Strong Motion Duration Using Total Threshold Intervals of Velocity Response Envelope

Frequency-dependent Strong Motion Duration Using Total Threshold Intervals of Velocity Response Envelope Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 015, Sydney, Australia Frequency-dependent Strong Motion Duration Using Total

More information

A Study on the Prediction of Long-Period Ground Motions from Intraslab Earthquakes

A Study on the Prediction of Long-Period Ground Motions from Intraslab Earthquakes A Study on the Prediction of Long-Period Ground Motions from Intraslab Earthquakes Yadab Prasad DHAKAL Candidate for the Doctor of Engineering Supervisor: Prof. Tsutomu SASATANI Division of Architectural

More information

LONG-PERIOD GROUND MOTION CHARACTERISTICS IN OSAKA BASIN, WESTERN JAPAN, FROM STRONG MOTION RECORDS OF LARGE EARTHQUAKES

LONG-PERIOD GROUND MOTION CHARACTERISTICS IN OSAKA BASIN, WESTERN JAPAN, FROM STRONG MOTION RECORDS OF LARGE EARTHQUAKES The 4 th World Conference on Earthquake Engineering October 2-7, 2008, Beijing, China LONG-PERIOD GROUND MOTION CHARACTERISTICS IN OSAKA BASIN, WESTERN JAPAN, FROM STRONG MOTION RECORDS OF LARGE EARTHQUAKES

More information

EVALUATION OF SITE AMPLIFICATIONS IN JAPAN USING SEISMIC MOTION RECORDS AND A GEOMORPHOLOGIC MAP

EVALUATION OF SITE AMPLIFICATIONS IN JAPAN USING SEISMIC MOTION RECORDS AND A GEOMORPHOLOGIC MAP EVALUATION OF SITE AMPLIFICATIONS IN JAPAN USING SEISMIC MOTION RECORDS AND A GEOMORPHOLOGIC MAP Masaki Sakemoto a, Yoshihisa Maruyama b, and Fumio Yamazaki c a Graduate Student, Graduate School of Engineering,

More information

LONG-PERIOD SITE RESPONSE IN THE TOKYO METROPOLITAN AREA

LONG-PERIOD SITE RESPONSE IN THE TOKYO METROPOLITAN AREA Sixth International Conference on Urban Earthquake Engineering March 3-4, 2009, Tokyo Institute of Technology, Tokyo, Japan LONG-PERIOD SITE RESPONSE IN THE TOKYO METROPOLITAN AREA Kenichi Tsuda 1), Takashi

More information

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations K. Somei & K. Miyakoshi Geo-Reserch Institute, Osaka, Japan SUMMARY: A great

More information

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes LETTER Earth Planets Space, 58, 1593 1597, 2006 Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes Kenichi Tsuda and Jamison Steidl Department of Earth Science and Institute for Crustal

More information

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA Dun Wang ( ) In collaboration with: Hitoshi Kawakatsu, Jim Mori, Kazuki Koketsu, Takuto Maeda, Hiroshi Tsuroka, Jiancang Zhunag, Lihua Fang, and Qiang Yao School of Geosciences, China University of Geosciences

More information

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes N.J. Gregor Consultant, Oakland, California, USA N.A. Abrahamson University of California, Berkeley, USA K.O. Addo BC

More information

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake K. Sato, K. Asano & T. Iwata Disaster Prevention Research Institute, Kyoto University, Japan

More information

STRONG MOTION RECORDS FROM THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE

STRONG MOTION RECORDS FROM THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE Proceedings of the International Symposium on Engineering Lessons Learned from the 211 Great East Japan Earthquake, March 1-4, 212, Tokyo, Japan STRONG MOTION RECORDS FROM THE 211 OFF THE PACIFIC COAST

More information

Scenario Earthquake Shaking Maps in Japan

Scenario Earthquake Shaking Maps in Japan Scenario Earthquake Shaking Maps in Japan Nobuyuki Morikawa National Research Institute for Earth Science and Disaster Prevention (NIED), JAPAN Example of SESMs The Kego fault zone (south-east part) The

More information

Propagation Mechanism of Long-Period Ground Motions for Offshore Earthquakes along the Nankai Trough: Effects of the Accretionary Wedge

Propagation Mechanism of Long-Period Ground Motions for Offshore Earthquakes along the Nankai Trough: Effects of the Accretionary Wedge ulletin of the Seismological Society of merica, Vol. 16, No. 3, pp. 1176 1197, June 216, doi: 1.1785/1215315 Propagation Mechanism of Long-Period Ground Motions for Offshore Earthquakes along the Nankai

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

Estimation of local site effects in Ojiya city using aftershock records of the 2004 Mid Niigata Prefecture earthquake and microtremors

Estimation of local site effects in Ojiya city using aftershock records of the 2004 Mid Niigata Prefecture earthquake and microtremors LETTER Earth Planets Space, 57, 539 544, 2005 Estimation of local site effects in Ojiya city using aftershock records of the 2004 Mid Niigata Prefecture earthquake and microtremors Hiroaki Yamanaka 1,

More information

STRONG GROUND MOTIONS DURING THE 2011 PACIFIC COAST OFF TOHOKU, JAPAN EARTHQUAKE

STRONG GROUND MOTIONS DURING THE 2011 PACIFIC COAST OFF TOHOKU, JAPAN EARTHQUAKE Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan STRONG GROUND MOTIONS DURING THE 2011 PACIFIC COAST OFF

More information

PUBLICATIONS. Geophysical Research Letters. Explaining extreme ground motion in Osaka basin during the 2011 Tohoku earthquake

PUBLICATIONS. Geophysical Research Letters. Explaining extreme ground motion in Osaka basin during the 2011 Tohoku earthquake PUBLICATIONS Geophysical Research Letters RESEARCH LETTER.02/17GL0741 Key Points: Ground motion in Osaka Basin during the Tohoku earthquake was unexpectedly large Surface-waves are locally amplified by

More information

Tokyo, Japan,

Tokyo, Japan, th International Conference on Structural Mechanics in Reactor Technology (SMiRT ) Espoo, Finland, August 9-4, 9 SMiRT -Division 4, Paper 389 Analysis of the strong motion records obtained from the 7 Niigataken

More information

CHARACTERISTICS OF STRONG GROUND MOTION FROM THE 2011 GIGANTIC TOHOKU, JAPAN EARTHQUAKE

CHARACTERISTICS OF STRONG GROUND MOTION FROM THE 2011 GIGANTIC TOHOKU, JAPAN EARTHQUAKE Paper No. M-4 CHARACTERISTICS OF STRONG GROUND MOTION FROM THE 2011 GIGANTIC TOHOKU, JAPAN EARTHQUAKE Saburoh MIDORIKAWA 1, Hiroyuki MIURA 2 and Tomohiro ATSUMI 3 SUMMARY The 2011 Tohoku earthquake (Mw9.0)

More information

A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net

A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net LETTER Earth Planets Space, 63, 583 588, 2011 A complex rupture image of the 2011 off the Pacific coast of Tohoku Earthquake revealed by the MeSO-net Ryou Honda 1, Yohei Yukutake 1, Hiroshi Ito 1, Masatake

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara TOMOGRAPHIC ESTIMATION OF SURFACE-WAVE GROUP VELOCITY

More information

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Letter J. Phys. Earth, 41, 319-325, 1993 Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Yasuo Izutani Faculty of Engineering,

More information

New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan

New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan Kenichi Nakano Graduate School of Engineering, Kyoto University,

More information

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT

ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT ACCOUNTING FOR SITE EFFECTS IN PROBABILISTIC SEISMIC HAZARD ANALYSIS: OVERVIEW OF THE SCEC PHASE III REPORT Edward H FIELD 1 And SCEC PHASE III WORKING GROUP 2 SUMMARY Probabilistic seismic hazard analysis

More information

Disaster Prevention Research Section, Technology Center, Taisei Corporation, Yokohama, Japan 2

Disaster Prevention Research Section, Technology Center, Taisei Corporation, Yokohama, Japan   2 LONG-PERIOD GROUND MOTION SIMULATION OF 2004 OFF THE KII PENINSULA EARTHQUAKES AND PREDICTION OF FUTURE M8 CLASS EARTHQUAKES ALONG NANKAI TROUGH SUBDUCTION ZONE, SOUTH OF JAPAN ISLAND Chiaki Yoshimura

More information

The Slapdown Phase in High Acceleration Records of Large Earthquakes

The Slapdown Phase in High Acceleration Records of Large Earthquakes Yamada, Mori and Heaton 1 The Slapdown Phase in High Acceleration Records of Large Earthquakes Masumi Yamada 1, Jim Mori 2, and Thomas Heaton 3 masumi@eqh.dpri.kyoto-u.ac.jp Abstract: This paper focuses

More information

SOURCE, PATH AND SITE EFFECTS ON STRONG GROUND MOTIONS FROM THE 2003 TOKACHI-OKI EARTHQUAKE SEQUENCE

SOURCE, PATH AND SITE EFFECTS ON STRONG GROUND MOTIONS FROM THE 2003 TOKACHI-OKI EARTHQUAKE SEQUENCE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. ++++ SOURCE, PATH AND SITE EFFECTS ON STRONG GROUND MOTIONS FROM THE 2003 TOKACHI-OKI EARTHQUAKE SEQUENCE

More information

Long-Period Ground Motion Simulation and Velocity Structures

Long-Period Ground Motion Simulation and Velocity Structures International Workshop Long-Period Ground Motion Simulation and Velocity Structures Proceedings November 14~15, 2006 at Earthquake Research Institute, University of Tokyo, Japan Hosted by Strong Motion

More information

High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake

High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake K. Irikura Disaster Prevention Research Center, Aichi Institute of Technology, Japan S. Kurahashi Disaster Prevention

More information

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS

PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM OBSERVED STRONG-MOTION RECORDS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3488 PROBABILISTIC SEISMIC HAZARD MAPS AT GROUND SURFACE IN JAPAN BASED ON SITE EFFECTS ESTIMATED FROM

More information

A STRONG MOTION SIMULATION METHOD SUITABLE FOR AREAS WITH LESS INFORMATION ON SUBSURFACE STRUCTURE - KOWADA'S METHOD AND ITS APPLICATION TO SHALLOW CRUSTAL EARTHQUAKES IN JAPAN - A. Nozu 1, T. Nagao 2

More information

Long-period Ground Motion Simulation in Kinki Area. Nobuyuki YAMADA* and Tomotaka IWATA

Long-period Ground Motion Simulation in Kinki Area. Nobuyuki YAMADA* and Tomotaka IWATA Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 47 C, 2004 Long-period Ground Motion Simulation in Kinki Area Nobuyuki YAMADA* and Tomotaka IWATA * COE Researcher, DPRI, Kyoto University Synopsis

More information

RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN

RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN K. Miyakoshi 1 and M. Horike 2 ABSTRACT : 1 Earthquake Engineering Group, Geo-Research Institute,

More information

3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids

3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids 3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids S. Aoi National Research Institute for Earth Science and Disaster Prevention H. Sekiguchi, T. Iwata

More information

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE GENERAL PERSPECTIVE The Highest Magnitude Ever Recorded The 2011 off the Pacific Coast of Tohoku Earthquake (hereafter, the 2011 Tohoku- Pacific Earthquake

More information

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data LETTER Earth Planets Space, 65, 917 921, 2013 Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data Ryou Honda 1, Yohei

More information

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Changjiang Wu 1 and Kazuki Koketsu Earthquake Research Institute, University

More information

GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN

GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN Masayuki YOSHIMI 1, Yasuto KUWAHARA 2, Masayuki YAMADA

More information

Explaining Extreme Ground Motion in Osaka Basin during the 2011 Tohoku Earthquake

Explaining Extreme Ground Motion in Osaka Basin during the 2011 Tohoku Earthquake Explaining Extreme Ground Motion in Osaka Basin during the 2011 Tohoku Earthquake Victor C. Tsai 1, Daniel C. Bowden 1, and Hiroo Kanamori 1 1 Seismological Laboratory, California Institute of Technology,

More information

Annual Report for Research Work in the fiscal year 2005

Annual Report for Research Work in the fiscal year 2005 JST Basic Research Programs C R E S T (Core Research for Evolutional Science and Technology) Annual Report for Research Work in the fiscal year 2005 Research Area : High Performance Computing for Multi-scale

More information

Investigation of long period amplifications in the Greater Bangkok basin by microtremor observations

Investigation of long period amplifications in the Greater Bangkok basin by microtremor observations Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Investigation of long period amplifications in the Greater

More information

Tohoku-oki event: Tectonic setting

Tohoku-oki event: Tectonic setting Tohoku-oki event: Tectonic setting This earthquake was the result of thrust faulting along or near the convergent plate boundary where the Pacific Plate subducts beneath Japan. This map also shows the

More information

SEISMIC HAZARD ASSESSMENT FOR JAPAN AFTER THE 2011 TOHOKU-OKI MEGA-THRUST EARTHQUAKE (Mw9.0)

SEISMIC HAZARD ASSESSMENT FOR JAPAN AFTER THE 2011 TOHOKU-OKI MEGA-THRUST EARTHQUAKE (Mw9.0) Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan SEISMIC HAZARD ASSESSMENT FOR JAPAN AFTER THE 2011 TOHOKU-OKI

More information

Estimation of Deep Shear-Wave Velocity Profiles in Lima, Peru, Using Seismometers Arrays

Estimation of Deep Shear-Wave Velocity Profiles in Lima, Peru, Using Seismometers Arrays Calderon, D. et al. Paper: Estimation of Deep Shear-Wave Velocity Profiles in Lima, Peru, Diana Calderon, Zenon Aguilar, Fernando Lazares, Toru Sekiguchi, and Shoichi Nakai Faculty of Civil Engineering,

More information

Retrieving impulse response function amplitudes from the

Retrieving impulse response function amplitudes from the submitted to Geophys. J. Int. 1 Retrieving impulse response function amplitudes from the ambient seismic field 3 Loïc Viens 1, Marine Denolle 1, Hiroe Miyake,3, Shin ichi Sakai and Shigeki Nakagawa 1 Earth

More information

Earthquake record from down-hole array observation in Tokyo bay area during the 2011 off the pacific coast of Tohoku earthquake

Earthquake record from down-hole array observation in Tokyo bay area during the 2011 off the pacific coast of Tohoku earthquake Earthquake record from down-hole array observation in Tokyo bay area during the 2011 off the pacific coast of Tohoku earthquake T. Ikeda Research Institute of Technology, Tobishima Corporation, Japan K.

More information

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 016 Mw 7.0 Kumamoto Earthquake Heng-Yi Su 1 *, Aitaro Kato 1 Department of Earth Sciences, National Central University, Taoyuan

More information

Modeling of the 2011 Tohoku-oki. oki Tsunami and it s s impacts to Hawaii

Modeling of the 2011 Tohoku-oki. oki Tsunami and it s s impacts to Hawaii WAVES 11, KONA HAWAI`I Modeling of the 2011 Tohoku-oki oki Tsunami and it s s impacts to Hawaii Yoshiki Yamazaki 1, Volker Roeber 1, Kwok Fai Cheung 1 and Thorne Lay 2 1 Department of Ocean and Resources

More information

Ground Motions with Static Displacement Derived from Strong-motion Accelerogram Records by a New Baseline Correction Method

Ground Motions with Static Displacement Derived from Strong-motion Accelerogram Records by a New Baseline Correction Method Proceedings Third UJNR Workshop on Soil-Structure Interaction, March 29-30, 2004, Menlo Park, California, USA. Ground Motions with Static Displacement Derived from Strong-motion Accelerogram Records by

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara A STUDY ON THE ESTIMATION METHOD FOR UNDERGROUND STRUCTURE

More information

CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO, JAPAN

CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO, JAPAN 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1861 CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO,

More information

Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the Pseudo Point-Source Model

Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the Pseudo Point-Source Model 6 th International Conference on Earthquake Geotechnical Engineering -4 November 25 Christchurch, New Zealand Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the

More information

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

4 Associate Professor, DPRI, Kyoto University, Uji, Japan Proceedings of the International Symposium on Engineering Lessons Learned from the 2 Great East Japan Earthquake, March -4, 22, Tokyo, Japan STRONG MOTION ESTIMATION AT THE ELEVATED BRIDGES OF THE TOHOKU

More information

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Tadashi Yaginuma 1, Tomomi Okada 1, Yuji Yagi 2, Toru Matsuzawa 1, Norihito

More information

Germán A. Prieto. Department of Physics Phone: (1) Universidad de los Andes Fax: (1) Calle 18A # 1-10 Bloque H

Germán A. Prieto. Department of Physics Phone: (1) Universidad de los Andes Fax: (1) Calle 18A # 1-10 Bloque H Department of Physics Phone: (1) 339-4949 4754 Universidad de los Andes Fax: (1) 332-4516 Calle 18A # 1-10 Bloque H Email: gprieto@uniandes.edu.co AA 4976, Bogot, Colombia Web: http://wwwprof.uniandes.edu.co/~gprieto/

More information

Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake

Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake LETTER Earth Planets Space, 60, 155 160, 2008 Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake Yih-Min Wu 1 and Hiroo Kanamori 2 1

More information

STRONG-MOTION SEISMOGRAPH NETWORK OPERATED BY NIED: K-NET AND KiK-net

STRONG-MOTION SEISMOGRAPH NETWORK OPERATED BY NIED: K-NET AND KiK-net Journal of Japan Association for Earthquake Engineering, Vol. 4, No. 3 (Special Issue), 2004 STRONG-MOTION SEISMOGRAPH NETWORK OPERATED BY NIED: K-NET AND KiK-net Shin AOI 1, Takashi KUNUGI 2, and Hiroyuki

More information

X-2 HIKIMA AND KOKETSU: THE 2004 CHUETSU, JAPAN, EARTHQUAKE We relocated the hypocenters of the 2004 Chuetsu earthquake sequence, Niigata, Japan, usin

X-2 HIKIMA AND KOKETSU: THE 2004 CHUETSU, JAPAN, EARTHQUAKE We relocated the hypocenters of the 2004 Chuetsu earthquake sequence, Niigata, Japan, usin GEOPHYSICAL RESEARCH LETTERS, VOL. 32, XXXX, DOI:1029/2005GL023588, Rupture processes of the 2004 Chuetsu (mid-niigata prefecture) earthquake, Japan: A series of events in a complex fault system Kazuhito

More information

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1359 RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING Shusaku INOUE 1,

More information

BROADBAND SOURCE MODEL AND STRONG MOTIONS

BROADBAND SOURCE MODEL AND STRONG MOTIONS BROADBAND SOURCE MODEL AND STRONG MOTIONS OF THE 1855 ANSEI-EDO EARTHQUAKE ESTIMATED BY THE EMPIRICAL GREEN S FUNCTION METHOD Toshimi Satoh 1 1 Chief Researcher, Institute of Technology, Shimizu Corporation,

More information

NUMERICAL SIMULATION OF STRONG GROUND MOTION ON ADAPAZARI BASIN DURING THE 1999 KOCAELI, TURKEY, EARTHQUAKE

NUMERICAL SIMULATION OF STRONG GROUND MOTION ON ADAPAZARI BASIN DURING THE 1999 KOCAELI, TURKEY, EARTHQUAKE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 720 NUMERICAL SIMULATION OF STRONG GROUND MOTION ON ADAPAZARI BASIN DURING THE 1999 KOCAELI, TURKEY,

More information

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data Katsuhisa Kanda and Masayuki Takemura Kobori Research Complex, Kajima Corporation, Tokyo 107-8502, Japan Summary An

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara VELOCITY STRUCTURE INVERSIONS FROM HORIZONTAL TO VERTICAL

More information

Rupture process of the 2007 Chuetsu-oki, Niigata, Japan, earthquake Waveform inversion using empirical Green s functions

Rupture process of the 2007 Chuetsu-oki, Niigata, Japan, earthquake Waveform inversion using empirical Green s functions Earth Planets Space, 60, 1169 1176, 2008 Rupture process of the 2007 Chuetsu-oki, Niigata, Japan, earthquake Waveform inversion using empirical Green s functions Atsushi Nozu Independent Administrative

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara STRONG MOTION CHARACTERISTICS AND THEIR DAMAGE IMPACT

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

by A. Nozu and K. Irikura Introduction

by A. Nozu and K. Irikura Introduction Bulletin of the Seismological Society of America, Vol. 98, No. 1, pp. 18 197, February 28, doi: 1.1785/126183 Strong-Motion Generation Areas of a Great Subduction-Zone Earthquake: Waveform Inversion with

More information

Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity

Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity LETTER Earth Planets Space, 63, 547 551, 2011 Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) Earthquake Early Warning and observed seismic intensity Mitsuyuki Hoshiba 1, Kazuhiro

More information

Macrospatial Correlation Model of Seismic Ground Motions

Macrospatial Correlation Model of Seismic Ground Motions Macrospatial Correlation Model of Seismic Ground Motions Min Wang a and Tsuyoshi Takada b It is very important to estimate a macrospatial correlation of seismic ground motion intensities for earthquake

More information

Strong ground motions of the,**- Bam Earthquake, Southeast of Iran (Mw 0./)

Strong ground motions of the,**- Bam Earthquake, Southeast of Iran (Mw 0./) Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 13,**. pp..1 /1 Strong ground motions of the,**- Bam Earthquake, Southeast of Iran (Mw 0./) Arash Jafargandomi + *, Sayed Mahmoud Fatemi Aghda,,Sadaomi Suzuki

More information

River Basin Research Center, Gifu University, Gifu city, Japan.

River Basin Research Center, Gifu University, Gifu city, Japan. Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 Noember 2015, Sydney, Australia Estimation of the strong motion generation area based

More information

Long-period ground motion characterization by cross wavelet transform

Long-period ground motion characterization by cross wavelet transform Long-period ground motion characterization by cross wavelet transform *Tsoggerel Tsamba 1) and Masato Motosaka 2) 1), 2) International Research Institute of Disaster Science, Tohoku University, Sendai980-8579,Japan

More information

Simulated Earthquake Ground Motion for Structural Design"

Simulated Earthquake Ground Motion for Structural Design 14 th U.S.-Japan Workshop on the Improvement of Building Structural Design and Construction Practices Simulated Earthquake Ground Motion for Structural Design" Satoru Nagase Structural Engineering Section,

More information

LETTER Earth Planets Space, 57, , 2005

LETTER Earth Planets Space, 57, , 2005 LETTER Earth Planets Space, 57, 345 35, 25 Estimation of the source model for the foreshock of the 24 off the Kii peninsula earthquakes and strong ground motion simulation of the hypothetical Tonankai

More information

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data Kunikazu Yoshida, Anatoly Petukhin & Ken Miyakoshi Geo-Research Institute, Japan Koji

More information