Geomorphic Assessment of the Middle and Lower Swan Lake Watershed, Calhoun Division of Two Rivers National Wildlife Refuge.

Size: px
Start display at page:

Download "Geomorphic Assessment of the Middle and Lower Swan Lake Watershed, Calhoun Division of Two Rivers National Wildlife Refuge."

Transcription

1 Geomorphic Assessment of the Middle and Lower Swan Lake Watershed, Calhoun Division of Two Rivers National Wildlife Refuge Report Figures 33

2 34

3 Figure 1. Location of Middle and Lower Swan Lake watersheds in Calhoun County, Illinois 35

4 Figure 2. Physiographic divisions of Illinois 36

5 Figure 3. Thickness of loess deposits in Illinois and Calhoun County (ISGS,????) 37

6 Figure 4. Surficial deposits in Illinois and Calhoun County (ISGS,????) 38

7 Figure 5. Geology of Hardin and Brussels Quadrangles (Rubey, 1952) 39

8 Figure 6. Digital Elevation Model (DEM) for Middle and Lower Swan Lake watersheds 40

9 Figure 7a. Stream gradients for Metz, Lower Metz, and Deer Plain Creeks: a) slope per 100 meters 41

10 Figure 7b. Stream profile for Metz, Lower Metz, and Deer Plain Creeks: b) elevation profile 42

11 Figure 8. Landform Sediment Assemblage (LSA) Units for Middle and Lower Swan Lake watersheds 43

12 160 Annual Precipitation 11-year Moving Average 120 Precipitation (cm) Figure 9 Annual precipitation, , at St. Charles, MO Wet Season (11-yr Moving Average) Dry Season (11-yr Moving Average) 60 Precipitation (cm) Figure 10. Annual precipitation for wet and dry seasons, , at St. Charles, MO 44

13 32,000 28,000 Calhoun County NASS Data ,000 Land Cover Area (hectares) 20,000 16,000 12,000 Includes 1999 NASS catagory "Non-Agricultural" 8,000 4,000 0 Corn Sorghum Soybeans Pop. Or Orn. Corn Winter Wheat W. Wht./Soy. Dbl. Crop Oats Alfalfa Misc. Vegs. & Fruits Herbs Clover/Wildflowers Fallow/Idle Cropland Pasture/Grass Woodland Peaches NLCD - Open Water NLCD - Developed/Open Space NLCD - Developed/Low Intensity NLCD - Developed/Medium Intensity NLCD - Developed/High Intensity NLCD - Barren NLCD - Deciduous Forest NLCD - Evergreen Forest NLCD - Mixed Forest NLCD - Grassland Herbaceous NLCD - Pasture/Hay NLCD - Woody Wetlands NLCD - Herbaceous Wetlands Figure 11. NASS land cover categories for 1999 and 2008 in Calhoun County 45

14 12,500 10,000 Calhoun County (IAS Data) Corn for Grain Barley Hay, All Oats Sorghum for Grain Soybeans Wheat, All Crops Harvested (hectares) 7,500 5,000 2, Figure 12. Crops harvested from in Calhoun County from IAS 46

15 Metz Creek L. Metz Creek Deer Plain Creek 70 Land Area (Percent) Corn Soybeans Winter Wheat W. Wht./Soy. Dbl. Crop Other Crops Fallow/Idle Cropland Pasture/Grass Woodland NLCD - Open Water NLCD - Open Space NLCD - Developed NLCD - Deciduous Forest NLCD - Grassland Herbaceous NLCD - Pasture/Hay NLCD - Woody Wetlands NLCD - Herbaceous Wetlands Figure 13. Percent land area for 2008 NASS land cover categories in Middle and Lower Swan Lake watershed 47

16 Figure 14. Map of NASS land cover categories for

17 Figure 15. Stream channel planform and Swan Lake open-water shoreline for 1940 and

18 Figure 16. Historic stream channel and open-water shoreline planforms around Swan Lake: a) 1904 Woermann map and b) 2009 NAIP imagery 50

19 Figure 17. Representative cross-section of Swan Lake bed elevations in 1904 and 1994 [Source: Illinois State Water Survey, Demissie (1996)] 51

20 Figure 18. Land in orchards for Metz, Lower Metz, and Deer Plain Creek watersheds: a) in 1940 and 2007 and b) in 1940 and 2007 by elevation 52

21 Figure 19. Location of field survey stations for Metz, Lower Metz, and Deer Plain Creeks 53

22 Station # Sheet #: Date: Crew: Site Coordinates: Pictures: U/S D/S X-section LB RB Pattern: Meandering Straight Braided Drainage Ditch** Field Measurements: BHS Note # CHANNEL-STABILITY RANKING SCHEME* Samples: Reach length: Est. Reach Slope: Avg channel widths: (top) (bottom) Avg/Max channel depth: / LB angle (avg): RB angle (avg): Primary bank material: Primary bed material: (See #1) (GP=gravel; SP=sand; ML=silt; CL=clay; BR=bedrock) 1. Primary bed material Bedrock Boulder/Cobble Gravel Sand Silt/Clay Bed Protection a) Yes OR 0 #Banks b) No (with) Protection One (L or R) Both Degree of floodplain separation**/incision (Relative elevation of "normal" low water; 0-10% 11-25% 26-50% 51-75% % Degree of constriction (Relative decrease in top-bank width from up to downstream) 0-10% 11-25% 26-50% 51-75% % Streambank erosion (Each bank over reach length) None Fluvial Mass wasting (failures) Left Right Stream bank instability (Percent of each bank failing over reach length) 0-10% 11-25% 26-50% 51-75% % Left Right Established woody vegetative cover (Percent of each bank face over reach length) 0-10% 11-25% 26-50% 51-75% % Left Right Occurrence of bank/bar accretion (Percent of each bank with fluvial deposition over reach length) 0-10% 11-25% 26-50% 51-75% % Left Right Stage of Channel Evolution (If applicable) I II III IV V VI OTHER OBSERVATIONS: Total Score: * Adapted from Kuhnle and Simon (2000) Figure 20. Channel-stability Ranking Scheme field form 54

23 BIOLOGICAL/HABITAT RANKING SCHEME (low gradient streams)* Station # Station Description: Date: Crew: Samples Taken: Pictures: U/S: LB RB Channel Bed D/S: LB RB LB Riparian Zone RB Riparian Zone 1. Availability of favorable habitat (snags, submerged logs undercut banks; average of LWD and detritus) >50% 30-50% 10-30% <10% Pool-substrate composition GP & firm SP Soft SP & ML-CL All ML-CL or All SP Hardpan/ Bedrock Pool-variability character Mix large/small & deep/shallow Majority large-deep pools Shallow pools more prevalent Majority smallshallow or absent Active streambed/bar deposition 0-20% 21-50% 51-80% % Streambed exposure 0-5% 5-25% 25-75% % Degree of hard channel alteration (channelization, dredging, embankments/shoring structures, gabion/cement) Channelization/dred ing absent Minor or historic 40-80% reach disrupted >80% Disrupted/ habitat altered (low). Sinuosity Straight (high). Pool-riffle sequence (% Pool + % Riffle) >80% 51-80% 20-50% <20% Bank Instability (Percent each bank failing) 0-5% 6-30% 31-60% % Left Right Vegetative Bank Protection (Bank face): >90% covered 70-90% cover 50-70% cover; <50% veg w/mix of veg. disruption obvious; bare patches disruption high Left Right Riparian-zone width (out from edge of water) >20m m 5-10 m <5m Left Right Total Score: Figure 21a. Biological/Habitat Ranking Scheme (low gradient) form 55

24 BIOLOGICAL/HABITAT RANKING SCHEME (high gradient streams)* Station # Station Description: Date: Crew: Samples Taken: Pictures: U/S: LB RB Channel Bed D/S: LB RB LB Riparian Zone RB Riparian Zone 1. Availability of favorable habitat (snags, submerged logs undercut banks; average of LWD and detritus) >70% 70-40% 40-20% <20% Embeddedness: Gravel, cobble, boulder % surrounded by fine sediment 0-25% 25-50% 50-75% >75% Velocity/Depth Regime: a) slow-deep, b) slow-shallow, c) fast-deep, d) fast shallow; (slow is <0.3 m/s, deep is >0.5 m) All 4 regimes present 3 of 4 regimes(if 'd' is missing,score lower 2 of 4 regimes (if 'd' and 'b' missing, score lower Dominated by 1 regime (usually 'a') Active streambed/bar deposition <5% 5-30% 30-50% >50% Streambed exposure 0-5% 5-25% 25-75% % Degree of hard channel alteration (channelization, dredging, embankments/shoring structures, gabion/cement) Channelization/dred ing absent Minor or historic 40-80% reach disrupted >80% Disrupted/ habitat altered (high). Pool-riffle sequence (% Pool + % Riffle) >80% 51-80% 20-50% <20% Bank Instability (Percent each bank failing) 0-5% 6-30% 31-60% % Left Right Vegetative Bank Protection (Bank face): >90% covered 70-90% cover 50-70% cover; <50% veg w/mix of veg. disruption obvious; bare patches disruption high Left Right Riparian-zone width (out from edge of water) >20m m 5-10 m <5m Left Right Total Score: Figure 21b. Biological/Habitat Ranking Scheme (high gradient) form 56

25 Figure 22. Channel Stability Index (CSI) distribution for Metz, Lower Metz, and Deer Plain Creeks 57

26 Figure 23. Biological/Habitat Index (BHI) distribution for Metz, Lower Metz, and Deer Plain Creeks 58

27 Figure 24. Channel-Stability and Biological/Habitat Index distributions for Metz, Lower Metz, and Deer Plain Creeks with corresponding stream segment identification. 59

28 Figure 25. Channel-Stability and Biological/Habitat Index and CEM profile for Metz Creek 60

29 Figure 26. Channel-Stability and Biological/Habitat Index and CEM profile for Lower Metz Creek 61

30 Figure 27. Channel-Stability and Biological/Habitat Index and CEM profile for Deer Plain Creek 62

31 Figure 28. Type of bank erosion for field survey sites and location of reach groups with mass wasting erosion 63

32 Figure 29. Percent of banks with active erosion for field survey sites and location of mass wasting reach groups 64

33 Figure 30. Percent of sediment accumulating on banks or stream bars for field survey sites and location of mass wasting reach groups 65

34 Figure 31. Percent of banks covered with woody vegetation for field survey sites and location of mass wasting reach groups 66

35 Figure 32. Percent of banks covered with vegetation for field survey sites and location of mass wasting reach groups 67

36 Figure 33. Width of riparian zone measured out from edge of water for field survey sites and location of mass wasting reach groups 68

37 Figure 34. Stage of Channel Evolution Model (CEM) for field survey sites and location of mass wasting reach groups 69

38 Figure 35. Bank Height for field survey sites and location of mass wasting reach groups 70

39 Figure 36. Channel width for field survey sites and location of mass wasting reach groups 71

40 Figure 37. Bank angle for field survey sites and location of mass wasting reach groups 72

BUREAU OF CLEAN WATER. Appendix C Biological Field Methods C1. Habitat Assessment DECEMBER 2013

BUREAU OF CLEAN WATER. Appendix C Biological Field Methods C1. Habitat Assessment DECEMBER 2013 BUREAU OF CLEAN WATER Appendix C Biological Field Methods C1. Assessment DECEMBER 2013 HABITAT ASSESSMENT The Department has adopted the habitat assessment methods outlined in EPA s Rapid Bioassessment

More information

Rapid Geomorphic Assessments: RGA s

Rapid Geomorphic Assessments: RGA s Establishing Current Reference Conditions Rates and concentrations of suspended-sediment transport vary over time and space due to factors such as precipitation characteristics and discharge, geology,

More information

C. STUDENT FIELD DATA SHEETS

C. STUDENT FIELD DATA SHEETS C. STUDENT FIELD DATA SHEETS Student Name Date Time Stream Location Parameter to find Your Group s Results Units trial trial average Transparency cm Water Temperature Air Temperature Weather N sunny N

More information

Riparian Assessment. Steps in the right direction... Drainage Basin/Watershed: Start by Thinking Big. Riparian Assessment vs.

Riparian Assessment. Steps in the right direction... Drainage Basin/Watershed: Start by Thinking Big. Riparian Assessment vs. Riparian Assessment vs. Monitoring Riparian Assessment What is a healthy stream? Determine stream/riparian health Determine change or trend, especially in response to mgmt Classification = designation

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

CR AAO Bridge. Dead River Flood & Natural Channel Design. Mitch Koetje Water Resources Division UP District

CR AAO Bridge. Dead River Flood & Natural Channel Design. Mitch Koetje Water Resources Division UP District CR AAO Bridge Dead River Flood & Natural Channel Design Mitch Koetje Water Resources Division UP District Old County Road AAO Bridge Map courtesy of Marquette County Silver Lake Basin McClure Basin

More information

DETAILED DESCRIPTION OF STREAM CONDITIONS AND HABITAT TYPES IN REACH 4, REACH 5 AND REACH 6.

DETAILED DESCRIPTION OF STREAM CONDITIONS AND HABITAT TYPES IN REACH 4, REACH 5 AND REACH 6. DETAILED DESCRIPTION OF STREAM CONDITIONS AND HABITAT TYPES IN REACH 4, REACH 5 AND REACH 6. The Eklutna River was divided into study reaches (figure 1) prior to this site visit. Prominent geologic or

More information

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water.

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water. Aggradation raising of the streambed by deposition that occurs when the energy of the water flowing through a stream reach is insufficient to transport sediment conveyed from upstream. Alluvium a general

More information

Step 5: Channel Bed and Planform Changes

Step 5: Channel Bed and Planform Changes Step 5: Channel Bed and Planform Changes When disturbed, streams go through a series of adjustments to regain equilibrium with the flow and sediment supply of their watersheds. These adjustments often

More information

Step 6: Rapid Habitat Assessment (RHA)

Step 6: Rapid Habitat Assessment (RHA) Step 6: Rapid Habitat Assessment (RHA) Background Physical processes, combined with chemical constituents and biological interactions, are what determine biological productivity and diversity; and, in

More information

Why Geomorphology for Fish Passage

Why Geomorphology for Fish Passage Channel Morphology - Stream Crossing Interactions An Overview Michael Love Michael Love & Associates mlove@h2odesigns.com (707) 476-8938 Why Geomorphology for Fish Passage 1. Understand the Scale of the

More information

Stream Classification

Stream Classification Stream Classification Why Classify Streams? Communication Tool Describe Existing Conditions & Trends Describe Restoration Goals Research Tool Morphologic Stream Classification Systems Schumm (1977) Alluvial

More information

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN Conor Shea - Hydrologist U.S. Fish and Wildlife Service Conservation Partnerships Program Arcata, CA Learning Objectives Examine

More information

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy.

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy. 1 2 Function... Sevier River... to successfully carry sediment and water from the watershed....dissipate energy. 3 ALLUVIAL FEATURES 4 CHANNEL DIMENSION The purpose of a stream is to carry water and sediment

More information

ODFW AQUATIC INVENTORY PROJECT OREGON PLAN FOR SALMON & WATERSHEDS STREAM RESTORATION HABITAT REPORT

ODFW AQUATIC INVENTORY PROJECT OREGON PLAN FOR SALMON & WATERSHEDS STREAM RESTORATION HABITAT REPORT ODFW AQUATIC INVENTORY PROJECT OREGON PLAN FOR SALMON & WATERSHEDS STREAM RESTORATION HABITAT REPORT STREAM: BASIN: SURVEY TYPE: Munson Creek (NC-342) Tillamook River Post-Tx DATE: February 2, 28 SURVEY

More information

Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont. Mike Kline and Laura Lapierre Vermont DEC

Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont. Mike Kline and Laura Lapierre Vermont DEC Wetland & Floodplain Functional Assessments and Mapping To Protect and Restore Riverine Systems in Vermont Mike Kline and Laura Lapierre Vermont DEC NWI+ Hydro-Geomorphic Characterization of Wetlands and

More information

Assessment. Assessment

Assessment. Assessment 2001 SPRINGBROOK CREEK RESTORATION - THREE YEAR POST-CONSTRUCTION REVIEW - Presented by Bruce Henderson and Andy Harris 2005 River Restoration Northwest Symposium Skamania Lodge, Washington www.hendersonlandservices.com

More information

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Mike Rudd (Project Manager), Charley Miller & Chad Krofta Declines in Tahoe s Water Clarity The

More information

Appendix 5 Fluvial Geomorphological Detailed Information

Appendix 5 Fluvial Geomorphological Detailed Information Appendix 5 Fluvial Geomorphological Detailed Information PARISH geomorphic Date: 3-Jun-8 Site: VG-R2 Crew: Location: Richmond, Ottawa Weather Description: rain Recorder: FORM / GEOMORPHIC INDICATOR PRESENT?

More information

Limitation to qualitative stability indicators. the real world is a continuum, not a dichotomy ~ 100 % 30 % ~ 100 % ~ 40 %

Limitation to qualitative stability indicators. the real world is a continuum, not a dichotomy ~ 100 % 30 % ~ 100 % ~ 40 % Stream Stability Assessment & BEHI Surveys Joe Rathbun MDEQ Water Resources Division rathbunj@michigan.gov 517--373 517 373--8868 Stability Stream can transport its water and sediment inputs without changing

More information

Habitat Assessment. Peggy Compton UW-Extension Water Action Volunteers Program Coordinator

Habitat Assessment. Peggy Compton UW-Extension Water Action Volunteers Program Coordinator Habitat Assessment Peggy Compton UW-Extension Water Action Volunteers Program Coordinator Adapted from a presentation by Jean Unmuth, Water Quality Biologist, WI DNR dnr.wi.gov www.uwex.edu erc.cals.wisc.edu

More information

ODFW AQUATIC INVENTORY PROJECT RESTORATION MONITORING STREAM HABITAT REPORT. Peggy Kavanagh, Trevan Cornwell TOLEDO SOUTH Coast Range Lora Tennant

ODFW AQUATIC INVENTORY PROJECT RESTORATION MONITORING STREAM HABITAT REPORT. Peggy Kavanagh, Trevan Cornwell TOLEDO SOUTH Coast Range Lora Tennant ODFW AQUATIC INVENTORY PROJECT RESTORATION MONITORING STREAM HABITAT REPORT STREAM: GCG: 2-MC SITE ID: 489 BASIN: YAQUINA TREATMENT DATE: 24 SURVEY DATE: 2/27/24 SURVEY CREW: USGS MAPS: ECOREGION: REPORT

More information

Appendix E Rosgen Classification

Appendix E Rosgen Classification Appendix E Stream Type s Using the morphometric parameters described above, stream reaches are classified into 7 major stream types (Aa+ through G) based on s (1996) criteria. The relevant stream classifications

More information

Implementing a Project with 319 Funds: The Spring Brook Meander Project. Leslie A. Berns

Implementing a Project with 319 Funds: The Spring Brook Meander Project. Leslie A. Berns Implementing a Project with 319 Funds: The Spring Brook Meander Project Leslie A. Berns "...to acquire... and hold lands... for the purpose of protecting and preserving the flora, fauna and scenic beauties...

More information

PolyMet NorthMet Project

PolyMet NorthMet Project RS 26 Draft-01 December 8, 2005 RS26 Partridge River Level 1 Rosgen Geomorphic Survey Rosgen Classification Partridge River from Headwaters to Colby Lake Prepared for PolyMet NorthMet Project December

More information

BEFORE LEAVING THE SITE, CHECK DATA SHEETS TO ENSURE THAT ALL VARIABLES HAVE BEEN RECORDED

BEFORE LEAVING THE SITE, CHECK DATA SHEETS TO ENSURE THAT ALL VARIABLES HAVE BEEN RECORDED AUSRIVAS Physical Assessment Protocol Field Data Sheets Page 1 Site No. Date _ Date Site No. Time Recorder's Name River Name _ Location Weather Rain in last week? Y [ ] N [ ] deg min sec deg min sec Latitude:

More information

EAGLES NEST AND PIASA ISLANDS

EAGLES NEST AND PIASA ISLANDS EAGLES NEST AND PIASA ISLANDS HABITAT REHABILITATION AND ENHANCEMENT PROJECT MADISON AND JERSEY COUNTIES, ILLINOIS ENVIRONMENTAL MANAGEMENT PROGRAM ST. LOUIS DISTRICT FACT SHEET I. LOCATION The proposed

More information

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades?

Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades? Diagnostic Geomorphic Methods for Understanding Future Behavior of Lake Superior Streams What Have We Learned in Two Decades? Faith Fitzpatrick USGS WI Water Science Center, Middleton, WI fafitzpa@usgs.gov

More information

Nitrate-Nitrogen Risk Ranking Methods and Results

Nitrate-Nitrogen Risk Ranking Methods and Results Nitrate-Nitrogen Risk Ranking Methods and Results LAST UPDATED: MARCH 2017 DRINKING WATER PROTECTION Nitrate-Nitrogen Risk Ranking Methods and Results Minnesota Department of Health Drinking Water Protection

More information

Watershed concepts for community environmental planning

Watershed concepts for community environmental planning Purpose and Objectives Watershed concepts for community environmental planning Dale Bruns, Wilkes University USDA Rural GIS Consortium May 2007 Provide background on basic concepts in watershed, stream,

More information

Appendix E: Cowardin Classification Coding System

Appendix E: Cowardin Classification Coding System Appendix E: Cowardin Classification Coding System The following summarizes the Cowardin classification coding system and the letters and numbers used to define the USFWS NWI wetland types and subtypes:

More information

Bank Erosion and Morphology of the Kaskaskia River

Bank Erosion and Morphology of the Kaskaskia River Bank Erosion and Morphology of the Kaskaskia River US Army Corps Of Engineers St. Louis District Fayette County Soil and Water Conservation District Team Partners : Carlyle Lake Ecosystem Partnership Vicinity

More information

May 7, Roger Leventhal, P.E. Marin County Public Works Laurel Collins Watershed Sciences

May 7, Roger Leventhal, P.E. Marin County Public Works Laurel Collins Watershed Sciences May 7, 2013 Roger Leventhal, P.E. Marin County Public Works Laurel Collins Watershed Sciences Background Funded in 2009 under EPA 2100 Grant for $30k and managed by SFEP Project Goals: Update original

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

When Creek Meets Valley Wall: Prioritizing Erosion Mitigation alongside the Oshawa Landfill

When Creek Meets Valley Wall: Prioritizing Erosion Mitigation alongside the Oshawa Landfill 1 When Creek Meets Valley Wall: Prioritizing Erosion Mitigation alongside the Oshawa Landfill Robin McKillop 1, Dan McParland 1 & Cassie Scobie 2 TRIECA conference March 22-23, 2017 1 Palmer Environmental

More information

How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin?

How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin? How Do Human Impacts and Geomorphological Responses Vary with Spatial Scale in the Streams and Rivers of the Illinois Basin? Bruce Rhoads Department of Geography University of Illinois at Urbana-Champaign

More information

!"#$%&&'()*+#$%(,-./0*)%(!

!#$%&&'()*+#$%(,-./0*)%(! 8:30 Sign in Hoosic River Revival Coalition!"#$%&&'()*+#$%(,-./0*)%(! 12-#30+4/#"5-(60 9:00 Welcome and Introductions 9:15 Goals for Today s Program: A Description of the Planning Process 9:30 First Session:

More information

APPENDIX A REACH DECRIPTIONS. Quantico Creek Watershed Assessment April 2011

APPENDIX A REACH DECRIPTIONS. Quantico Creek Watershed Assessment April 2011 APPENDIX A REACH DECRIPTIONS Basin 615, South Fork of Quantico Creek - Project Reach Descriptions Reach Name: 615-A Coordinates (NAD 83, Virginia State Plane North): 11796510.57, 6893938.95 to 11801555.79,

More information

Ways To Identify Background Verses Accelerated Erosion

Ways To Identify Background Verses Accelerated Erosion Ways To Identify Background Verses Accelerated Erosion Establish Background Condition From Old Ground Photos, Aerial Photos, and Maps Compare Rate Over Time At the Same Location, or for Reaches Channel

More information

Assessment and Potential of the 2007 USDA-NASS Cropland Data Layer for Statewide Annual Land Cover Applications

Assessment and Potential of the 2007 USDA-NASS Cropland Data Layer for Statewide Annual Land Cover Applications University of Illinois Institute of Natural Resource Sustainability William Shilts, Executive Director ILLINOIS NATURAL HISTORY SURVEY Brian D. Anderson Director 1816 South Oak Street Champaign, IL 61820-6964

More information

Tom Ballestero University of New Hampshire. 1 May 2013

Tom Ballestero University of New Hampshire. 1 May 2013 Tom Ballestero University of New Hampshire 1 May 2013 1 Hydrology 2 Basic Hydrology Low flows most common Flows that fill the stream to the banks and higher are much less common Filling the stream to the

More information

Stream Simulation: A Simple Example

Stream Simulation: A Simple Example Stream Simulation: A Simple Example North Thompson Creek, CO Paul T. Anderson U.S.D.A. Forest Service Here s How We Started May 2011 2-1 USDA-Forest Service Here s How We Finished Forest Service Aquatic

More information

Description DESCRIPTION

Description DESCRIPTION DESCRIPTION The location of the Upper James Watershed is located in northeastern South Dakota as well as southeastern North Dakota. It includes the following counties located in North Dakota Barnes, Dickey,

More information

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS DESIGN METHODS B: SEDIMENT TRANSPORT PROCESSES FOR STREAM RESTORATION DESIGN PETER KLINGEMAN OREGON STATE UNIVERSITY CIVIL ENGINEERING DEPT., CORVALLIS 2 ND ANNUAL NORTHWEST STREAM RESTORATION DESIGN SYMPOSIUM

More information

Little Blackfoot TPA 2009 Sediment and Habitat Assessment QAQC Review March 9, 2010

Little Blackfoot TPA 2009 Sediment and Habitat Assessment QAQC Review March 9, 2010 Little Blackfoot TPA 2009 Sediment and Habitat Assessment QAQC Review March 9, 2010 1.0 PROJECT OVERVIEW Sediment and habitat monitoring in the Little Blackfoot TPA was conducted in July of 2009 as outlined

More information

Fluvial Driven Alluvial Fans

Fluvial Driven Alluvial Fans Fluvial Driven Alluvial Fans Restoration Project Evaluations - Examples from the Russian and Napa River Watersheds Mia Docto Masters Thesis UC Berkeley 1. Basic Fan Description 2. Fluvial Driven Fan Characteristics

More information

Field Methods to Determine/ Verify Bankfull Elevation, XS Area & Discharge

Field Methods to Determine/ Verify Bankfull Elevation, XS Area & Discharge Module # 6 Field Methods to Determine/ Verify Bankfull Elevation, XS Area & Discharge Iowa s River Restoration Toolbox Level 1 / Base Training Overview of Basic Field Data Collection Site Map Cross Sections

More information

Flood and Stream Restoration

Flood and Stream Restoration 2 3 4 Pedestrian bridge under construction 3 CSPs perched on DS side Large area of sand deposition Bottom layer of gabions has been scoured out large bar of gabion stone Gabions slumping bank slope failure

More information

Do you think sediment transport is a concern?

Do you think sediment transport is a concern? STREAM RESTORATION FRAMEWORK AND SEDIMENT TRANSPORT BASICS Pete Klingeman 1 What is Your Restoration Project Like? k? Do you think sediment transport is a concern? East Fork Lewis River, WA Tidal creek,

More information

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation)

Stream Restoration and Environmental River Mechanics. Objectives. Pierre Y. Julien. 1. Peligre Dam in Haiti (deforestation) Stream Restoration and Environmental River Mechanics Pierre Y. Julien Malaysia 2004 Objectives Brief overview of environmental river mechanics and stream restoration: 1. Typical problems in environmental

More information

Monitoring Headwater Streams for Landscape Response to

Monitoring Headwater Streams for Landscape Response to Monitoring Headwater Streams for Landscape Response to Climate Change Matthew Connor, PhD Connor nvironmental, nc. www.oe-i.com icom Healdsburg, California verview Headwater stream geomorphology Response

More information

STUDY PERFORMANCE REPORT

STUDY PERFORMANCE REPORT STUDY PERFORMANCE REPORT State: Michigan Project No.: F-80-R-8 Study No.: 230702 Title: Effects of sediment traps on Michigan river channels Period Covered: October 1, 2006 to September 30, 2007 Study

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS

Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS Watershed Conservation Management Planning Using the Integrated Field & Channel Technology of AnnAGNPS & CONCEPTS Eddy Langendoen Ron Bingner USDA-ARS National Sedimentation Laboratory, Oxford, Mississippi

More information

Natural Shoreline Landscapes on Michigan Inland Lakes

Natural Shoreline Landscapes on Michigan Inland Lakes Natural Shoreline Landscapes on Michigan Inland Lakes Excerpts from Chapters 2 and 3 Photo Photo by Jane by Jane Herbert Herbert Did you know? Twenty-four species of amphibians, 25 species of reptiles,

More information

ODFW AQUATIC INVENTORY PROJECT STREAM REPORT

ODFW AQUATIC INVENTORY PROJECT STREAM REPORT ODFW AQUATIC INVENTORY PROJECT STREAM REPORT STREAM: BASIN: South Fork Mill Creek Mill Creek / Columbia River DATES: September 7 9, 5 SURVEY CREW: REPORT PREPARED BY: Brian Bangs / LaNoah Babcock Staci

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Geomorphology Studies

Geomorphology Studies Geomorphology Studies Technical Workgroup Meeting February 14, 2012 Prepared by: Tetra Tech Prepared for: Alaska Energy Authority Overall Goal Geomorphology Studies Two studies Geomorphology Study (RSP

More information

Bishopville Prong Study

Bishopville Prong Study Bathymetric and Sediment Assessment in the Bishopville Prong of St. Martin River Darlene V. Wells, Richard A. Ortt, Jr., and Stephen Van Ryswick Funded by MCBP 2011-2012 Implementation Grant Objectives

More information

ODFW AQUATIC INVENTORY PROJECT OREGON PLAN FOR SALMON & WATERSHEDS STREAM RESTORATION HABITAT REPORT

ODFW AQUATIC INVENTORY PROJECT OREGON PLAN FOR SALMON & WATERSHEDS STREAM RESTORATION HABITAT REPORT ODFW AQUATIC INVENTORY PROJECT OREGON PLAN FOR SALMON & WATERSHEDS STREAM RESTORATION HABITAT REPORT STREAM: BASIN: SURVEY TYPE: South Sister Creek (U-5) Smith River Pre-Tx DATE: January 7, 4 SURVEY CREW:

More information

Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES. Introduction. The mechanics of gully erosion

Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES. Introduction. The mechanics of gully erosion Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES Gully erosion A complex of processes whereby the removal of soil is characterised by incised channels in the landscape. NSW Soil Conservation Service,

More information

Squaw Creek. General Information

Squaw Creek. General Information General Information is a tributary to the Salmon River. It enters the north side of the river about 0 miles downstream of North Fork, Idaho. The study reach is about a 30 ft length of stream about 2 miles

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

Dolores River Watershed Study

Dolores River Watershed Study CHAPTER 4: RIVER AND FLOODPLAIN ISSUES The Dolores River falls into a category of streams in Colorado that share some unique characteristics. Like some other mountain streams in the state, it has a steep

More information

Kaskaskia Morphology Study Headwaters to Lake Shelbyville

Kaskaskia Morphology Study Headwaters to Lake Shelbyville Kaskaskia Morphology Study Headwaters to Lake Shelbyville KWA Mini Summit 5 March 2012 1 Kaskaskia Morphology Study Headwaters to Lake Shelbyville Conducted by U.S. Army Corps of Engineers, St. Louis District

More information

Black Gore Creek 2013 Sediment Source Monitoring and TMDL Sediment Budget

Black Gore Creek 2013 Sediment Source Monitoring and TMDL Sediment Budget Black Gore Creek 2013 Sediment Source Monitoring and TMDL Sediment Budget Prepared for: Prepared By: - I. Introduction The Black Gore Creek Total Maximum Daily Load (TMDL) was developed in collaboration

More information

Important Copyright Information

Important Copyright Information Important Copyright Information The following content is provided for educational purposes by the workshop presenter. This content may or may not have been peer reviewed. Information, opinions and recommendations

More information

Use of benthic invertebrate biological indicators in evaluating sediment deposition impairment on the Middle Truckee River, California

Use of benthic invertebrate biological indicators in evaluating sediment deposition impairment on the Middle Truckee River, California Use of benthic invertebrate biological indicators in evaluating sediment deposition impairment on the Middle Truckee River, California David B. Herbst Sierra Nevada Aquatic Research Laboratory University

More information

Clinton and Potter Counties, Pennsylvania

Clinton and Potter Counties, Pennsylvania Clinton and Potter Counties, Pennsylvania Prepared For: Trout Unlimited & Kettle Creek Watershed Association Prepared By: LARSON DESIGN GROUP, INC. 1000 COMMERCE PARK DRIVE WILLIAMSPORT, PA 17703-0487

More information

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT STREAM CLASSIFICATION & RIVER ASSESSMENT Greg Babbit Graduate Research Assistant Dept. Forestry, Wildlife & Fisheries Seneca Creek, Monongahela National Forest, West Virginia OBJECTIVES Introduce basic

More information

Rosgen Classification Unnamed Creek South of Dunka Road

Rosgen Classification Unnamed Creek South of Dunka Road Rosgen Classification Unnamed Creek South of Dunka Road Prepared for Poly Met Mining Inc. September 2013 Rosgen Classification Unnamed Creek South of Dunka Road Prepared for Poly Met Mining Inc. September

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Conceptual Model of Stream Flow Processes for the Russian River Watershed. Chris Farrar

Conceptual Model of Stream Flow Processes for the Russian River Watershed. Chris Farrar Conceptual Model of Stream Flow Processes for the Russian River Watershed Chris Farrar Several features of creeks affect the interactions between surface and groundwater. This conceptual model uses the

More information

Technical Memorandum. To: From: Copies: Date: 10/19/2017. Subject: Project No.: Greg Laird, Courtney Moore. Kevin Pilgrim and Travis Stroth

Technical Memorandum. To: From: Copies: Date: 10/19/2017. Subject: Project No.: Greg Laird, Courtney Moore. Kevin Pilgrim and Travis Stroth Technical Memorandum To: From: Greg Laird, Courtney Moore Kevin Pilgrim and Travis Stroth 5777 Central Avenue Suite 228 Boulder, CO 80301 www.otak.com Copies: [Electronic submittal] Date: 10/19/2017 Subject:

More information

Working with Natural Stream Systems

Working with Natural Stream Systems Working with Natural Stream Systems Graydon Dutcher Delaware County Soil & Water Conservation District Stream Corridor Management Program Tropical Storm Sandy October 29,2012 What is a Watershed?

More information

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes Geo 302D: Age of Dinosaurs LAB 2: Sedimentary rocks and processes Last week we covered the basic types of rocks and the rock cycle. This lab concentrates on sedimentary rocks. Sedimentary rocks have special

More information

Geomorphic Importance of Winter Peak Flows and Annual Snowmelt Hydrographs in a Sierra Nevada Boulder-Bedrock River

Geomorphic Importance of Winter Peak Flows and Annual Snowmelt Hydrographs in a Sierra Nevada Boulder-Bedrock River Geomorphic Importance of Winter Peak Flows and Annual Snowmelt Hydrographs in a Sierra Nevada Boulder-Bedrock River Scott McBain and Bill Trush McBain & Trush, Inc. Clavey River and Cherry Creek vicinity

More information

Channel Assessments of Selected Watersheds within TFL 52

Channel Assessments of Selected Watersheds within TFL 52 Channel Assessments of Selected Watersheds within TFL 52 prepared for: West Fraser Mills Ltd. Quesnel, BC prepared by: John Berry, M.Sc., R.P.F. Victoria, BC Channel Assessments TFL 52 Summary SUMMARY

More information

River Nith restoration, cbec UK Ltd, October 2013 APPENDIX A

River Nith restoration, cbec UK Ltd, October 2013 APPENDIX A APPENDIX A FLUVIAL AUDIT METHOD STATEMENT Fluvial Audit Methodology INTRODUCTION The procedure used to characterize the geomorphic and sedimentary regimes of the River Till is an adaptation of the Fluvial

More information

Assignment 1. Measuring River Characteristics- Vernon Creek. Applied Fluvial Geomorphology Field Techniques EESc 435

Assignment 1. Measuring River Characteristics- Vernon Creek. Applied Fluvial Geomorphology Field Techniques EESc 435 Assignment 1 Measuring River Characteristics- Vernon Creek Applied Fluvial Geomorphology Field Techniques EESc 435 Amanda Jardine 30100093 Jaime McDonald 14177083 Erica Massey 50870088 April 28, 2012 Introduction

More information

Lower South Fork McKenzie River Floodplain Enhancement Project

Lower South Fork McKenzie River Floodplain Enhancement Project Lower South Fork McKenzie River Floodplain Enhancement Project McKenzie River Ranger District Willamette National Forest Project Location The project is located in the South Fork McKenzie River Watershed,

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 200 TO 191 OF THE SACRAMENTO RIVER PHASE III REPORT Eric W. Larsen REPORT FOR DUCKS UNLIMITED March 31, 2006-1 - Contents

More information

Appendix I: The Summit-at-Snoqualmie Master Development Plan Proposal FEIS Physical and Biological Resource Data Tables

Appendix I: The Summit-at-Snoqualmie Master Development Plan Proposal FEIS Physical and Biological Resource Data Tables Appendix I: The Summit-at-Snoqualmie Master Development Plan Proposal FEIS Physical and Biological Resource Data Tables DPC Tables Rationale for DPC Analysis Parameters for 7 th Field Watersheds for The

More information

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation.

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation. River Response River Response Sediment Water Wood Confinement Valley slope Channel morphology Bank material Flow obstructions Riparian vegetation climate catchment vegetation hydrological regime channel

More information

GEOL 652. Poudre River Fieldtrip

GEOL 652. Poudre River Fieldtrip GEOL 652. Poudre River Fieldtrip One of the more difficult variables to measure and/or estimate when studying flow in natural channels is that of roughness. Roughness, usually approximated with Manning

More information

(3) Sediment Movement Classes of sediment transported

(3) Sediment Movement Classes of sediment transported 9/17/15 (3) Sediment Movement Classes of sediment transported Dissolved load Suspended load Important for scouring algae Bedload (5-10% total load) Moves along bed during floods Source of crushing for

More information

PHASE 1 STREAM GEOMORPHIC ASSESSMENT. Castleton River, Rutland County Vermont. Final Report

PHASE 1 STREAM GEOMORPHIC ASSESSMENT. Castleton River, Rutland County Vermont. Final Report PHASE 1 STREAM GEOMORPHIC ASSESSMENT Castleton River, Rutland County Vermont Final Report September 15, 2005 TABLE OF CONTENTS INTRODUCTION.. 3 STUDY AREA BACKGROUND... 5 METHODOLOGY 5 DATA INPUTS/STUDY

More information

27. Running Water I (p ; )

27. Running Water I (p ; ) 27. Running Water I (p. 424-436; 440-444) Hydrosphere How much of the Earth s surface is covered by water? Earth's water is collectively called the and is stored in a number of so-called as follows: 1.

More information

River Morphology. EAD 511 River management

River Morphology. EAD 511 River management River Morphology EAD 511 River management Introduction FLUVIAL GEOMORPHOLOGY Webster's New World Dictionary defines fluvial as: of, found in, or produced by a river or rivers. The same reference defines

More information

Illinois State Water Survey Division

Illinois State Water Survey Division Illinois State Water Survey Division SURFACE WATER SECTION SWS Contract Report 397 AT THE UNIVERSITY OF ILLINOIS SEDIMENTATION SURVEY OF ASHLEY LAKE, WASHINGTON COUNTY, ILLINOIS by William C. Bogner Prepared

More information

Historical channel change on the Upper Gila River, Arizona and New Mexico in response to anthropogenic modifications and extreme floods

Historical channel change on the Upper Gila River, Arizona and New Mexico in response to anthropogenic modifications and extreme floods Historical channel change on the Upper Gila River, Arizona and New Mexico in response to anthropogenic modifications and extreme floods www.archives.gov www.paztcn.wr.usgs.gov wrh.noaa.gov Upper Gila River

More information

Griswold Creek August 22, 2013

Griswold Creek August 22, 2013 Creek August 22, 2013 1 Lake Erie Protection Fund Creek Study ver Evaluate the overall condition of Creek Determine stable channel dimensions & appropriate restoration techniques Starting Stat gpoint for

More information

Sediment Distribution and Characteristics

Sediment Distribution and Characteristics Sediment Distribution and Characteristics Sediments at the bottom of ponds are a source or sink for nutrients in relation to the water column, contribute to turbidity during storm events, serve as the

More information

3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS CLIMATE GEOLOGY TOPOGRAPHY

3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS CLIMATE GEOLOGY TOPOGRAPHY 3.3 CLIMATE, GEOLOGY, TOPOGRAPHY, AND SOILS This section describes the climate, geology, topography, and soil resource characteristics of the Yolo Bypass Wildlife Area (Wildlife Area). Agricultural soil

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas FLUVIAL PROCESSES Fluvial Processes The Impact of Fluvial Processes on the Landscape Streams and Stream Systems Stream Channels Structural Relationships The Shaping and

More information

Human Impacts to Rivers

Human Impacts to Rivers Human Impacts to Rivers Sediment Water Wood Confinement Valley slope Channel morphology Bank material Flow obstructions Riparian vegetation Human Impacts on Rivers dams channelization loss of woody debris/riparian

More information

The River Restoration Centre therrc.co.uk. Understanding Fluvial Processes: supporting River Restoration. Dr Jenny Mant

The River Restoration Centre therrc.co.uk. Understanding Fluvial Processes: supporting River Restoration. Dr Jenny Mant The River Restoration Centre therrc.co.uk Understanding Fluvial Processes: supporting River Restoration Dr Jenny Mant Jenny@therrc.co.uk Understanding your catchment Hydrology Energy associated with the

More information

Technical Supplement 3E. Rosgen Stream Classification Technique Supplemental Materials. (210 VI NEH, August 2007)

Technical Supplement 3E. Rosgen Stream Classification Technique Supplemental Materials. (210 VI NEH, August 2007) Technical Supplement 3E (210 VI NEH, August 2007) Issued August 2007 Cover photo: The Rosgen stream classification system uses morphometric data to characterize streams. Advisory Note Techniques and approaches

More information