Earth s Atmosphere. Atmospheric Composition 78% Nitrogen 21% Oxygen 1 % Argon, 0.03% Carbon dioxide, Water. Recall the Electro-Magnetic (EM) Spectrum

Size: px
Start display at page:

Download "Earth s Atmosphere. Atmospheric Composition 78% Nitrogen 21% Oxygen 1 % Argon, 0.03% Carbon dioxide, Water. Recall the Electro-Magnetic (EM) Spectrum"

Transcription

1 Key Concepts: Lecture 11 Earth s Atmosphere and Greenhouse Effect Blackbody Radiation and Temperature Earth s Oceans Earth s Magnetic Field and Aurora The Green House Effect Temperature set by balancing energy in and energy out Energy In: From sunlight: 50% reaches the ground (the rest reflect back to space) Energy Out: Infrared light from the heated surface Without Atmosphere T(average)=-18C = 255 K With Atmosphere T(average)=+15C = 288 K Atmosphere is transparent to optical sunlight Water and Carbon Dioxide are opaque to infrared from surface - energy is trapped and thus heats the Earth s surface Note Kelvin Temperature scale: Absolute zero: 0K = -273 Celsius (C) 0C = +273K So -18C = =255K and +15C = =288K Earth s Atmosphere Atmospheric Composition 78% Nitrogen 21% Oxygen 1 % Argon, 0.03% Carbon dioxide, Water Protects the surface Blocks ultraviolet radiation from Sun Blocks cosmic rays and radiation Blocks small impacts Regulates Surface Temperature Clouds reflect sunlight Atmosphere traps and holds heat Atmospheric circulation moderates temperatures For Kelvin (K) temperature scale, see next slide Recall the Electro-Magnetic (EM) Spectrum Electro-magnetic waves of different wavelengths. Visible light is only a very small part of the whole EM spectrum.

2 Light is emitted from all objects depending on their temperature: Blackbody Radiation (see Ch. 2.4 in textbook) All objects with a temperature above absolute zero (-273C; -459F; 0K) emit light: the light waves carry energy. Temperature is a measure of how quickly the atoms in an object are moving and vibrating. Hotter objects emit more light energy because the motions of the electrons in their atoms are more violent: larger amplitude of waves in electric field. Hotter objects emit shorter wavelength light because the frequency of oscillation of electrons is higher. Question? Since the industrial revolution humans have been burning more trees and fossil fuel. This has caused the amount of CO 2 to increase in the atmosphere. What effect would you expect this to have on temperatures on Earth? Earth s temperature is about 300K 400 ppm was breached on May 9, Room temperature objects (i.e. T~300K) emit light that peaks in the infrared, with wavelengths ~10 microns. This is about 20 times longer than visible light and is not visible to our eyes.

3 Astro News Atmospheric Escape Properties of a gas behaves like a group of hard balls moving and colliding Speed depends on the temperature Light gas particles move faster When they collide with more massive particles they recoil at higher speeds The gravity of a planet holds the gas in More massive planets can hold lighter gasses Equal forces Larger accel The Primordial Atmosphere The original atmosphere - we expect this was mostly hydrogen and helium These are the most common elements in the universe Came from formation of Earth Atmosphere was lost Light atoms move faster than heavy Hydrogen and Helium have low mass Their velocity is above escape velocity (11km/s) Evolution of the Atmosphere Secondary atmosphere from volcanic outgassing Volcanoes emit CO 2, SO 2, H 2, N 2, water (H 2 O), methane (CH 4 ), ammonia (NH 3 ) Removing the carbon dioxide Dissolves in the oceans and is subducted Ends up in rocks 3 billion years ago mostly methane, H 2, SO 2 Formation of N 2 and CO 2 Ultraviolet sunlight breaks up methane and ammonia Nitrogen from ammonia - CO 2 from methane and water Hydrogen escapes into space

4 Oxygen (O 2 ) in the Atmosphere Very little primordial oxygen Almost no oxygen 2 billion years ago 1 billion years ago 2% of atmosphere was O million years ago sudden increase Origin of oxygen Biological activity started ~3.5 billion years ago Plants convert CO 2 into O 2 and trap carbon Dead biomass is trapped in the Earth and subducted -> oil Origin of the Ocean After formation Almost no liquid water Water trapped inside the Earth Water from inside the Earth Volcanoes emit gasses and steam Steam cools and condenses into water Oceans in 4.5 billion years at current rate Water also came from space Earth is continual hit by comets Comets contain a large amount of water ice Water can be removed into the Earth by subduction The Ocean Water covers a large fraction of the Earth 71% of surface area Average depth 4 km Helps regulate and moderate temperatures Important for evolution of atmosphere Must have liquid water for life Contains much of the life on Earth Question? If the Earth had no water and therefore life had never occurred, what would the Earth s atmosphere be like? If you were trying to locate a planet with life on it, what atmospheric constituents would you look for?

5 The Magnetic Field The solid core rotates faster than the surrounding liquid core. This Dynamo acts like a generator. The field is roughly aligned with the rotation axis. The field flips every years or so. Rotating, electrically conducting, i.e. metallic, liquid core is necessary to produce a strong magnetic field. Question If the Earth had no magnetic field. What would happen to the Aurora? The Sun emits a large number of charged particles from solar activity These particles are trapped in the Earth s magnetic field The field channels them near the pole When they hit the atmosphere it causes the air to glow The Aurora

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Review Clickers The Cosmic Perspective Seventh Edition Jovian Planet Systems If Jupiter was the size of a basketball, Earth would be the size of a(n) a) bacterium. b) grain of rice. c) marble. d) orange.

More information

AT 350 EXAM #1 February 21, 2008

AT 350 EXAM #1 February 21, 2008 This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

More information

Earth as Planet. Earth s s Magnetic Field. The Earth s s Crust. Earth s s Interior

Earth as Planet. Earth s s Magnetic Field. The Earth s s Crust. Earth s s Interior Earth as Planet Earth s s Interior The Earth is a medium size planet with a diameter of 12,756 kilometers (7926 miles) Composed primarily of iron, silicon, and oxygen Nearly circular orbit and just the

More information

The Sun and Planets Lecture Notes 6.

The Sun and Planets Lecture Notes 6. The Sun and Planets Lecture Notes 6. Lecture 6 Venus 1 Spring Semester 2017 Prof Dr Ravit Helled Cover photo: Venus in true color (Courtesy of NASA) Venus Properties Venus is the second brightest natural

More information

Climate Regulation. - What stabilizes the climate - Greenhouse effect

Climate Regulation. - What stabilizes the climate - Greenhouse effect Climate Regulation - What stabilizes the climate - Greenhouse effect Last time! Processes that shaped Earth: Volcanism, tectonics! How we retain atmospheric molecules ( escape speed )! A magnetic field

More information

10/31/2017. Calculating the temperature of earth (The greenhouse effect) IR radiation. The electromagnetic spectrum

10/31/2017. Calculating the temperature of earth (The greenhouse effect)   IR radiation. The electromagnetic spectrum Calculating the temperature of earth (The greenhouse effect) EM radiation so far Spectrum of EM radiation emitted by many objects may be approximated by the blackbody spectrum Blackbody spectrum (plot

More information

The Earth. Overall Structure of Earth

The Earth. Overall Structure of Earth The Earth Why Study The Earth??? It s our home! Where did life come from, where is it going. To understand the other planets. Study of other planets will, in turn, help us understand the Earth. Overall

More information

Evolution of the Atmosphere

Evolution of the Atmosphere Evolution of the Atmosphere Anticipation Guide Oxygen is the main gas found in the atmosphere The current atmosphere is the same atmosphere that the Earth had when it formed Water vapor is a gas found

More information

Shape and Size of the Earth

Shape and Size of the Earth Planet Earth Shape and Size of the Earth Gravity is what gives Earth its spherical shape Only effective if the body is of a critical size Critical radius is about 350 km Shape and Size of the Earth Earth

More information

see disks around new stars in Orion nebula where planets are probably being formed 3

see disks around new stars in Orion nebula where planets are probably being formed 3 Planet Formation contracting cloud forms stars swirling disk of material around forming star (H, He, C, O, heavier elements, molecules, dust ) form planets New born star heats up material, blows away solar

More information

Temperature Scales

Temperature Scales TEMPERATURE is a measure of the internal heat energy of a substance. The molecules that make up all matter are in constant motion. By internal heat energy, we really mean this random molecular motion.

More information

ASTRO 120 Sample Exam

ASTRO 120 Sample Exam ASTRO 120 Sample Exam 1) If a planet has a reasonably strong magnetic field, we know that a. It is made entirely of iron b. There is liquid nitrogen below the surface c. It can harbor life d. It has a

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE. Review next time? Exam next week

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE. Review next time? Exam next week Today Terrestrial Planet Atmospheres (continued) Events Homework DUE Review next time? Exam next week Planetary Temperature A planet's surface temperature is determined by the balance between energy from

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Mars, Venus, Earth What is an atmosphere? An atmosphere is a (usually very thin) layer of gas that surrounds a world. How does the greenhouse effect warm a planet? No

More information

ATS150 Global Climate Change Spring 2019 Candidate Questions for Exam #1

ATS150 Global Climate Change Spring 2019 Candidate Questions for Exam #1 1. How old is the Earth? About how long ago did it form? 2. What are the two most common gases in the atmosphere? What percentage of the atmosphere s molecules are made of each gas? 3. About what fraction

More information

Planetary Atmospheres (Chapter 10)

Planetary Atmospheres (Chapter 10) Planetary Atmospheres (Chapter 10) Based on Chapter 10 This material will be useful for understanding Chapters 11 and 13 on Jovian planet systems and Extrasolar planets Chapters 4, 5, and 8 on Momentum,

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Chapter 7 Earth and the Terrestrial Worlds

Chapter 7 Earth and the Terrestrial Worlds Chapter 7 Earth and the Terrestrial Worlds Guest Lecture by Chris Kelso Please pick up one notecard of each color (5 total) Outline The Earth s Interior The Earth s Surface The Earth s Atmosphere Concept

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

Greenhouse Effect. Julia Porter, Celia Hallan, Andrew Vrabel Miles, Gary DeFrance, and Amber Rose

Greenhouse Effect. Julia Porter, Celia Hallan, Andrew Vrabel Miles, Gary DeFrance, and Amber Rose Greenhouse Effect Julia Porter, Celia Hallan, Andrew Vrabel Miles, Gary DeFrance, and Amber Rose What is the Greenhouse Effect? The greenhouse effect is a natural occurrence caused by Earth's atmosphere

More information

The Solar System. Earth as a Planet

The Solar System. Earth as a Planet The Solar System Earth as a Planet Earth s Interior Core: Highest density; nickel and iron Mantle: Moderate density; silicon, oxygen, etc. Crust: Lowest density; granite, basalt, etc. Differentiation Gravity

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Astro 1010 Planetary Astronomy Sample Questions for Exam 4

Astro 1010 Planetary Astronomy Sample Questions for Exam 4 Astro 1010 Planetary Astronomy Sample Questions for Exam 4 Chapter 8 1. Which of the following processes is not important in shaping the surface of terrestrial planets? a) Impact cratering b) Tectonism

More information

Investigating Planets Name: Block: E1:R6

Investigating Planets Name: Block: E1:R6 FYI: Planetary Temperatures and Atmospheres Read FYI: A Planet s Temperature, The Importance of an Atmosphere, and The Greenhouse Effect As you read answer the following questions about the readings: Word/Term

More information

Planetary Temperatures

Planetary Temperatures Planetary Temperatures How does Sunlight heat a planet with no atmosphere? This is similar to our dust grain heating problem First pass: Consider a planet of radius a at a distance R from a star of luminosity

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

AST 105 Intro Astronomy The Solar System

AST 105 Intro Astronomy The Solar System AST 105 Intro Astronomy The Solar System STRUCTURE OF A PLANET S ATMOSPHERE If you remember this. X-rays Ultraviolet Heating & Destruction Heating & Destruction Visible Infrared Transmission and Scattering

More information

Terrestrial Planets: The Earth as a Planet

Terrestrial Planets: The Earth as a Planet Terrestrial Planets: The Earth as a Planet In today s class, we want to look at those characteristics of the Earth that are also important in our understanding of the other terrestrial planets. This is

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1 Note Page numbers refer to Daniel Jacob s online textbook: http://acmg.seas.harvard.edu/publications/ jacobbook/index.html Atmos = vapor + sphaira

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

ESS15 Lecture 7. The Greenhouse effect.

ESS15 Lecture 7. The Greenhouse effect. ESS15 Lecture 7 The Greenhouse effect. Housekeeping. First midterm is in one week. Open book, open notes. Covers material through end of Friday s lecture Including today s lecture (greenhouse effect) And

More information

CRITICAL THINKING ACTIVITY: INTERPRETING THE GOLDILOCKS EFFECT (1)

CRITICAL THINKING ACTIVITY: INTERPRETING THE GOLDILOCKS EFFECT (1) Student Sheet 1 CRITICAL THINKING ACTIVITY: INTERPRETING THE GOLDILOCKS EFFECT (1) The Goldilocks Effect is derived from a children's story "The Three Bears" in which a little girl named Goldilocks finds

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Midterm 2 Scores. Class average: 40/50. # of students. Exam score

Midterm 2 Scores. Class average: 40/50. # of students. Exam score Global Warming Midterm 2 Scores Class average: 40/50 # of students Exam score Learning Objectives (LO) Lecture 19: Global Warming and Energy Use Read: Chapter 14 Homework due Thursday Nov. 5 What we ll

More information

A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Solar Flux

A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Solar Flux When you compare gamma ray photons with photons of radio waves, which of the following is true? Gamma rays have a shorter wavelength and less energy Gamma rays have a shorter wavelength and same energy

More information

PHYS:1200 LECTURE 18 THERMODYNAMICS (3)

PHYS:1200 LECTURE 18 THERMODYNAMICS (3) 1 PHYS:1200 LECTURE 18 THERMODYNAMICS (3) This lecture presents a more detailed discussion of heat flow by radiation and its importance in the physics of the atmosphere. We will discuss some important

More information

Lecture 4: Global Energy Balance

Lecture 4: Global Energy Balance Lecture : Global Energy Balance S/ * (1-A) T A T S T A Blackbody Radiation Layer Model Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

Chapter 7 Earth Pearson Education, Inc.

Chapter 7 Earth Pearson Education, Inc. Chapter 7 Earth Units of Chapter 7 7.1 Overall Structure of Planet Earth 7.2 Earth s Atmosphere Why Is the Sky Blue? The Greenhouse Effect and Global Warming 7.3 Earth s Interior Radioactive Dating Units

More information

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So..

WHAT WE KNOW. Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. ASTRONOMY THE BIG BANG THEORY WHAT WE KNOW Scientists observe that every object in the universe is moving away from each other. Objects furthest away are moving the fastest. So.. WHAT DOES THIS MEAN? If

More information

The Layered Atmosphere:

The Layered Atmosphere: The Layered Atmosphere: The Earth s Atmosphere Like all the planets, the Earth s atmosphere is highly distinct. What makes it different from the other terrestrial planets? Comparative Planetology The basic

More information

EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock

EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock between the Earth s crust and core Core: The central

More information

Review: Properties of a wave

Review: Properties of a wave Radiation travels as waves. Waves carry information and energy. Review: Properties of a wave wavelength (λ) crest amplitude (A) trough velocity (v) λ is a distance, so its units are m, cm, or mm, etc.

More information

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p )

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p ) Lecture 20 Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p.158-170) end of last ice-age; begin civilization beginning of modern era of ice-ages asteroid

More information

Earth s Atmosphere. Describing Earth s Atmosphere

Earth s Atmosphere. Describing Earth s Atmosphere CHAPTER 4 Earth s Atmosphere LESSON 1 Describing Earth s Atmosphere What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column

More information

LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

More information

Section 2: The Atmosphere

Section 2: The Atmosphere Section 2: The Atmosphere Preview Classroom Catalyst Objectives The Atmosphere Composition of the Atmosphere Air Pressure Layers of the Atmosphere The Troposphere Section 2: The Atmosphere Preview, continued

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 27, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves Skills Worksheet Directed Reading Section: Solar Energy and the Atmosphere 1. How is Earth s atmosphere heated? 2. Name the two primary sources of heat in the atmosphere. RADIATION In the space provided,

More information

Science Practice Astronomy (AstronomyJSuber)

Science Practice Astronomy (AstronomyJSuber) Name: Date: 1. The pull of gravity on Earth is a direct result of the A. mass of Earth. B. magnetic field of Earth. C. rotation of Earth on its axis. D. weight of Earth's atmosphere. This online assessment

More information

Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds 2014 Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial

More information

Wednesday, September 8, 2010 Infrared Trapping the Greenhouse Effect

Wednesday, September 8, 2010 Infrared Trapping the Greenhouse Effect Wednesday, September 8, 2010 Infrared Trapping the Greenhouse Effect Goals to look at the properties of materials that make them interact with thermal (i.e., infrared, or IR) radiation (absorbing and reemitting

More information

ASTR Midterm 1 Phil Armitage, Bruce Ferguson

ASTR Midterm 1 Phil Armitage, Bruce Ferguson ASTR 1120-001 Midterm 1 Phil Armitage, Bruce Ferguson FIRST MID-TERM EXAM FEBRUARY 16 th 2006: Closed books and notes, 1 hour. Please PRINT your name and student ID on the places provided on the scan sheet.

More information

Evolution of Earth Environments Bio-Geo-Chemical Cycling

Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of the Earliest Atmospheres of Mars and Earth Volcanic Outgassing Evolving to Equilibrium Atmosphere To Atmosphere Lost to space (Abundant)

More information

The greenhouse effect

The greenhouse effect The greenhouse effect Visible light arrives About half reflected, half is absorbed by the ground. This absorbed energy is then reradiated, but NOT in the visible (would just go out again anyway); in the

More information

Our Sun. The centre of our solar system

Our Sun. The centre of our solar system Our Sun The centre of our solar system Nicolaus Copernicus Our Sun The sun represents 99.86% of the mass in our solar system. It is ¾ hydrogen and ¼ helium. More than 1 million Earths can fit inside the

More information

The Atmosphere is the layer of air surrounding the Earth

The Atmosphere is the layer of air surrounding the Earth The Atmosphere is the layer of air surrounding the Earth The gases in the atmosphere are important because: They block out dangerous rays from the sun, such as UV rays They stabilize the temperature across

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

More information

Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect

Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect Earth Fun Facts 1. Only body with liquid water on the surface. 2. Most massive terrestrial body in solar system 3. Only

More information

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

More information

Astronomy Chapter 12 Review

Astronomy Chapter 12 Review Astronomy Chapter 12 Review Approximately how massive is the Sun as compared to the Earth? A. 100 times B. 300 times C. 3000 times D. 300,000 times E. One million times Approximately how massive is the

More information

2/22/ Atmospheric Characteristics

2/22/ Atmospheric Characteristics 17.1 Atmospheric Characteristics Atmosphere: the gaseous layer that surrounds the Earth I. In the past, gases came from volcanic eruptions A. Water vapor was a major component of outgassing B. Other gases

More information

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface.

Earth s Atmosphere. Energy Transfer in the Atmosphere. 3. All the energy from the Sun reaches Earth s surface. CHAPTER 11 LESSON 2 Earth s Atmosphere Energy Transfer in the Atmosphere Key Concepts How does energy transfer from the Sun to Earth and to the atmosphere? How are air circulation patterns within the atmosphere

More information

Our Sun. & the Planets. Sun and Planets.notebook. October 18, Our Sun (a quick review) Hydrogen is the main fuel source

Our Sun. & the Planets. Sun and Planets.notebook. October 18, Our Sun (a quick review) Hydrogen is the main fuel source Sun and Planets.notebook October 18, 2016 Our Sun Our Sun (a quick review) Average size main sequence star Hydrogen is the main fuel source In about 5 billion years it will become a & the Planets red giant

More information

The Atmosphere. Composition of the Atmosphere. Section 2

The Atmosphere. Composition of the Atmosphere. Section 2 The Atmosphere Earth is surrounded by a mixture of gases known as the Nitrogen, oxygen, carbon dioxide, and other gases are all parts of this mixture. Earth s atmosphere changes constantly as these gases

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am The Earth What Powers the Earth's atmosphere, oceans and land The Earth's Interior Continental movement. The Earth's protection

More information

Mars & Venus: Just Down the Street

Mars & Venus: Just Down the Street Mars & Venus: Just Down the Street Of course, Mars & Venus are our nearest planetary neighbors and are more similar to Earth than any other bodies in the Solar System. Your author does an excellent job

More information

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years Lecture 3 - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years METR 113/ENVS 113 Spring Semester 2011 March 1, 2011 Suggested Reading

More information

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Chapter 4 Lesson 1: Describing Earth s Atmosphere Chapter 4 Lesson 1: Describing Earth s Atmosphere Vocabulary Importance of Earth s Atmosphere The atmosphere is a thin layer of gases surrounding Earth. o Contains the oxygen and water needed for life.

More information

Climate Change Lecture Notes

Climate Change Lecture Notes Climate Change Lecture Notes (Topic 12A) page 1 Climate Change Lecture Notes Learning Outcomes for the Climate Change Unit 1. Students can list observations which suggest that the world is warming, and

More information

THE GREENHOUSE EFFECT

THE GREENHOUSE EFFECT ASTRONOMY READER THE GREENHOUSE EFFECT 35.1 THE GREENHOUSE EFFECT Overview Planets are heated by light from the Sun. Planets cool off by giving off an invisible kind of light, longwave infrared light.

More information

Recall: The Importance of Light

Recall: The Importance of Light Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

More information

Climate & Earth System Science. Introduction to Meteorology & Climate CHAPTER 1 LECTURE 1. Question: Introduction to the Atmosphere

Climate & Earth System Science. Introduction to Meteorology & Climate CHAPTER 1 LECTURE 1. Question: Introduction to the Atmosphere Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Grades 9-12: Earth Sciences

Grades 9-12: Earth Sciences Grades 9-12: Earth Sciences Earth Sciences...1 Earth s Place in the Universe...1 Dynamic Earth Processes...2 Energy in the Earth System...2 Biogeochemical cycles...4 Structure and Composition of the Atmosphere...4

More information

The Sun. SESAME Astronomy Week 4. Thursday, February 10, 2011

The Sun. SESAME Astronomy Week 4. Thursday, February 10, 2011 The Sun SESAME Astronomy Week 4 1 1 Our star Not special: typical mass, typical temperature, typical size, typical planetary system about halfway through its 10 billion year lifespan 2 2 Vital statistics

More information

Period 13 Solutions: Earth as an Energy System

Period 13 Solutions: Earth as an Energy System Period 13 Solutions: Earth as an Energy System 13.1 The Earth-Sun System 1) Energy from the sun Observe the models of the Earth, Moon, and Sun in the room. a) Imagine that the distance between the Earth

More information

Unit 3 Review Guide: Atmosphere

Unit 3 Review Guide: Atmosphere Unit 3 Review Guide: Atmosphere Atmosphere: A thin layer of gases that forms a protective covering around the Earth. Photosynthesis: Process where plants take in carbon dioxide and release oxygen. Trace

More information

Lecture 3: Global Energy Cycle

Lecture 3: Global Energy Cycle Lecture 3: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Flux and Flux Density Solar Luminosity (L)

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

Ocean s Influence on Weather and Climate

Ocean s Influence on Weather and Climate Earth is often called the Blue Planet because so much of its surface (about 71%) is covered by water. Of all the water on Earth, about 96.5%, is held in the world s oceans. As you can imagine, these oceans

More information

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation.

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation. Light & Atoms Electromagnetic [EM] Waves Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation. These have both and electric part and a magnetic part

More information

Origin of Earth s Water When Earth first formed it was so hot that the original water would be lost to space Water added later by comets and/or

Origin of Earth s Water When Earth first formed it was so hot that the original water would be lost to space Water added later by comets and/or Origin of Earth s Water When Earth first formed it was so hot that the original water would be lost to space Water added later by comets and/or asteroids?? Some water (H 2 +O) formed in Protoplanetary

More information

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides Earth Interior Crust Hydrosphere Atmosphere Magnetosphere Tides Semi-major Axis 1 A.U. Inclination 0 Orbital period 1.000 tropical year Orbital eccentricity 0.017 Rotational period 23 h 56 min 4.1 s Tilt

More information

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light? Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact? How do we experience light?

More information

Evolution of the Atmosphere: The Biological Connection

Evolution of the Atmosphere: The Biological Connection Evolution of the Atmosphere: The Biological Connection The Earth s Four Spheres How It All Began Or At Least How We Think It Began O.k. it s a good guess Egg of energy The Big Bang splattered radiation

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter Chapter 5 Lecture The Cosmic Perspective Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact?

More information

ATM S 111: Global Warming Solar Radiation. Jennifer Fletcher Day 2: June

ATM S 111: Global Warming Solar Radiation. Jennifer Fletcher Day 2: June ATM S 111: Global Warming Solar Radiation Jennifer Fletcher Day 2: June 22 2010 Yesterday We Asked What factors influence climate at a given place? Sunshine (and latitude) Topography/mountains Proximity

More information

1 Characteristics of the Atmosphere

1 Characteristics of the Atmosphere CHAPTER 1 1 Characteristics of the Atmosphere SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What is Earth s atmosphere made of? How do

More information

Planet Earth. Our Home APOD

Planet Earth. Our Home APOD Planet Earth Our Home APOD 1 Earth a highly evolved planet = altered dramatically since formation, due to flow of energy from interior to surface 2 Planet Earth Facts diameter (equator) 12,756 km radius

More information