PATTERN OF INTRAPLATE SEISMICITY IN SOUTHWEST JAPAN BEFORE AND AFTER GREAT INTERPLATE EARTHQUAKES

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PATTERN OF INTRAPLATE SEISMICITY IN SOUTHWEST JAPAN BEFORE AND AFTER GREAT INTERPLATE EARTHQUAKES"

Transcription

1 Tectonophysics, 51 (1979) Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands 267 PATTERN OF INTRAPLATE SEISMICITY IN SOUTHWEST JAPAN BEFORE AND AFTER GREAT INTERPLATE EARTHQUAKES TETSUZO SENO Geophysical Institute, Faculty of Science, University of Tokyo, Tokyo 113 (Japan) (Submitted August 9, 1977; revised version accepted July 14, 1978) ABSTRACT Seno, T., Pattern of intraplate seismicity in southwest Japan before and after great interplate earthquakes. Tectonophysics, 57: A fairly complete set of data on intraplate seismicity in southwest Japan during the past 170 years reveals that the seismicity before great interplate earthquakes along the Nankai trough is high over the land area adjacent to the rupture zones of the great interplate earthquakes and the seismicity after the interplate earthquakes is high in the marginal zones that border the preseismically active area. This change of seismicity distribution before and after great interplate earthquakes can be explained by the two modes of horizontal deformation in the continental-plate margin; that is, the contraction of the land area adjacent to the rupture zone of great interplate events before their occurrence and the blockwise extension of the area seaward at the time of these interplate shocks. One of the characteristic features of intraplate seismic energy release during historic times is that it is large in the narrow zones which border the land areas adjacent to the specific rupture zones of historic great interplate earthquakes. These zones must have been exposed to the shearing stress due to the blockwise extension of the areas adjacent to the specific rupture zones at the time of interplate shocks and this may provide a reason for the large seismic energy release within these marginal zones in historic times. Recent intraplate seismicity in southwestern Japan shows that intraplate earthquakes tend to cluster in the area adjacent to the expected rupture zone of a future great event off the Tokai district. A simple statistical test shows that this clustering of intraplate events in the area is significant within a 96% confidence level. The level of seismic activity in this area is 18 times larger than the normal level of activity between interplate earthquakes. This high level of activity provides another piece of evidence for a possibility of occurrence of a great interplate event off Tokai. The land area adjacent to the rupture zone off Tokai deserves high priorty for instrumentation of various types to record in the near field the destructive intraplate earthquakes which may occur over several decades before and after the future great Tokai event. INTRODUCTION In this study the interaction between the oceanic and continental plates of lithosphere along the Nankai trough (Fig. l), a consuming plate boundary

2 Sagan% Trough 32 Nankai Trough Philippine Sea 130 E 135O 140 Fig. 1. Map of southwestern broken line. Japan. The area treated in this study is indicated by the between the Philippine Sea and the Eurasian plates, is investigated in terms of spatial distribution of intraplate seismicity before and after historic great interplate earthquakes along this plate boundary. The stress states of the continental-plate margin along consuming plate boundaries may be significantly affected by the occurrence of great interplate earthquakes (Mogi, 1969; Utsu, 1974a, b; Shimazaki, 1976b, 1978; Seno, 1978). Intraplate earthquakes occurring in the vicinity of the plate boundary are supposed to have a tectonic origin closely related to the plate interaction. Southwest Japan may be one of the most appropriate plate margins for studying the plate interaction in terms of intraplate seismicity because the plate boundary along the Nankai trough has been broken regularly in a series of great interplate earthquakes at low200-year time intervals at least for the past lo5 years (Yoshikawa et al., 1964; Yonekura, 1968; Fitch and Scholz, 1971; Ando, ; Seno, 1977a, b) and because fairly complete historic seismicity data for the past hundreds of years are available in southwest Japan (e.g., Shimazaki, 1976a). The great historic interplate earthquakes along the Nankai trough are herein called Nankai trough earthquakes or Nankai trough events, for brevity. Ozawa (1973) noticed that since the year 887, destructive earthquakes in the vicinity of Kyoto (Fig. 1) have occurred more frequently during the

3 269 thirty years before Nankai trough events than during other periods. Utsu (1974a, b) showed that for the past 1000 years the frequency of occurrence of earthquakes accompanied by damage in southwest Japan is almost four times larger during the fifty years before and the ten years after the Nankai trough events than during other periods. Shimazaki (1976b) confirmed the results by Utsu (1974a, b) for the past 400 years and further pointed out that the seismicity prior to the Nankai trough-events is high along the inland belt of southwest Japan and that after these events it is high along the Japan Sea and the Philippine Sea coasts. In this study, the spatial distribution of intraplate seismicity before and after the Nankai trough events is investigated especially in connection with the spatial extent of the rupture zones of the Nankai trough events. Characteristic features of intraplate seismicity distribution before and after the Nankai trough events may provide a useful piece of information for instrumentation to record various phenomena associated with severe intraplate earthquakes. The intraplate seismicity during the 50 years before and the 10 years after Nankai trough events is called preseismic and postseismic activity, respectively. The seismic activity during other periods is called interseismic activity. DATA The seismicity data used in this study are: (1) the Descriptive Catalogue of Disaster Earthquakes in Japan (Usami, 1975) for the period before 1926, (2) the Catalogue of Major Earthquakes in and near Japan (Japan Meteorological Agency, JMA, 1958, 1966, 1968) for the period , and (3) the Seismological Bulletin of the Japan Meteorological Agency for the period The time period treated in this study includes the past 422 years ( ). In this period, four seismic cycles of great Nankai trough events are contained (one seismic cycle means a series of pre-, post- and interseismic activity in this order for one Nankai trough event). They are: the 1605 Keicho event (M = 7.9), the 1707 Hoei event (M = 8.4), the 1854 Ansei I (il4 = 8.4) and Ansei II (1M = 8.4) events, and the 1944 Tonankai (M = 8.0) and the 1946 Nankaido (A4 = 8.1) events. The completeness of the seismicity data is not guaranteed in general, especially in dealing with such a long historic time as the past 400 years. Shimazaki (1976a) examined the detectability of earthquakes in this period in Usami s catalogue and obtained a qualified guarantee for the detectability of earthquakes of magnitude 6.4 and above. We treat in this study earthquakes of magnitude 6.0 and above. Although a certain number of historic events of magnitude might not be listed in Usami s catalogue for the period before 1926, events in this magnitude range are used supplimentarily in this study. The Central Meteorological Observatory (the former JMA) began the systematic collection of

4 270 reports on felt earthquakes all over Japan in 1884 (Usami and Hamamatsu, 1967); thus, seismicity data since 1884 are reliable enough for the present study, although this has caused a remarkable change in detectability of earthquakes in Usami s catalogue (Shimazaki, 1976b). Fortunately, however, this discontinuity in data corresponds approximately to the start of the seismic cycle of the 1944 and 1946 events. Since intraplate seismicity is investigated for each seismic cycle in this study, the discontinuity around the years 1884 will not affect our study too seriously. The area indicated by the broken line in Fig. 1 will be roughly termed southwest Japan and those intraplate earthquakes occurring within this area are treated in this study. To select only intraplate earthquakes, we exclude the following earthquakes: apparent aftershocks of the Nankai trough events, those with foci deeper than 50 km, and those that occurred in the sea near the rupture zones of the Nankai trough events. Although the focal depths of the earthquakes in Usami s catalogue are not known, we regard them as shallow, because deep earthquakes rarely cause damage (e.g., Shimazaki, 1976a). INTRAPLATE SEISMICITY BEFORE AND AFTER NANKAI TROUGH EARTHQUAKES 1944 Tonankai and 1946 Nankaido earthquakes The Tonankai event (M = 8.0) of December 7, 1944 and the Nankaido event (M = 8.1) of December 21, 1946, are the most recent Nankai trough events. The former event ruptured zone C and the latter one zones A and B (Fig. 2; Ando, 1975b; Ishibashi, 1977). Since the latter event occurred only two years after the former one, intraplate seismicity before and after these events should be treated at the same time. Fig. 2A shows the preseismic activity during the 50 years before these events. The direction of plate convergence under southwest Japan (Seno, 1977b) is indicated by the white arrows. In this activity, the well-known destructive intraplate events: the 1905 Geiyo (M = 7.1), 1909 Anegawa (M = 6.4), 1925 Kita-Tajima (M = 6.5), 1927 Kita-Tango (M = 7.5), 1936 Kawachi-Yamato (M = 6.4), and 1943 Tottori (M = 7.4) events are included. It can be seen that the seismic activity is distributed over the entire region of southwest Japan, which is adjacent to the rupture zones of these Nankai trough events (hatched area in Fig. 2A). Fig. 2B shows the postseismic activity during the 10 years after these events. In this activity, the 1945 Mikawa (M = 7.1), 1948 Fukui (M = 7.3), 1948 Hidakagawa (M = 7.0), and the 1952 Daishoji-Oki (M = 6.8) events are included. The level of this activity is not necessarily lower than that of the preseismic activity, as it appears, because the duration of postseismic activity is one fifth of that of preseismic. It can be seen from this figure that earthquakes tend to cluster in the hatched zones adjacent to the edge of the rupture zones of these interplate events.

5 A PRESEISMIC ( 50yrs before 194&,1946 events) 36" I -n 0 200km 34" B POSTSEISMIC (10yrs after 1964,1946 events > 36 ' 34" 370 I; 30".* 0 2OOkm I t,, I I I 130 C 132" 13 2" 136" ?!>7.0 0?.O>It i>M~6.0 Fig. 2. A. Preseismic activity of the 1944 Tonankai and the 1946 Nankaido events. The rupture zones of these events are indicated by A, B and C. The preseismically active area is hatched. White arrows show the direction of the relative plate motion along the Nankai trough. B. Postseismic activity of the 1944 and 1946 events. Marginal zones adjacent to the edge of the rupture zones of these events are hatched.

6 272 A PRESElSMIC ( SOyrs before Ansei events ) 36" 34" 3.x n N 10" B POSTSElSMlC (10yrs after Ansei events ) 0 MZ HZ6.5 0 G.5>M26.0 Fig. 3. A. Preseismic activity of the 1854 Ansei I and Ansei II events. The rupture zones of these events are indicated by A, B, C and E. Preseismically active area is hatched. B. Postseismic activity for the Ansei events. Marginal zones adjacent to the edge of the rup ture zones of these events are hatched.

7 273 INTERSEISMIC ( ) Fig. 4. Interseismic activity between the Ansei events and the Tonankai and Nankaido events during the period Ansei I and Ansei II earthquakes The Ansei I event (A4 = 8.4)bf December 23, 1854, and the Ansei II event (M = 8.4) of December 24,1854, are the Nankai trough events preceding the 1944 and 1946 events. The Ansei I event ruptured zones C and E and the Ansei II event zones A and B (Ando, ; Ishibashi, 1977). The latter occurred only 32 h after the former; thus, the preseismic and postseismic activity of these events should be investigated as if the two events made one rupture zone A + B + C + E. Figures 3A and 3B show the preseismic and postseismic activity of these events, respectively. The land area adjacent to the rupture zones of these events is hatched in Fig. 3A. Although the number of the intraplate events is scarce, the postseismic activity seems to cluster around the edge of the rupture zone of the Ansei events (hatched area in Fig. 3B). Figure 4 shows the interseismic activity between the Ansei events and the 1944 and 1946 events for 30 years ( ). There are found only two main shocks of magnitude 6.0 and above; they are the 1872 Hamada event (M = 7.1) and the 1891 Mino-Owari event (M = 8.0). It may be possible to include the Mino-Owari event in the preseismic activity of the 1944 and 1946 events because it occurred 53 years before the 1944 event Keicho and 1707 Hoei earthquakes The Keicho event (M = 7.9) of February 3,1605, and the Hoei event (M = 8.4) of October 28, 1707, are the two Nankai trough events preceding the

8 274 Ansei events. There remains much ubiquity about the spatial extent of the rupture zones of these former events. Although the level of preseismic and/ or postseismic activity of these events is significantly higher than that of interseismic activity, it is difficult to find any significant difference in spatial distribution between pre- and postseismic activity (figures for the pre- and postseismic activity of these events are not presented). Recent seismic activity in southwest Japan Figure 5 shows the intraplate seismicity for the past 20 years ( ), that is, the activity after the postseismic period for the 1944 and 1946 events. Many Japanese seismologists (Mogi, 1969; Utsu, 1974a, b; Rikitake, 1974; Ando, 1975a; Ishibashi, 1977) noted a possibility of the occurrence of a &eat interplate event off the Tokai district, southwest Japan (see Fig. 1). Recently, Ishibashi (1977) estimated a fault zone for this predicted event, which is indicated by E in Fig. 5. It is very interesting to notice that intraplate earthquakes for the past 20 years tend to cluster in the area adjacent to the expected rupture zone E. The other three intraplate events during this period are distributed in Shikoku and Kyusyu. They occurred a few years after the 1968 Hyuganada interplate event (M = 7.5) in the vicinity of its rupture zone (Fig. 5); thus, these events may be regarded as the postseismic activity of the Hyuganada event. la00 RECENT SElSMlClTY E ?0 l i00 Fig. 5. Recent (X ) intraphte seismicity (M 2 6.0). The area adjacent to the expected rupture zone of a future great Tokai event is hatched. The rupture zone of the 1968 Hyuganada event is shaded.

9 275 36' N 32' 130'E 134" 13a" Fig. 6. Southwest Japan divided into 17 compartments from a to q parallel to the direction of the relative plate motion. Compartments n,o,p adjacent to the rupture zone E are shaded. The spatial distribution and the level of seismic activity in the vicinity of the Tokai district may suggest a future rupture of zone E as was first noted by Utsu (1974b). In this section, we attempt to examine whether this activity is really high or not. First, the spatial distribution of intraplate earthquakes is examined as follows. We divide the whole area of southwest Japan by equally spaced parallel lines into seventeen strips a, b, c,... and q in the direction of relative plate motion (Fig. 6); these strips are called compartments and each compartment is approximately 40 km wide as measured perpendicular to the direction of relative plate motion. The compartments II, o, p, which are adjacent to the rupture zones E in the direction of relative plate motion is shaded in Fig. 6. We disregard here the compartments m and q for convenience, although it may be better to shade also a part of these compartments. We calculate the probability that more than a certain number of intraplate events fall into compartments n, o, p or the assumption that each event occurs randomly and independently in the j-th compartment with a probability of 0. Pj is defined by the relative frequency of intraplate events in each compartment during the period Figures 7A and 7B show the cumulative number of intraplate events in each compartment during with magnitude 6.4 and above, and with 6.0 and above, respectively. Out of the eleven events of magnitude 6.0 and above during , seven occur in compartments n, o, p; the probability of occurrence of seven or more events in these compartments in eleven Bernouill s trials gives 0.95%.

10 z Y A:?.4364 u z I 210 abcdefghijklmnopq 8:~*60 ~ abcdefghi j k lmnopq Fig. 7. Cumulative number of historic ( ) intraplate events in each compartment: A. for the events of magnitude 6.4 and above; 3. for the events of magnitude 6.0 and above. Out of the five events of magnitude 6.4 and above, four occur in these compartments; the probability of occurrence of four or more events in these compartments in five trials gives 3.6%. In either case, the clustering of intraplate events into compartments n, o, p is significant within a 96% confidence level. Assuming a flat distribution for pj (i.e., equal pi for all j) reduces the probability of earthquake clustering into these compartments even more. We recall that in the above calculation of the probability, comp~ments n, o, p were identified before calculation as the area adjacent to the expected rupture zone E for a future great event off Tokai. If the compartments are not identified, but, instead, we allow earthquakes to cluster in any series of three compartments, the probability of earthquake clustering becomes larger, i.e., between 10 and 20%. Next, we examine whether the level of recent intraplate seismicity is high or not when compared with interseismic activity. It is difficult to tell whether seismicity at a particular time is high or not when the source of seismicity data is not uniform. The discontinuity in data around the year 1884 is of particular concern. Fortunately, however, this discontinuity approximately co~esponds to the time of onset of the preseismic activity of the 1944 and 1946 events; thus, we normalize the preseismic activity of each

11 277 TABLE I Relative levei of pre-, post-, and interseismic Japan activity in the whole region of southwest Frequency (M > 6.4) Rate of se&- mic energy release Period Preseismie Postseismic interseismic -- PPP A * B % 1.0 * A * * * The frequency and rate of seismic energy release are normaiised to 1.0 for the level of preseismic activity. seismic cycle to 1.0 and compare the relative level of seismic activity for the past 20 years with that of interseismic activity for the former three seismic cycles of the 1605, 1707, and 1354 events. Intraplate earthquakes of magnitude 6.4 and above are treated in these statistics because some of those of magnitude smaller than 6.4 may not be listed in Usami s catalogue. The frequency of intraplate events and the rate of seismic energy release, calculated by the energy-magnitude relation of Gutenberg and Richter (1956) during the periods A ( ) and B ( ) for a cycle of pre-, post-, and interseismic activity, are shown in Table I. The preseismic values are normahzed to 1.0. For the period A, the value averaged over the three seismic cycles is presented. The period of the preseismic activity of the 1944 and 1946 events is extended to 53 years from 50 years to include the Mino-Owari event in 1891 which released great seismic energy. The level of the recent (1957 to 1976) seismic activity is shown conventionally in the last column (interseismic) of period B in Table I. The level of recent seismicity relative to that of preseismic activity of the 1944 and 1946 events is slightly higher than that of the interseismic activity of the former three seismic cycles; however, the difference is small and considered not to be si~ific~t. It should, however, be noticed that the recent seismicity is especially high in compartments ft, o, p as was shown above. Thus, we can further investigate the level of the activity restricting the region to only the compartments Iz, 0, p, Table II shows the normalized level of activity for each seismic cycle during the periods A and B when the region is confined to compartments n, o, p. In contrast, the relative level of the recent seismicity (last column for period B in Table IX) is 18 times higher than that of the interseismic activity during period A, both in frequency and in rate of seismic energy release.

12 278 TABLE II Relative levels of pre-, post-, and interseismic activity in compartments n, 0, p Period Preseismic Postseismic Interseismic Frequency A (M > 6.4) * B * Rate of seis- A mic energy X * release * * The frequency and the rate of seismic energy release are normalised to 1.0 for the level of preseismic activity. Both the spatial distribution and the level of recent seismicity indicate that the activity in the vicinity of the rupture zone E is significantly high. This may provide another piece of evidence for the possibility of the occurrence of a great Tokai event in the near future. DISCUSSION Horizontal deformation boundary of Continental-plate margin along consuming plate In the former section, we have shown that the area adjacent to the rupture zone of impending great Nankai trough earthquakes is preseismically active and, in contrast, the marginal zones which border the preseismically active area seem to be postseismically active, although the latter feature is less evident because of the limited data and the short time duration of post seismic activity. These features of spatial pattern of pre- and postseismic activity may be closely related to the mode of deformation in the continental-plate margin due to the interaction between the plates. One of the most characteristic features of the crustal deformation of the Japanese islands is that the pattern of horizontal deformation is significantly affected by the occurrence of great interplate shocks (Mogi, 1970; Fitch and Scholz, 1971; Ando, 1975b). Figures 8A and 8B show schematic~ly the mode of horizontal deformation of the Japanese islands after Mogi (1970). During the period until a great interplate event occurs, the crust of the islands adjacent to the rupture zone is compressed by the underthrusting movement of the oceanic plate and is contracted (Fig. 8A). In contrast, the contracted area will extend seaward at the time of the interplate shock (Fig. 8B). Mogi (1970) showed, using triangulation data, that the recent horizontal deformation of the Japa-

13 279 A Fig. 8. Schematic figure which represents horizontal deformation of the Japanese islands (After Mogi 1970.) A. Pattern before a large interplate earthquake. B. Pattern at the time of the earthquake. The land area exposed to sudden shearing stress at the time of the shock is shaded. nese islands really represents this mode of defo~ation for the past several tens of years. Before an interplate event occurs, compressive stress in the crust adjacent to the rupture zone will increase gradually and reach a maximum just before the interplate event. This will cause the crust to fracture where the stress exceeds the crustal strength; this provides a mech~ism for preseismic activity, which is proposed by Shimazaki ( , 1978). In eontrast, once an interplate shock has occurred, the major portion of the stress in the crust of the area adjacent to the rupture zone will be relieved. However, seaward, the extension of the compressed crustal block at the time of the shock will expose a sudden shearing stress to the zones bordering the area which extends seaward (shaded zone in Fig. 8B). This may provide an explanation for the postseismic activity, although further investigation on the detailed behavior of the cont~ent~ plate margin associated with great interplate events along the Japanese islands may be needed to substantiate this idea. It may be useful to notice that the change of maximum shear strain caused by the occurrence of Nankai trough earthquakes computed by the dislocation theory using the computer program by Sato and Matsu ura (1974) reaches at most lo- in the inland belt of southwest Japan and 10m6 along the Japan Sea coast. Thus, shear strain change caused by the occurrence of

14 280 A B POSTSEISMIC IO ENERGY RELEASE erg abcdefghijklmno 11 Pq c TOTAL SEISMIC w abcdrfghijklmnopq Fig. 9. A. Marginal sheard zones in reference to the specific rupture zones of historic Nankai trough events. B and C. Postseismic and total seismic energy release in each compartment during the period , respectively.

15 281 interplate events is too weak to fracture the crust by itself and probably plays a role in triggering intraplate events, as was discussed for the Fukui event by Yamashina (1975). In contrast, the compression due to subduction of the oceanic plate may play an essential role in inducing preseismic activity because the contraction of the crust revealed by repeated geodetic surveys reaches e5 in 120 years in southwest Japan (e.g., Harada and Kassai, 1971). It is interesting to note that in Tables I and II the frequency of earthquakes in postseismic activity is a few times larger than that in preseismic activity and, in contrast, the rate of seismic energy release of postseismic activity is less than that of preseismic activity. This means that postseismic events tend to have smaller magnitude than preseismic ones, that is to say, that the b-value of postseismic activity is larger than that of preseismic activity. This is consistent with the small change of shear strain caused by the occurrence of interplate shocks in comparison with the large contraction of the crust before their occurrence. Mode of historic seismic energy release It is well known that historic Nankai trough earthquakes have occurred repeatedly on specific rupture zones (Ando, ); for example, A and B make one rupture zone, although sometimes zone C and/or zone E are also involved. If this is also true in the geological time scale, the horizontal deformation of the crust associated with the occurrence of interplate events will bring shearing stress to specific marginal zones bordering the areas adjacent to the rupture zones of historic interplate events; these zones will become weak after many cycles of loading and unloading. The marginal zones resulting from the specific rupture zones A + B, C, and E are hatched in Fig. 9A. Seismic energy will be released more effectively in these zones than other areas, especially in postseismic activity, provided that no creep occurs in the crust of southwest Japan. Figs. 9B and 9C show the postseismic and total seismic energy release, respectively, during the period Ninety per cent of the postseismic energy is released in eight compartments b, c, i, j, n, o, p, q which cover the hatched zones in Fig. 9A. For the total seismic energy, 75% of it is released in these compartments. Although an energy release pattern such as that presented in Fig. 9 for a short historic time may be a transient one as was discussed by Shimazaki (1976a), we believe that it reflects, at least in part, the intrinsic efficiency of seismic energy release in southwest Japan. CONCLaUSIONS A fairly complete set of seismicity data in southwest Japan for the past 172 years ( ) reveals that preseismic activity prior to great interplate earthquakes along the Nankai trough is high in the area adjacent to the rupture zone of these interplate events and that postseismic activity is high

16 282 in the maq$na.l zones which border the preseismically active area. This difference in spatial distribution between preseismie and postseismic activity may be explained by the two modes of horizontal deformation of the continental-plate margin along the consuming plate boundary associated with great interplate e~hquakes; these modes are the contraction of the margin adjacent to the rupture zone of an impending great interplate earthquake before its occurrence and the seaward extension of the contracted block at the time of the shock. The pattern of intraplate seismic energy release for the past 400 years shows that total seismic energy, and especially pos~eismic energy are released more effectively in the zones which border the areas adjacent to the specific rupture zones of historic Nankastrough events. This may be caused by the weakness of these zones due to many cycles of loading and unloading associated with ~terplate events in geologic time. The hypothesis of the spatial distribution of preseismic and postseismic activity presented in this study can be used as a possible criterion for forecasting not only the fault zone which is likely to be ruptured by an impending interplate event, but also the land area of high seismic risk for severe intraplate shocks. Recent intraplate events in southwestern Japan tend to cluster in the area adjacent to the expected rupture zone of a future great Tokai event and the level of activity is significantly higher than the normal level of activity between inte~la~ events. This probably indicates a possibility of the occurrence of a great Tokai event in the near future. Another application of the criterion proposed above to the earthquake prediction along the Japanese islands suggests a possibility of the occurrence of a large interplate earthquake off the southern Sanriku coast, northern Japan, which will be discussed in a separate paper (Seno, 19 78). From the viewpoint of earthquake prediction for severe intraplate events, the area adjacent to the rupture zone off Tokai deserves high priority for instrumentation of various types to record phenomena in the near field associated with imminent intraplate earthquakes. I wish to thank Dr. K. Shimazaki and Dr. P.G. Somerville for critical review of the manuscript and Prof. T. Rikitake for his encouragement, I benefitt~ from discussions with Dr. S. Ohnishi, Dr. K. Y~as~na, Dr. K. Ishibashi, Prof. H. Kanamori, and with the members of the Laboratory of Prof. H. Takeuchi. I also wish to thank Dr. 523, Krishna and Dr. D. Hadley for critical review of the manuscript at the summer school of geodynamics at Cargese, Corsica, REFERENCES Ando, M., 1975a. Possibility of a major earthquake in the Tokai district, Japan, and its pre-estimated seismotectonic effects. Tectonophysics, 25:

17 283 Ando, M., Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan. Tectonophysics, 27: Fitch, T.J. and Scholz, C.H., Mechanism of underthrusting in southwest Japan: a model of convergent plate interactions. J. Geophys. Res., 76: Gutenberg, B. and Richter, C.F., Magnitude and energy of earthquakes. Ann. Geofis., 9: l-15. Harada, T. and Kassai, A., Horizontal strain of the crust in Japan for the last 60 years. J. Geodetic Sot. Jpn., 17: 4-7 (in Japanese). Ishibashi, K., Re-examination of a great earthquake expected in the Tokai district, Central Japan-Possibility of the Suruga Bay Earthquake. Rep. Coord. Comm. Earthquake Prediction, Geogr. Surv. Inst., 17: (in Japanese). Japan Meteorological Agency, 1958, 1966, Catalogue of Major Earthquakes in and near Japan. Seismol. Bull. Jpn. Meteorol. Ag., Suppl., 1,2,3. Mogi, K., Some features of recent seismic activity in and near Japan, 2. Activity before and after great earthquakes. Bull. Earthquake Res. Inst., 47: Mogi, K., Recent horizontai deformation of the earth s crust and tectonic activity in Japan, 1. Bull. Earthquake Res. Inst., 48: Ozawa, I., Forecast of occurrence of earthquakes in the northwestern part of the Kinki district. Contrib. Geophys. Inst., Kyoto Univ., 13: Rikitake, T., Probability of earthquake occurrence as estimated from crustal strain. Tectonophysics, 23: Sato, R. and Matsu ura, M., Strains and tilts on the surface of a semi-infinite elastic medium. J. Phys. Earth, 22: Seno, T., 1977a. Recurrence times of great earthquakes in the seismotectonic areas along the Philippine Sea side coast of southwest Japan and south Kanto district. Zisin, 2, 30: (in Japanese). Seno, T., 1977b. The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysies, 42: Seno, T., Intraplate seismicity in Tohoku and Hokkaido and large interplate earthquakes: a possibility of occurrence of a large earthquake off the southern Sanriku coast, northern Japan, J. Phys. Earth, in press. Shimazaki, K., 1976a. Intraplate seismicity gap along the median tectonic line and oblique plate convergence in southwest Japan. Tectonophysics, 31: Shimasaki, K., 1976b. Intraplate seismicity and interplate earthquakes-historical activity in southwest Japan. Tectonophysi~s, 33: Shimazaki, K., Correlation between intraplate seismicity and interplate earthquakes in Tohoku, northeast Japan, Bull. Seismol. Sot. Am., 68: X Usami, T., Descriptive Catalogue of Disaster Earthquakes in Japan. Univ. Tokyo Press, Tokyo, 327 pp. (in Japanese). Usami, T. and Hamamatsu, O., History of earthquakes and seismology. In: Y. Sato (Editor), Seismology in Japan. Zisin, 2, 20(4): l-34 (in Japanese). Utsu, T., 1974a. Correlation between great earthquakes along the Nankai trough and destructive earthquakes in western Japan. Rep. Coord. Comm. Earthquake Prediction, Geogr. Surv. Inst., 12: (in Japanese). Utsu, T., 1974b. Space time pattern of large earthquakes occurring off the Pacific coast of the Japanese islands. J. Phys. Earth, 22: Yamashina, K., Strain accumulation in the Fukui area, possibly caused by the adjacent major earthquakes preceding the Fukui earthquake of Zisin, 2, 28: 4x5-427 (in Japanese). Yonekura, N., Geomorphic deveiopment and mode of erustal movement on the south coast of Kii Peninsula, southwest Japan, J. Geogr,, 77 : l-23 (in Japanese). Yoshikawa, T., Kaizuka, S. and Ota, Y., Crustal movement in the late Quaternary revealed with coastal terraces on the southwest coast of Shikoku, southwest Japan, J. Geod. Sot. Jpn., 10:

A MODEL OF PLATE CONVERGENCE IN SOUTHWEST JAPAN, INFERRED FROM LEVELING DATA ASSOCIATED WITH THE 1946 NANKAIDO EARTHQUAKE

A MODEL OF PLATE CONVERGENCE IN SOUTHWEST JAPAN, INFERRED FROM LEVELING DATA ASSOCIATED WITH THE 1946 NANKAIDO EARTHQUAKE J. Ph_vs. Earth, 35, 449-467, 1987 A MODEL OF PLATE CONVERGENCE IN SOUTHWEST JAPAN, INFERRED FROM LEVELING DATA ASSOCIATED WITH THE 1946 NANKAIDO EARTHQUAKE Kaoru MIYASHITA Department of Earth Sciences,

More information

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Development of a Predictive Simulation System for Crustal Activities in and around Japan - II Project Representative Mitsuhiro Matsu'ura Graduate School of Science, The University of Tokyo Authors Mitsuhiro

More information

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data Katsuhisa Kanda and Masayuki Takemura Kobori Research Complex, Kajima Corporation, Tokyo 107-8502, Japan Summary An

More information

Depth (Km) + u ( ξ,t) u = v pl. η= Pa s. Distance from Nankai Trough (Km) u(ξ,τ) dξdτ. w(x,t) = G L (x,t τ;ξ,0) t + u(ξ,t) u(ξ,t) = v pl

Depth (Km) + u ( ξ,t) u = v pl. η= Pa s. Distance from Nankai Trough (Km) u(ξ,τ) dξdτ. w(x,t) = G L (x,t τ;ξ,0) t + u(ξ,t) u(ξ,t) = v pl Slip history during one earthquake cycle at the Nankai subduction zone, inferred from the inversion analysis of levelling data with a viscoelastic slip response function Mitsuhiro Matsu'ura, Akira Nishitani

More information

Occurrence of quasi-periodic slow-slip off the east coast of the Boso peninsula, Central Japan

Occurrence of quasi-periodic slow-slip off the east coast of the Boso peninsula, Central Japan LETTER Earth Planets Space, 9, 11 1, Occurrence of quasi-periodic slow-slip off the east coast of the Boso peninsula, Central Japan Shinzaburo Ozawa, Hisashi Suito, and Mikio Tobita Geographical Survey

More information

Intermediate-term precursors of great subduction zone earthquakes: An application for predicting the Tokai earthquake

Intermediate-term precursors of great subduction zone earthquakes: An application for predicting the Tokai earthquake Earth Planets Space, 56, 621 633, 24 Intermediate-term precursors of great subduction zone earthquakes: An application for predicting the Tokai earthquake Tetsuzo Seno Earthquake Research Institute, University

More information

Splay fault and megathrust earthquake slip in the Nankai Trough

Splay fault and megathrust earthquake slip in the Nankai Trough Earth Planets Space, 53, 243 248, 2001 Splay fault and megathrust earthquake slip in the Nankai Trough Phil R. Cummins, Takane Hori, and Yoshiyuki Kaneda Frontier Research Program for Subduction Dynamics,

More information

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA 3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA Li Xiaofan MEE09177 Supervisor: Bunichiro Shibazaki ABSTRACT We perform 3D modeling of earthquake generation of the Xianshuihe

More information

The Focal Process of the Kita-Mino Earthquake 229

The Focal Process of the Kita-Mino Earthquake 229 The Focal Process of the Kita-Mino Earthquake 229 field have been advanced. MARUYAMA (1963), HASKELL (1964, 1969) and SATO (1969) presented the mathematical formulae of the seismic waves due to a shear

More information

Earthquakes Chapter 19

Earthquakes Chapter 19 Earthquakes Chapter 19 Does not contain complete lecture notes. What is an earthquake An earthquake is the vibration of Earth produced by the rapid release of energy Energy released radiates in all directions

More information

Testing various seismic potential models for hazard estimation against a historical earthquake catalog in Japan

Testing various seismic potential models for hazard estimation against a historical earthquake catalog in Japan Earth Planets Space, 64, 673 681, 2012 Testing various seismic potential models for hazard estimation against a historical earthquake catalog in Japan Wahyu Triyoso and Kunihiko Shimazaki Earthquake Research

More information

The Mechanics of Earthquakes and Faulting

The Mechanics of Earthquakes and Faulting The Mechanics of Earthquakes and Faulting Christopher H. Scholz Lamont-Doherty Geological Observatory and Department of Earth and Environmental Sciences, Columbia University 2nd edition CAMBRIDGE UNIVERSITY

More information

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone

The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2*,**/ pp. +-- +.1 * The Japanese University Joint Seismic Observations at the Niigaka-Kobe Tectonic Zone The Japanese University Group of the Joint Seismic Observations

More information

FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA

FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA Myo Thant 1, Hiroshi Kawase 2, Subagyo Pramumijoyo 3, Heru Hendrayana

More information

Deep Seismic Surveys in the Kinki District : Shingu- Maizuru Line

Deep Seismic Surveys in the Kinki District : Shingu- Maizuru Line Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2+,**0 pp.,-3,./ Deep Seismic Surveys in the Kinki District : Shingu- Maizuru Line Kiyoshi Ito +, Yasuhiro Umeda +, Hiroshi Sato,, Issei Hirose +, Naoshi Hirata,,

More information

Global Positioning System(GPS) Global Positioning System(GPS) is a new surveying technique applying space technology designed by the United States

Global Positioning System(GPS) Global Positioning System(GPS) is a new surveying technique applying space technology designed by the United States IV/317 Crustal deformations in the Japanese islands observed with the nationwide continuous GPS observation system Takashi TADA (Crustal Dynamics Department, Geographical Survey Institute, Tsukuba, Ibaraki,

More information

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka JAPAN

Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka JAPAN Dense Ocean floor Network System for Mega Thrust Earthquakes & Tsunamis(DONET) -Towards Understanding Mega Thrust Earthquakes, the Geohazard & Disaster Mitigation- Yoshiyuki KANEDA, Katsuyoshi KAWAGUCHI,

More information

Earthquakes. Earthquakes and Plate Tectonics. Earthquakes and Plate Tectonics. Chapter 6 Modern Earth Science. Modern Earth Science. Section 6.

Earthquakes. Earthquakes and Plate Tectonics. Earthquakes and Plate Tectonics. Chapter 6 Modern Earth Science. Modern Earth Science. Section 6. Earthquakes Chapter 6 Modern Earth Science Earthquakes and Plate Tectonics Section 6.1 Modern Earth Science Earthquakes and Plate Tectonics Earthquakes are the result of stresses in Earth s s lithosphere.

More information

INTRODUCTION TO EARTHQUAKES

INTRODUCTION TO EARTHQUAKES INTRODUCTION TO EARTHQUAKES Seismology = Study of earthquakes Seismologists = Scientists who study earthquakes Earthquake = Trembling or shaking of the earth s surface, usually as a result of the movement

More information

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating. CH Earthquakes Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating Earthquakes Section 19.4: Earthquakes and Society Section 19.1 Forces

More information

ACTIVITIES OF THE HEADQUARTERS FOR EARTHQUAKE RESEARCH PROMOTION

ACTIVITIES OF THE HEADQUARTERS FOR EARTHQUAKE RESEARCH PROMOTION Journal of Japan Association for Earthquake Engineering, Vol.4, No.3 (Special Issue), 2004 ACTIVITIES OF THE HEADQUARTERS FOR EARTHQUAKE RESEARCH PROMOTION Sadanori HIGASHI 1 1 Member of JAEE, Earthquake

More information

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake? 1 2 3 4 5 6 7 8 9 10 Earthquakes Earth, 9 th edition, Chapter 11 Key Concepts Earthquake basics. "" and locating earthquakes.. Destruction resulting from earthquakes. Predicting earthquakes. Earthquakes

More information

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes LETTER Earth Planets Space, 57, 197 202, 2005 Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes Nobuyuki Yamada and Tomotaka

More information

Hitoshi Hirose (1), and Kazuro Hirahara (2) Abstract. Introduction

Hitoshi Hirose (1), and Kazuro Hirahara (2) Abstract. Introduction Three dimensional simulation for the earthquake cycle at a subduction zone based on a rate- and state-dependent friction law: Insight into a finiteness and a variety of dip-slip earthquakes Hitoshi Hirose

More information

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update

The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update The Earthquake of Padang, Sumatra of 30 September 2009 scientific information and update 01-October-2009 Christophe Vigny Directeur de recherches at CNRS Laboratoire de Géologie Geoscience Dept. Of ENS,

More information

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES

RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES RELOCATION OF LARGE EARTHQUAKES ALONG THE PHILIPPINE FAULT ZONE AND THEIR FAULT PLANES Rey M. Lumbang MEE12608 Supervisor: Nobuo Hurukawa ABSTRACT We relocated large magnitude (Mw 7.0) earthquakes that

More information

MAR110 Lecture #5 Plate Tectonics-Earthquakes

MAR110 Lecture #5 Plate Tectonics-Earthquakes 1 MAR110 Lecture #5 Plate Tectonics-Earthquakes Figure 5.0 Plate Formation & Subduction Destruction The formation of the ocean crust from magma that is upwelled into a pair of spreading centers. Pairs

More information

The Earthquake Cycle Chapter :: n/a

The Earthquake Cycle Chapter :: n/a The Earthquake Cycle Chapter :: n/a A German seismogram of the 1906 SF EQ Image courtesy of San Francisco Public Library Stages of the Earthquake Cycle The Earthquake cycle is split into several distinct

More information

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES Joan Cruz SALCEDO Supervisor: Tatsuhiko HARA MEE09186 ABSTRACT We have made a set of earthquake source

More information

Lessons from the 2004 Sumatra earthquake and the Asian tsunami

Lessons from the 2004 Sumatra earthquake and the Asian tsunami Lessons from the 2004 Sumatra earthquake and the Asian tsunami Kenji Satake National Institute of Advanced Industrial Science and Technology Outline 1. The largest earthquake in the last 40 years 2. Tsunami

More information

Title OBSERVATIONS OF ABRUPT CHANGES OF C STRAINS DURING EARTHQUAKES Author(s) OZAWA, Izuo Citation Special Contributions of the Geophy University (1970), 10: 127-136 Issue Date 1970-12 URL http://hdl.handle.net/2433/178577

More information

Dangerous tsunami threat off U.S. West Coast

Dangerous tsunami threat off U.S. West Coast Earthquakes Ch. 12 Dangerous tsunami threat off U.S. West Coast Earthquakes What is an Earthquake? It s the shaking and trembling of the Earth s crust due to plate movement. The plates move, rocks along

More information

SEISMIC HAZARD ASSESSMENT FOR JAPAN AFTER THE 2011 TOHOKU-OKI MEGA-THRUST EARTHQUAKE (Mw9.0)

SEISMIC HAZARD ASSESSMENT FOR JAPAN AFTER THE 2011 TOHOKU-OKI MEGA-THRUST EARTHQUAKE (Mw9.0) Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan SEISMIC HAZARD ASSESSMENT FOR JAPAN AFTER THE 2011 TOHOKU-OKI

More information

Non-volcanic deep low-frequency tremors accompanying slow slips in the southwest Japan subduction zone

Non-volcanic deep low-frequency tremors accompanying slow slips in the southwest Japan subduction zone Tectonophysics 417 (2006) 33 51 www.elsevier.com/locate/tecto Non-volcanic deep low-frequency tremors accompanying slow slips in the southwest Japan subduction zone Kazushige Obara *, Hitoshi Hirose National

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo 2012/9/24 17:20-17:35 WCEE SS24.4 Special Session: Great East Japan (Tohoku) Earthquake Earthquake Source Kazuki Koketsu Earthquake Research Institute, University of Tokyo 1 Names and features of the earthquake

More information

San Andreas Movie Can It Happen?

San Andreas Movie Can It Happen? San Andreas Movie Can It Happen? Learning Objectives (LO) Lecture 14: Faults and Quakes Read: Chapter 10 and 11 Homework #12 due Thursday 12pm What we ll learn today:! 1. Compare strike-slip to dip-slip

More information

Seismic risk in Romania

Seismic risk in Romania Seismic risk in Romania Dr.eng. Mihaela Lazarescu National R&D Institute for Environmetal Protection ICIM Bucharest Spl. Independentei 294, cod 060031 Bucharest ROMANIA This is the list of significant

More information

BROADBAND SOURCE MODEL AND STRONG MOTIONS

BROADBAND SOURCE MODEL AND STRONG MOTIONS BROADBAND SOURCE MODEL AND STRONG MOTIONS OF THE 1855 ANSEI-EDO EARTHQUAKE ESTIMATED BY THE EMPIRICAL GREEN S FUNCTION METHOD Toshimi Satoh 1 1 Chief Researcher, Institute of Technology, Shimizu Corporation,

More information

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data

Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data LETTER Earth Planets Space, 65, 917 921, 2013 Rupture process of the largest aftershock of the M 9 Tohoku-oki earthquake obtained from a back-projection approach using the MeSO-net data Ryou Honda 1, Yohei

More information

Accepted by Pure and Applied Geophysics on Oct. 08, 2016

Accepted by Pure and Applied Geophysics on Oct. 08, 2016 Accepted by Pure and Applied Geophysics on Oct. 0, Long-term seismic quiescences and great earthquakes in and around the Japan subduction zone between and --Manuscript Draft-- Manuscript Number: Full Title:

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 643 648, 2011 Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data Was the asperity in Miyagi-oki ruptured?

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 643 648, 2011 Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data Was the asperity in Miyagi-oki ruptured?

More information

Finding an Earthquake Epicenter Pearson Education, Inc.

Finding an Earthquake Epicenter Pearson Education, Inc. Finding an Earthquake Epicenter Measuring the Size of Earthquakes Two measurements that describe the size of an earthquake are: 1. Intensity a measure of the degree of earthquake shaking at a given locale

More information

PROBABILISTIC LIQUEFACTION HAZARD ANALYSIS IN JAPAN

PROBABILISTIC LIQUEFACTION HAZARD ANALYSIS IN JAPAN SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World 9-10 July 2015, Cambridge UK PROBABILISTIC LIQUEFACTION HAZARD ANALYSIS IN JAPAN Tetsushi KURITA 1 and Sei ichiro FUKUSHIMA

More information

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION A major 7.7 magnitude earthquake struck at 8:04 PM local time in western British Columbia, Canada. The epicenter is located on Moresby Island, the southern large island in the Queen Charlotte Islands region.

More information

68. Izu-Torishima. Summary. Latitude: 30 29'02" N, Longitude: '11" E, Elevation: 394 m (Ioyama) (Elevation Point) (68.

68. Izu-Torishima. Summary. Latitude: 30 29'02 N, Longitude: '11 E, Elevation: 394 m (Ioyama) (Elevation Point) (68. 68. Izu-Torishima Latitude: 30 29'02" N, Longitude: 140 18'11" E, Elevation: 394 m (Ioyama) (Elevation Point) Izu-Torishima taken from southeast side on August 12, 2002. Courtesy of the Maritime Safety

More information

Tectonic Seismogenic Index of Geothermal Reservoirs

Tectonic Seismogenic Index of Geothermal Reservoirs Tectonic Seismogenic Index of Geothermal Reservoirs C. Dinske 1, F. Wenzel 2 and S.A. Shapiro 1 1 Freie Universität Berlin 2 KIT Karlsruhe November 27, 2012 Introduction M max reservoir location -2.0 Barnett

More information

Tohoku-oki event: Tectonic setting

Tohoku-oki event: Tectonic setting Tohoku-oki event: Tectonic setting This earthquake was the result of thrust faulting along or near the convergent plate boundary where the Pacific Plate subducts beneath Japan. This map also shows the

More information

Earthquakes and Seismotectonics Chapter 5

Earthquakes and Seismotectonics Chapter 5 Earthquakes and Seismotectonics Chapter 5 What Creates Earthquakes? The term Earthquake is ambiguous: Applies to general shaking of the ground and to the source of the shaking We will talk about both,

More information

Nobuo Hurukawa 1 and Tomoya Harada 2,3. Earth Planets Space, 65, , 2013

Nobuo Hurukawa 1 and Tomoya Harada 2,3. Earth Planets Space, 65, , 2013 Earth Planets Space, 65, 1441 1447, 2013 Fault plane of the 1964 Niigata earthquake, Japan, derived from relocation of the mainshock and aftershocks by using the modified joint hypocenter determination

More information

A Probabilistic Estimation of Earthquake Occurrence on the Basis of the Appearance Times of Multiple Precursory Phenomena

A Probabilistic Estimation of Earthquake Occurrence on the Basis of the Appearance Times of Multiple Precursory Phenomena J. Phys. Earth, 38, 431-444, 1990 A Probabilistic Estimation of Earthquake Occurrence on the Basis of the Appearance Times of Multiple Precursory Phenomena Kenji Maeda* and Akio Yoshida Meteorological

More information

Frequency-dependent Strong Motion Duration Using Total Threshold Intervals of Velocity Response Envelope

Frequency-dependent Strong Motion Duration Using Total Threshold Intervals of Velocity Response Envelope Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 015, Sydney, Australia Frequency-dependent Strong Motion Duration Using Total

More information

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates.

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates. As you can see, some of the plates contain continents and others are mostly under the ocean.

More information

LETTER Earth Planets Space, 63, , 2011

LETTER Earth Planets Space, 63, , 2011 LETTER Earth Planets Space, 63, 725 730, 2011 Using the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to

More information

Figure Diagram of earth movements produced by (a) P-waves and (b) S-waves.

Figure Diagram of earth movements produced by (a) P-waves and (b) S-waves. Geology 101 Name(s): Lab 11: Earthquakes When the stresses in a rock (which may or may not already be faulted) exceed the tensile strength of the rock, the rock ruptures at a point called the focus or

More information

JAMSTEC Marine Geophysical Projects for Researches on Subduction Cycles and Deformation

JAMSTEC Marine Geophysical Projects for Researches on Subduction Cycles and Deformation JAMSTEC Marine Geophysical Projects for Researches on Subduction Cycles and Deformation Shuichi Kodaira Research Center for Earthquake and Tsunami JAMSTEC JAMSTEC Marine Geophysical Projects Motivation:

More information

TSUNAMI AND EARTHQUAKE ACTIVITY IN INDONESIA *

TSUNAMI AND EARTHQUAKE ACTIVITY IN INDONESIA * LOCAL TSUNAMI WARNING AND MITIGATION TSUNAMI AND EARTHQUAKE ACTIVITY IN INDONESIA * Nanang T. Puspito Department of Geophysics and Meteorology, Institute of Technology Bandung (ITB) Address: Jalan Ganeca

More information

Lecture 4: Earthquakes and Seismic Waves

Lecture 4: Earthquakes and Seismic Waves Lecture 4: Earthquakes and Seismic Waves Key Questions 1. What are the sources for EQs in the PNW? 2. What is a seismograph and seismogram? 3. What is the difference between Richter magnitudes and Mercalli

More information

What happened before the last five strong earthquakes in Greece: Facts and open questions

What happened before the last five strong earthquakes in Greece: Facts and open questions 86 Proc. Jpn. Acad., Ser. B 82 (2006) [Vol. 82, What happened before the last five strong earthquakes in Greece: Facts and open questions By Panayiotis A. VAROTSOS ) Solid State Section and Solid Earth

More information

Crustal deformation around the northern and central Itoigawa-Shizuoka Tectonic Line

Crustal deformation around the northern and central Itoigawa-Shizuoka Tectonic Line Earth Planets Space, 54, 159 163, 22 Crustal deformation around the northern and central Itoigawa-Shizuoka Tectonic Line Takeshi Sagiya 1, Takuya Nishimura 1, Yoshihisa Iio 2, and Takashi Tada 1 1 Geographical

More information

Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations

Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations FRONTIER RESEARCH ON EARTH EVOLUTION, VOL. 1 Seismicity around the seaward updip limit of the Nankai Trough seismogenic zone revealed by repeated OBS observations Koichiro Obana 1, Shuichi Kodaira 1, Yoshiyuki

More information

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Earth Planets Space, 64, 1239 1243, 2012 Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Tamao Sato 1, Shinya Hiratsuka

More information

Crustal deformation in Kyushu derived from GEONET data

Crustal deformation in Kyushu derived from GEONET data JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jb004690, 2007 Crustal deformation in Kyushu derived from GEONET data Hiromi Takayama 1 and Akio Yoshida 1 Received 11 August 2006; revised 12

More information

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake

Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Earth Planets Space, 64, 1239 1243, 2012 Coulomb stress change for the normal-fault aftershocks triggered near the Japan Trench by the 2011 M w 9.0 Tohoku-Oki earthquake Tamao Sato 1, Shinya Hiratsuka

More information

Real time Monitoring System for Earthquakes and Tsunamis (DONET)

Real time Monitoring System for Earthquakes and Tsunamis (DONET) Real time Monitoring System for Earthquakes and Tsunamis (DONET) NankaiTrough Yoshiyuki Kaneda Japan Agency for Marine-Earth Science and Technology (JAMSTEC) POGO@Seoul Presentation 1 Earthquakes in the

More information

NATIONWIDE SITE AMPLIFICATION ZONATION STUDY USING JAPAN ENGINEERING GEOMORPHOLOGIC CLASSIFICATION MAP

NATIONWIDE SITE AMPLIFICATION ZONATION STUDY USING JAPAN ENGINEERING GEOMORPHOLOGIC CLASSIFICATION MAP 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1648 NATIONWIDE SITE AMPLIFICATION ZONATION STUDY USING JAPAN ENGINEERING GEOMORPHOLOGIC CLASSIFICATION

More information

Periodic upward migration model for intermediate-depth earthquakes in Vrancea, Romania

Periodic upward migration model for intermediate-depth earthquakes in Vrancea, Romania Earth Planets Space, 62, 463 473, 2010 Periodic upward migration model for intermediate-depth earthquakes in Vrancea, Romania Nobuo Hurukawa 1 and Masajiro Imoto 2 1 International Institute of Seismology

More information

Mechanical origin of aftershocks: Supplementary Information

Mechanical origin of aftershocks: Supplementary Information Mechanical origin of aftershocks: Supplementary Information E. Lippiello Department of Mathematics and Physics, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy & Kavli Institute for Theoretical

More information

Journal of Asian Earth Sciences

Journal of Asian Earth Sciences Journal of Asian Earth Sciences 7 (0) 09 8 Contents lists available at SciVerse ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Maximum magnitudes in aftershock

More information

21. Earthquakes I (p ; 306)

21. Earthquakes I (p ; 306) 21. Earthquakes I (p. 296-303; 306) How many people have been killed by earthquakes in the last 4,000 years? How many people have been killed by earthquakes in the past century? What two recent earthquakes

More information

Special edition paper Development of Shinkansen Earthquake Impact Assessment System

Special edition paper Development of Shinkansen Earthquake Impact Assessment System Development of Shinkansen Earthquake Impact Assessment System Makoto Shimamura*, Keiichi Yamamura* Assuring safety during earthquakes is a very important task for the Shinkansen because the trains operate

More information

Earthquakes and Tsunamis

Earthquakes and Tsunamis Earthquakes and Tsunamis Kenji Satake Earthquake Research Institute University of Tokyo 1 Part I 2011 Tohoku earthquake and tsunami 2 Fukushima Dai ichi NPP accident Earthquake ground motion Reactors automatically

More information

NEW ZEALAND EARTHQUAKES AND PLATE

NEW ZEALAND EARTHQUAKES AND PLATE 87 NEW ZEALAND EARTHQUAKES AND PLATE TECTONIC THEORY R.I. Walcott * ABSTRACT The rates and direction of shear strain from geodetic data and the direction of slip from earthquake mechanism studies in New

More information

Plate Tectonics. Structure of the Earth

Plate Tectonics. Structure of the Earth Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.

More information

Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D. 2 and 1995

Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D. 2 and 1995 Bulletin of the Seismological Society of America, Vol. 94, No. 1, pp. 269 284, February 2004 Estimation of Regional Seismic Hazard in the Korean Peninsula Using Historical Earthquake Data between A.D.

More information

Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake

Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake LETTER Earth Planets Space, 60, 155 160, 2008 Exploring the feasibility of on-site earthquake early warning using close-in records of the 2007 Noto Hanto earthquake Yih-Min Wu 1 and Hiroo Kanamori 2 1

More information

Minimum preshock magnitude in critical regions of accelerating seismic crustal deformation

Minimum preshock magnitude in critical regions of accelerating seismic crustal deformation Bollettino di Geofisica Teorica ed Applicata Vol. 44, n. 2, pp. 103-113; June 2003 Minimum preshock magnitude in critical regions of accelerating seismic crustal deformation C.B. Papazachos University

More information

Correlogram Analyses of Seismograms by Means of. By Keiiti AKI Geophysical Institute, Faculty of Science, Tokyo University.

Correlogram Analyses of Seismograms by Means of. By Keiiti AKI Geophysical Institute, Faculty of Science, Tokyo University. JOURNAL OF PHYSICS OF THE EARTH, VOL. 4, No. 2, 1956 71 Correlogram Analyses of Seismograms by Means of a Simple Automatic Computer. By Keiiti AKI Geophysical Institute, Faculty of Science, Tokyo University.

More information

Source Fault Model of the 1771 Yaeyama Tsunami, Southern Ryukyu Islands, Japan, Inferred from Numerical Simulation

Source Fault Model of the 1771 Yaeyama Tsunami, Southern Ryukyu Islands, Japan, Inferred from Numerical Simulation Pure appl. geophys. 163 (2006) 41 54 0033 4553/06/010041 14 DOI 10.1007/s00024-005-0007-9 Ó Birkhäuser Verlag, Basel, 2006 Pure and Applied Geophysics Source Fault Model of the 1771 Yaeyama Tsunami, Southern

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

Earthquakes and Earth s Interior

Earthquakes and Earth s Interior - What are Earthquakes? Earthquakes and Earth s Interior - The shaking or trembling caused by the sudden release of energy - Usually associated with faulting or breaking of rocks - Continuing adjustment

More information

How GNSS CORS in Japan works for geodetic control and disaster mitigations

How GNSS CORS in Japan works for geodetic control and disaster mitigations ICG Working Group D Reference Frames, Timing and Applications How GNSS CORS in Japan works for geodetic control and disaster mitigations ICG11, Nov. 7-11, 2016, Sochi, Russia Hiromichi TSUJI Geodetic Observation

More information

Chapter 15. Earthquakes and Plate Tectonics. what s the connection? At the boundaries friction causes plates to stick together.

Chapter 15. Earthquakes and Plate Tectonics. what s the connection? At the boundaries friction causes plates to stick together. Chapter 15 Earthquakes and Plate Tectonics what s the connection? As with volcanoes, earthquakes are not randomly distributed over the globe At the boundaries friction causes plates to stick together.

More information

20 mm/yr mm/yr BERI DTCH MRDR. WHAL Atka AFZ

20 mm/yr mm/yr BERI DTCH MRDR. WHAL Atka AFZ Coupling, Slip Partitioning and Arc Deformation Along the Aleutian Subduction zone M. Wyss, H. Avé Lallemant, D. Christensen, J. Freymueller, R. Hansen, P Haeussler, K. Jacob, M. Kogan, S. McNutt, J. Oldow,

More information

Earthquakes. Pt Reyes Station 1906

Earthquakes. Pt Reyes Station 1906 Earthquakes Pt Reyes Station 1906 Earthquakes Ground shaking caused by the sudden release of accumulated strain by an abrupt shift of rock along a fracture in the earth. You Live in Earthquake Country

More information

Mid-Continent Earthquakes As A Complex System

Mid-Continent Earthquakes As A Complex System SRL complex earthquakes 5/22/09 1 Mid-Continent Earthquakes As A Complex System Niels Bohr once observed How wonderful that we have met with a paradox. Now we have some hope of making progress. This situation

More information

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by:

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: Topic 5: The Dynamic Crust (workbook p. 65-85) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: --sedimentary horizontal rock layers (strata) are found

More information

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND

Magnitude 6.3 SOUTH ISLAND OF NEW ZEALAND A magnitude 6.3 earthquake shook the southern New Zealand city of Christchurch. At least 100 people are reported dead, and there are reports of collapsed buildings, cracked streets and flooding due to

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids

3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids 3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids S. Aoi National Research Institute for Earth Science and Disaster Prevention H. Sekiguchi, T. Iwata

More information

Lecture # 6. Geological Structures

Lecture # 6. Geological Structures 1 Lecture # 6 Geological Structures ( Folds, Faults and Joints) Instructor: Dr. Attaullah Shah Department of Civil Engineering Swedish College of Engineering and Technology-Wah Cantt. 2 The wavy undulations

More information

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE Tim Stern and SAHKE team* * VUW, GNS, University of Southern California, University of Tokyo(Japan) SAHKE = Seismic

More information

Magnitude 7.1 PERU. There are early reports of homes and roads collapsed leaving one dead and several dozen injured.

Magnitude 7.1 PERU. There are early reports of homes and roads collapsed leaving one dead and several dozen injured. A magnitude 7.1 earthquake has occurred offshore Peru. The earthquake struck just after 4 a.m. local time and was centered near the coast of Peru, 40 km (25 miles) south-southwest of Acari, Peru at a depth

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara SCALING OF SHORT-PERIOD SPECTRAL LEVEL OF ACCELERATION

More information

Earthquakes and Faulting

Earthquakes and Faulting Earthquakes and Faulting Crustal Strength Profile Quakes happen in the strong, brittle layers Great San Francisco Earthquake April 18, 1906, 5:12 AM Quake lasted about 60 seconds San Francisco was devastated

More information

Magnitude 8.3 SEA OF OKHOTSK

Magnitude 8.3 SEA OF OKHOTSK A powerful earthquake in Russia's Far East was felt as far away as Moscow, about 7,000 kilometers (4,400 miles) west of the epicenter, but no casualties or damage were reported. The epicenter was in the

More information

Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake

Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2004jb003163, 2004 Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake Y. Hu, 1 K.

More information

DEVELOPMENT OF TIME-AND-MAGNITUDE PREDICTABLE MODEL AND PREDICTION OF EARTHQUAKE HAZARD IN CENTRAL HIMALAYAS

DEVELOPMENT OF TIME-AND-MAGNITUDE PREDICTABLE MODEL AND PREDICTION OF EARTHQUAKE HAZARD IN CENTRAL HIMALAYAS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3024 DEVELOPMENT OF TIME-AND-MAGNITUDE PREDICTABLE MODEL AND PREDICTION OF EARTHQUAKE HAZARD IN CENTRAL

More information