Slow Deformation of Mt. Baekdu Stratovolcano Observed by Satellite Radar Interferometry

Size: px
Start display at page:

Download "Slow Deformation of Mt. Baekdu Stratovolcano Observed by Satellite Radar Interferometry"

Transcription

1 Slow Deformation of Mt. Baekdu Stratovolcano Observed by Satellite Radar Interferometry Sang-Wan Kim and Joong-Sun Won Department of Earth System Sciences, Yonsei University 134 Shinchon-dong, Seodaemun-gu, Seoul , Korea Fax) , yonsei.ac.kr ABSTRACT Mt. Baekdu is a Cenozoic stratovolcano, where a series of micro-seismic events and gaseous emissions have been reported recently. Two-pass DInSAR technique was applied to detect possible displacement. Most interferometric phases out of 58 JERS-1 differential interferograms show concentric fringe patterns that correlate with elevation. From an analysis of fringe-duration relation, the fringe patterns can be interpreted mostly as an atmospheric contamination by stratified troposphere. To estimate the tropospheric delay, we used the data in Mt. Sobaek that is located about 20 km away from the summit of Mt. Baekdu and whose diameter is about 5 km. After removing the tropospheric effect, about 3 mm/yr of inflation was detected from 1992 to Although the volcanic inflation is not conclusive because of the large r.m.s. error, the results indicate that there exists a possibility of a slow upward deformation around the volcano. 1 INTRODUCTION Differential synthetic aperture radar interferometry (DInSAR) has proven to be a powerful technique for monitoring of subtle crustal deformation. The study on Mt. Etna s deformation by Massonnet et al. [1] that demonstrated for the first time the use of radar interferometry for volcano monitoring triggered many successive researches [2][3][4]. Atmospheric effects on mountainous area are known to be very significant. Accordingly, interferograms may reflect both deformation and tropospheric effects. For large-scale deformation fields, especially, tropospheric delay may produce volcano-wide effects up to several centimeters [3]. Mt. Baekdu is a historically active stratovolcano (60 km in diameter) located on the border between China and North Korea. A major eruption took place at 968±20 A.D., which was one of the largest eruptions ever since the human history [5]. Mt. Baekdu has been dormant since the last eruption in However, gaseous emissions, hot springs and minor earthquakes recently have been reported. Some Chinese scientists believe that the volcano is bulging extremely slowly Fig. 1. Left: location map of the study area. Right: SRTM-3 DEM. Boxes of red line and yellow line represent the areas covered by JERS-1 and ERS tracks. White rectangle inset is the study area. Triangle and dot denote the summit crater lake of Mt. Baekdu, and the summit of Mt. Sobaek. Proc. of FRINGE 2003 Workshop, Frascati, Italy, 1 5 December 2003 (ESA SP-550, June 2004) 57_kim

2 Fig. 2. JERS-1 SAR images set and interferograms. Dots and circles are the images with their acquisition dates and relative perpendicular baselines with respect of the first data. Solid dots represent the images used, and circles represent the images excluded from geodetic network analysis for troposphere. Thickness of lines reflects mean coherence of each interferogram. Left: 88/230 track, Right: 89/230 track. (about 5 mm per year). A summit caldera is 5-km-wide and 350-m-deep (the height difference is 850 m from the top of the mountain to the surface of lake), and is filled by a lake. Most surrounding areas are covered with vegetation and forest except the summit of volcano. In this study, we use ERS-1/2 C-band and JERS-1 L-band SAR data for monitoring of Mt. Baekdu, and discuss obtained fringe patterns. 2 DATA AND DInSAR PROCESSING ERS-1/2 (Track/Frame: 146/2763 and 375/2763) and JERS-1 (Path/Raw: and ) SAR data sets were used to detect surface deformation possibly occurred in Mt. Baekdu for a 10-year period (from 1992 to 2002). We have ten ERS-1/2 SAR and forty-one (track 88/230: 23 scenes, track 89/230: 18 scenes) JERS-1 SAR data sets. To apply twopass differential interferometry, a digital elevation model (DEM) was obtained by refining low resolution DEM using five interferograms of short span [6]. SRTM-3 DEM (~90-m spacing) has been released recently to the public, and its accuracy is about 6 m ( 1 σ ) [7]. We also used SRTM DEM to remove topographic contribution. A series of interferograms has been constructed by two-pass method. Fig. 2 shows a relative perpendicular baseline and acquisition date of JERS-1 SAR. Each line represents the interferogram. Most interferograms on winter season (during the period between late October and May) have very low coherences because the mountain is usually covered with snow during the period. Thus we have investigated mainly the images of summer season. In Fig. 2, solid dots represent the images used for the analysis, and circles represent the data sets excluded from network analysis for troposphere due to low coherence. Since the JERS-1 orbit is not accurate enough to estimate baseline from initial orbital information, ground control points that are generated from matching between simulated SAR and real SAR images are used for estimation the orbit. Finally we used Massonnet et al. [8] method for the JERS-1 SAR baseline fine-tuning process. The examples of topographically corrected interferograms are shown in Fig. 3 for ERS-1/2 and Fig. 4 for JERS-1. 3 ANALYSIS OF DIFFERENTIAL INTERFEROGRAM We obtained only two coherent pairs from ERS SAR data sets because of the temporal decorrelation due to forest and vegetation. A 70-day ERS interferogram shows a relatively clear fringe of a round shape. The differential phase that correlates with the topography of volcano may be caused by troposphere. Without any other observations such as GPS or meteorological data, a tropospheric effect cannot be removed by means of inspection of few interferograms. Therefore we use JERS-1 L-band SAR data sets for the study.

3 Fig. 3. ERS-1/2 Differential interferograms of (a) 9707/9709 pair (70-day), (b) 9508/9607 pair (351-day), and (c) 9806/0206 pair (1470-day). Color scale represents 2.8 cm displacement along the radar line-of-sight direction. Fig. 4. Differential Interferograms of JERS-1 SAR dataset corrected for topography around Mt. Baekdu volcano. Color scale represents one cycle of interferometric phase that can be interpreted as 11.8 cm displacement of the surface along the radar line-of-sight direction. Background image is the multi-image reflectivity map. Areas of loss of radar coherence are uncolored.

4 Fig. 5. Location map of the selected pixels for the modeling of 88_9209/9807 pair between elevation and phase, (a) at Mt. Baekdu, (b) at Mt Sobaek. Most interferometric phases out of 58 JERS-1 differential interferograms (some examples are shown in Fig. 4) show concentric fringe patterns correlated with the topography of volcano. The amount of fringe is not proportional to the perpendicular baseline and the duration of the SAR pairs, but it seems to correlate with their elevation even though at Mt Sobaek (refer to Fig. 5). Therefore most of the interferometric fringes could be regarded as tropospheric effect. The atmospheric heterogeneity is one of the potential error sources for DInSAR. A horizontally layered troposphere produces values of phase delay as a function of elevation [3][4], consequently concentric fringe patterns appear around Mt. Baekdu. To estimate the tropospheric delay, we aim to use the data in the surrounding areas. Mt. Sobaek is located about 20 km away from the summit of Mt. Baekdu, whose summit elevation and diameter is about 2,200 m and 5 km, respectively. Assuming that a deformation source is centered below the summit of Mt. Baekdu, its small diameter and the distance of 20 km can reduce the atmospheric signals. Mt. Sobaek is not always covered by the track of 89/230. It is possible to retrieve tropospheric information from the DInSAR image itself only in case of JERS-1 SAR data of the 88/230 track. 3.1 Fringe Counting We first select a set of coherent pixels from an averaged coherence map (Fig. 5). We then select a subset of pixels out of selected pixels that maintains the highest coherence over the duration of each interferogram. To distribute evenly in elevation and horizontal plane we divide study area into eight blocks around the summit of Baekdu, and then we select 5 most coherent pixels for every block in 50 meters elevation layer. For Mt. Sobaek 40 most coherent pixels are selected for every 50 meters layer. Fig. 5 is an example of 88_9209/9408 pair (track: 88/230, master: 1992/09/24, slave: 1994/08/29). The plots of differential phases with respect to elevations of SP (Fig. 6) show that the phases are strongly correlated with their heights. For fringe counting of each interferogram, we analyzed the correlation between pixel altitude and phase value. The following fitness function was used: i = j2 max R( m) e i i i π ( ϕ m ) obs ϕcal ( ) (1) ϕ (m) To define model phase cal, we use first-order polynomial because the height change from the base of the volcano edifice to the summit is relatively small (~1000 m). From the analysis of altitude-phase regression, we obtain polynomial coefficients of each interferogram. To obtain comparable quantity in two regions we define the phase computed from 1,400m to 2,600m as observed phase delay ( Pobs ) (refer to Fig. 6). The maximum Pobs reaches

5 Fig. 6. Examples of phase-elevation data and modeling. (a) 88_9209/9408 pair at Mt. Baekdu, (b) 88_9209/9408 pair at Mt. Sobaek. Solid dots are original data, and lines are the modeled phase delay radian(13.8 cm) with RMSE ±0.87 in 88_ pair. The mean value Baekdu is 2.18 radian (4.1 cm) with RMSE ±0.93, and 3.2 Retrieval of Tropospheric Effect and Analysis Baekdu P obs of observed phase in Sobaek P obs is 2.01 radian (3.8 cm) with RMSE ±1.33. As shown in Fig. 2 there are closures among the different interferograms. Therefore it is possible to compensate each observed phase delay by means of the network adjustment. This network constitutes a typically overdetermined system with m observations and n unknowns: A ( m n) X( n 1) = Y( m 1) (2) The m observations are not fully independent. The rank of matrix A is n-1, consequently the only solution is unavailable from Eq. (2). We obtained the relative phase delays P cal in respect to the first acquisition data (92/09/24). This network adjustment allows to retrieve a relative phase delay for each single data from each interferograms and to decrease the observation error of individual DInSAR. Baekdu cal Fig. 7 shows the result of the network adjustment expressed as fringe delay for each image. The phase delay ( P ) Sobaek of each data estimated in Baekdu overlaps with the phase delay ( P cal ) of Sobaek in 1 σ. This demonstrates that most fringes observed in interferograms of Mt. Baekdu may be due to troposphere rather than actual deformation. Assuming that P cal Sobaek comprises only atmospheric effect, the difference between Pcal Baekdu Sobaek and P cal can be considered as the component of surface displacement. An abrupt motion on a large scale have not been reported, thus we expect a continuous slow deformation of Mt. Baekdu. The rate of the displacement is estimated using a straight line fit (refer to Fig. 7a). The phase shortening of 0.1 radian per year is computed in line-of-sight direction. If it is projected Sobaek in vertical movement the rate of inflation is about 2.4 mm/yr. The calculated differential delay P cal for each Baekdu interferograms can be used to subtract a tropospheric delay from observed value of P obs. The residual phase Baekdu Sobaek ( Pcal Pcal ) has a slight correlation with a time interval of interferograms (Fig. 7b). The gradient of a fitting line corresponds to the uplift of 2.6 mm/yr in the vertical direction. The correlation coefficients of two fitting lines in Fig. 7 are only 0.28 and The confidence of the result is thus weak The possible maximum displacement in Mt. Baekdu can be more than 2.4 mm/yr (or 2.6 mm/yr) because it is an estimate from 1400 m to 2600 m. 4 CONCLUSIONS We apply the two-pass radar interferometry technique to ERS-1/2 and JERS-1 SAR data set for detecting possible slow surface deformation in Mt. Baekdu. ERS C-band SAR produces a very poor interferogram because of the temporal

6 Fig. 7. (a) Phase delay (from 1400 m to 2600 m) with error bar compensated for each image of JERS-1 88/230 pairs. Solid dots and red triangles correspond to phase delay estimated from Mt Baekdu and Mt. Sobaek, respectively. Solid line fits on the difference value (+ mark) between Mt. Baekdu and Mt. Sobaek, whose gradient corresponds to an uplift of 2.4 mm/yr. (b) Plot of time interval versus residual phase to subtract estimated phase of Sobaek from differential phase of Baekdu. The gradient of a fitting line indicates an uplift of 2.6 mm/yr. decorrelation due to forest and vegetation. However, JERS-1 SAR produces coherent interferograms even in pairs of long span (~ several years). The computation of 58 JERS-1 interferograms over Mt. Baekdu reveals a correlation between interferometric phases and topography that is related with tropospheric effect. The maximum and mean of the magnitudes of phase delay observed in Mt. Baekdu are 13.8 cm and 3.8 cm over 1200 m. Mt. Sobaek located in the surrounding regions of Baekdu volcano allows to estimate the tropospheric delay independent of volcano deformation. After removing the tropospheric effect, we obtained a displacement of about 3 mm/yr of inflation from 1992 to Although the large estimation error hinders determining the velocity of the deformation, the result indicates that a slow and upward moving deformation is in progress around the volcano. 5 REFERENCES [1] Massonnet D., Briole P., and Arnaud A., Deflation of Mount Etna monitored by spaceborne radar interferometry, Nature, Vol. 375, , [2] Amelung F., Jonsson S., Zebker H., and Segall P., Widespread uplift and trapdoor faulting on Galapagos volcanoes observed with radar interferometry, Nature, Vol. 407, , [3] Beauducel F., Briole P., and Froger J.-L., Volcano-wide fringes in ERS synthetic aperture radar interferograms of Etna ( ): Deformation or tropospheric effect?, J. Geophys. Res., Vol. 105, 16,391-16,402, [4] Tarayre H. and Massonnet D., Atmospheric propagation heterogeneities revealed by ERS-1 interferometry, Geophys. Res. Lett., Vol. 23, , [5] Horn S. and Schmincke H.-U., Volatile emission during the eruption of Baitoushan volcano(china/north Korea) ca. 969 AD, Bulletin of Volcanology, Vol. 61, , [6] Seymour, M.S., Refining Low-Quality digital elevation models using synthetic aperture radar interferometry, The University of British Columbia, Ph.D. Dissertation, [7] Muller J.-P. and Backes D., Quality assessment of X- and C-SRTM with ERS-tandem DEMs over 4 European CEOS WGCV test sites, Frascati, Italy, [8] Massonnet D. and Feigl K. L., Radar Interferometry and its Application to Changes in the Earth s Surface, Reviews of Geophysics, Vol. 36, , 1998.

ERS-ENVISAT Cross-interferometry for Coastal DEM Construction

ERS-ENVISAT Cross-interferometry for Coastal DEM Construction ERS-ENVISAT Cross-interferometry for Coastal DEM Construction Sang-Hoon Hong and Joong-Sun Won Department of Earth System Sciences, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, 120-749, Seoul, Korea

More information

DIFFERENTIAL INSAR STUDIES IN THE BOREAL FOREST ZONE IN FINLAND

DIFFERENTIAL INSAR STUDIES IN THE BOREAL FOREST ZONE IN FINLAND DIFFERENTIAL INSAR STUDIES IN THE BOREAL FOREST ZONE IN FINLAND Kirsi Karila (1,2), Mika Karjalainen (1), Juha Hyyppä (1) (1) Finnish Geodetic Institute, P.O. Box 15, FIN-02431 Masala, Finland, Email:

More information

Modeling of Atmospheric Effects on InSAR Measurements With the Method of Stochastic Simulation

Modeling of Atmospheric Effects on InSAR Measurements With the Method of Stochastic Simulation Modeling of Atmospheric Effects on InSAR Measurements With the Method of Stochastic Simulation Z. W. LI, X. L. DING Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hung

More information

Deformation measurement using SAR interferometry: quantitative aspects

Deformation measurement using SAR interferometry: quantitative aspects Deformation measurement using SAR interferometry: quantitative aspects Michele Crosetto (1), Erlinda Biescas (1), Ismael Fernández (1), Ivan Torrobella (1), Bruno Crippa (2) (1) (2) Institute of Geomatics,

More information

3D temporal evolution of displacements recorded on Mt. Etna from the 2007 to 2010 through the SISTEM method

3D temporal evolution of displacements recorded on Mt. Etna from the 2007 to 2010 through the SISTEM method 3D temporal evolution of displacements recorded on Mt. Etna from the 2007 to 2010 through the SISTEM method Bonforte A., Guglielmino F.,, Puglisi G. INGV Istituto Nazionale di Gofisica e vulcanologia Osservatorio

More information

ALOS PI Symposium 2009, 9-13 Nov 2009 Hawaii MOTION MONITORING FOR ETNA USING ALOS PALSAR TIME SERIES

ALOS PI Symposium 2009, 9-13 Nov 2009 Hawaii MOTION MONITORING FOR ETNA USING ALOS PALSAR TIME SERIES ALOS PI Symposium 2009, 9-13 Nov 2009 Hawaii ALOS Data Nodes: ALOS RA-094 and RA-175 (JAXA) MOTION MONITORING FOR ETNA USING ALOS PALSAR TIME SERIES Urs Wegmüller, Charles Werner and Maurizio Santoro Gamma

More information

to: Interseismic strain accumulation and the earthquake potential on the southern San

to: Interseismic strain accumulation and the earthquake potential on the southern San Supplementary material to: Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system by Yuri Fialko Methods The San Bernardino-Coachella Valley segment of the

More information

NOTES AND CORRESPONDENCE Segmented Faulting Process of Chelungpu Thrust: Implication of SAR Interferograms

NOTES AND CORRESPONDENCE Segmented Faulting Process of Chelungpu Thrust: Implication of SAR Interferograms , Vol. 14, No.2, 241-247, June 2003 NOTES AND CORRESPONDENCE Segmented Faulting Process of Chelungpu Thrust: Implication of SAR Interferograms Chien-Chih Chen 1,*, Chung-Pai Chang 2, and Kun-Shan Chen

More information

High-resolution temporal imaging of. Howard Zebker

High-resolution temporal imaging of. Howard Zebker High-resolution temporal imaging of crustal deformation using InSAR Howard Zebker Stanford University InSAR Prehistory SEASAT Topographic Fringes SEASAT Deformation ERS Earthquake Image Accurate imaging

More information

What is the Relationship between Pressure & Volume Change in a Magma Chamber and Surface Deformation at Active Volcanoes?

What is the Relationship between Pressure & Volume Change in a Magma Chamber and Surface Deformation at Active Volcanoes? SSAC-pv2007.QE522.PL1.1 What is the Relationship between Pressure & Volume Change in a Magma Chamber and Surface Deformation at Active Volcanoes? What factors control the magnitude of surface deformation?

More information

TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY

TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY TEMPORAL VARIABILITY OF ICE FLOW ON HOFSJÖKULL, ICELAND, OBSERVED BY ERS SAR INTERFEROMETRY Florian Müller (1), Helmut Rott (2) (1) ENVEO IT, Environmental Earth Observation GmbH, Technikerstrasse 21a,

More information

ERS-ENVISAT CROSS-INTERFEROMETRY SIGNATURES OVER DESERTS. Urs Wegmüller, Maurizio Santoro and Christian Mätzler

ERS-ENVISAT CROSS-INTERFEROMETRY SIGNATURES OVER DESERTS. Urs Wegmüller, Maurizio Santoro and Christian Mätzler ERS-ENVISAT CROSS-INTERFEROMETRY SIGNATURES OVER DESERTS Urs Wegmüller, Maurizio Santoro and Christian Mätzler Gamma Remote Sensing AG, Worbstrasse 225, CH-3073 Gümligen, Switzerland, http://www.gamma-rs.ch,

More information

In order to obtain a long term monitoring result for the Kilauea Volcano, ALOS PALSAR images taken on Track 287, Frame 38, ascending orbit with 21.5 d

In order to obtain a long term monitoring result for the Kilauea Volcano, ALOS PALSAR images taken on Track 287, Frame 38, ascending orbit with 21.5 d ALOS PALSAR OBSERVATION OF KILAUEA VOLCANO ACTIVITIES FROM 2006 TO 2009 Zhe Hu, Linlin Ge, Xiaojing Li, Kui Zhang, Alex Hay-Man NG and Chris Rizos Cooperative Research Centre for Spatial Information &

More information

RADAR Remote Sensing Application Examples

RADAR Remote Sensing Application Examples RADAR Remote Sensing Application Examples! All-weather capability: Microwave penetrates clouds! Construction of short-interval time series through cloud cover - crop-growth cycle! Roughness - Land cover,

More information

The Potential of High Resolution Satellite Interferometry for Monitoring Enhanced Oil Recovery

The Potential of High Resolution Satellite Interferometry for Monitoring Enhanced Oil Recovery The Potential of High Resolution Satellite Interferometry for Monitoring Enhanced Oil Recovery Urs Wegmüller a Lutz Petrat b Karsten Zimmermann c Issa al Quseimi d 1 Introduction Over the last years land

More information

Geochemistry, Geophysics, Geosystems. Supporting Information for

Geochemistry, Geophysics, Geosystems. Supporting Information for 1 2 3 4 5 6 7 8 Geochemistry, Geophysics, Geosystems Supporting Information for Volcano Deformation Survey over the Northern and Central Andes with ALOS InSAR Time Series Anieri M. Morales Rivera 1, Falk

More information

COAL MINE LAND SUBSIDENCE MONITORING BY USING SPACEBORNE INSAR DATA-A CASE STUDY IN FENGFENG, HEBEI PROVINCE, CHINA

COAL MINE LAND SUBSIDENCE MONITORING BY USING SPACEBORNE INSAR DATA-A CASE STUDY IN FENGFENG, HEBEI PROVINCE, CHINA COAL MINE LAND SUBSIDENCE MONITORING BY USING SPACEBORNE INSAR DATA-A CASE STUDY IN FENGFENG, HEBEI PROVINCE, CHINA Li Cao a, Yuehua Zhang a, Jianguo He a, Guang Liu b,huanyin Yue b, Runfeng Wang a, Linlin

More information

Available online at GHGT-9. Detection of surface deformation related with CO 2 injection by DInSAR at In Salah, Algeria

Available online at   GHGT-9. Detection of surface deformation related with CO 2 injection by DInSAR at In Salah, Algeria Available online at www.sciencedirect.com Energy Procedia 100 (2009) (2008) 2177 2184 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-9 Detection of surface deformation

More information

Radar Remote Sensing: Monitoring Ground Deformations and Geohazards from Space

Radar Remote Sensing: Monitoring Ground Deformations and Geohazards from Space Radar Remote Sensing: Monitoring Ground Deformations and Geohazards from Space Xiaoli Ding Department of Land Surveying and Geo-Informatics The Hong Kong Polytechnic University A Question 100 km 100 km

More information

Inflation of the Aira Caldera (Japan) detected over Kokubu urban area using SAR interferometry ERS data

Inflation of the Aira Caldera (Japan) detected over Kokubu urban area using SAR interferometry ERS data Inflation of the Aira Caldera (Japan) detected over Kokubu urban area using SAR interferometry ERS data D. Remy, S. Bonvalot, M. Murakami, P. Briole, S. Okuyama To cite this version: D. Remy, S. Bonvalot,

More information

ERS Track 98 SAR Data and InSAR Pairs Used in the Analysis

ERS Track 98 SAR Data and InSAR Pairs Used in the Analysis ERS Track 98 SAR Data and InSAR Pairs Used in the Analysis Date 1 Date 2 Date 1 Date 2 Date 1 Date 2 Date 1 Date 2 7/17/1992 6/19/2000 7/17/1992 7/2/1993 9/10/1993 10/28/1996 9/3/1995 10/18/1999 9/25/1992

More information

Interferometric Synthetic Aperture Radar (InSAR): Its Past, Present and Future

Interferometric Synthetic Aperture Radar (InSAR): Its Past, Present and Future Interferometric Synthetic Aperture Radar (InSAR): Its Past, Present and Future by Zhong Lu, Ohig Kwoun, and Russell Rykhus Introduction Very simply, interferometric synthetic aperture radar (InSAR) involves

More information

Application of differential SAR interferometry for studying eruptive event of 22 July 1998 at Mt. Etna. Abstract

Application of differential SAR interferometry for studying eruptive event of 22 July 1998 at Mt. Etna. Abstract Application of differential SAR interferometry for studying eruptive event of 22 July 1998 at Mt. Etna Coltelli M. 1, Puglisi G. 1, Guglielmino F. 1, Palano M. 2 1 Istituto Nazionale di Geofisica e Vulcanologia,

More information

THREE DIMENSIONAL DETECTION OF VOLCANIC DEPOSIT ON MOUNT MAYON USING SAR INTERFEROMETRY

THREE DIMENSIONAL DETECTION OF VOLCANIC DEPOSIT ON MOUNT MAYON USING SAR INTERFEROMETRY ABSTRACT THREE DIMENSIONAL DETECTION OF VOLCANIC DEPOSIT ON MOUNT MAYON USING SAR INTERFEROMETRY Francis X.J. Canisius, Kiyoshi Honda, Mitsuharu Tokunaga and Shunji Murai Space Technology Application and

More information

Haiti Earthquake (12-Jan-2010) co-seismic motion using ALOS PALSAR

Haiti Earthquake (12-Jan-2010) co-seismic motion using ALOS PALSAR Haiti Earthquake (12-Jan-2010) co-seismic motion using ALOS PALSAR Urs Wegmüller, Charles Werner, Maurizio Santoro Gamma Remote Sensing, CH-3073 Gümligen, Switzerland SAR data: JAXA, METI; PALSAR AO Project

More information

InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction

InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction InSAR measurements of volcanic deformation at Etna forward modelling of atmospheric errors for interferogram correction Rachel Holley, Geoff Wadge, Min Zhu Environmental Systems Science Centre, University

More information

The Tohoku Earthquake 2011 Case.

The Tohoku Earthquake 2011 Case. Wide Area Deformation map generation with TerraSAR-X Data. The Tohoku Earthquake 2011 Case. N. Yague-Martinez (1), C. Minet (2), M. Eineder (2), B. Schättler (2) (1) Starlab, Spain (2) Remote Sensing Technology

More information

Deformation of the Augustine Volcano, Alaska, , measured by ERS and ENVISAT SAR interferometry

Deformation of the Augustine Volcano, Alaska, , measured by ERS and ENVISAT SAR interferometry Earth Planets Space, 60, 447 452, 2008 Deformation of the Augustine Volcano, Alaska, 1992 2005, measured by ERS and ENVISAT SAR interferometry Chang-Wook Lee 1,3, Zhong Lu 2, Oh-Ig Kwoun 3, and Joong-Sun

More information

Mitigation of Atmospheric Water-vapour Effects on Spaceborne Interferometric SAR Imaging through the MM5 Numerical Model

Mitigation of Atmospheric Water-vapour Effects on Spaceborne Interferometric SAR Imaging through the MM5 Numerical Model PIERS ONLINE, VOL. 6, NO. 3, 2010 262 Mitigation of Atmospheric Water-vapour Effects on Spaceborne Interferometric SAR Imaging through the MM5 Numerical Model D. Perissin 1, E. Pichelli 2, R. Ferretti

More information

GPS and GIS Assisted Radar Interferometry

GPS and GIS Assisted Radar Interferometry GPS and GIS Assisted Radar Interferometry Linlin Ge, Xiaojing Li, Chris Rizos, and Makoto Omura Abstract Error in radar satellite orbit determination is a common problem in radar interferometry (INSAR).

More information

Journal of Geodynamics

Journal of Geodynamics Journal of Geodynamics 49 (2010) 161 170 Contents lists available at ScienceDirect Journal of Geodynamics journal homepage: http://www.elsevier.com/locate/jog Recent advances on surface ground deformation

More information

generated by two ERS-2 SAR images taken 35 days apart and the water vapour delay

generated by two ERS-2 SAR images taken 35 days apart and the water vapour delay Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna G. Wadge 1, P.W. Webley 1, I.N. James 2, R. Bingley 3, A. Dodson 3, S. Waugh 3, T. Veneboer 3, G. Puglisi

More information

P079 First Results from Spaceborne Radar Interferometry for the Study of Ground Displacements in Urban Areas SUMMARY

P079 First Results from Spaceborne Radar Interferometry for the Study of Ground Displacements in Urban Areas SUMMARY P079 First Results from Spaceborne Radar Interferometry for the Study of Ground Displacements in Urban Areas C.M. Crosetto (Instituto de Geomatica), C.A. Casas (University of Barcelona), R.G. Ranieri (University

More information

DETECTING ICE MOTION IN GROVE MOUNTAINS, EAST ANTARCTICA WITH ALOS/PALSAR AND ENVISAT/ASAR DATA

DETECTING ICE MOTION IN GROVE MOUNTAINS, EAST ANTARCTICA WITH ALOS/PALSAR AND ENVISAT/ASAR DATA DETECTING ICE MOTION IN GROVE MOUNTAINS, EAST ANTARCTICA WITH ALOS/PALSAR AND ENVISAT/ASAR DATA TIAN Xin (1), LIAO Mingsheng (1), ZHOU Chunxia (2), ZHOU Yu (3) (1) State Key Laboratory of Information Engineering

More information

Operational use of InSAR for volcano observatories : experience from Montserrat

Operational use of InSAR for volcano observatories : experience from Montserrat Operational use of InSAR for volcano observatories : experience from Montserrat G.Wadge 1, B.Scheuchl 1,5, L.Cabey 1,2, M.D.Palmer 3, C. Riley 3, A. Smith 4, N.F.Stevens 1 1. ESSC, University of Reading,

More information

CHAPTER-7 INTERFEROMETRIC ANALYSIS OF SPACEBORNE ENVISAT-ASAR DATA FOR VEGETATION CLASSIFICATION

CHAPTER-7 INTERFEROMETRIC ANALYSIS OF SPACEBORNE ENVISAT-ASAR DATA FOR VEGETATION CLASSIFICATION 147 CHAPTER-7 INTERFEROMETRIC ANALYSIS OF SPACEBORNE ENVISAT-ASAR DATA FOR VEGETATION CLASSIFICATION 7.1 INTRODUCTION: Interferometric synthetic aperture radar (InSAR) is a rapidly evolving SAR remote

More information

Basics of the modelling of the ground deformations produced by an earthquake. EO Summer School 2014 Frascati August 13 Pierre Briole

Basics of the modelling of the ground deformations produced by an earthquake. EO Summer School 2014 Frascati August 13 Pierre Briole Basics of the modelling of the ground deformations produced by an earthquake EO Summer School 2014 Frascati August 13 Pierre Briole Content Earthquakes and faults Examples of SAR interferograms of earthquakes

More information

Ground surface deformation of L Aquila. earthquake revealed by InSAR time series

Ground surface deformation of L Aquila. earthquake revealed by InSAR time series Ground surface deformation of L Aquila earthquake revealed by InSAR time series Reporter: Xiangang Meng Institution: First Crust Monitoring and Application Center, CEA Address: 7 Naihuo Road, Hedong District

More information

Subsidence-induced fault

Subsidence-induced fault Surveying Monitoring underground coal mining-induced subsidence by Yaobin Sheng, Linlin Ge, Chris Rizos, University of New South Wales, and Yunjia Wang, China University of Mining and Technology This paper

More information

Measuring rock glacier surface deformation using SAR interferometry

Measuring rock glacier surface deformation using SAR interferometry Permafrost, Phillips, Springman & Arenson (eds) 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Measuring rock glacier surface deformation using SAR interferometry L.W. Kenyi Institute for Digital Image

More information

The PaTrop Experiment

The PaTrop Experiment Improved estimation of the tropospheric delay component in GNSS and InSAR measurements in the Western Corinth Gulf (Greece), by the use of a highresolution meteorological model: The PaTrop Experiment N.

More information

Deformation of the 1995 North Sakhalin earthquake detected by JERS-1/SAR interferometry

Deformation of the 1995 North Sakhalin earthquake detected by JERS-1/SAR interferometry Earth Planets Space, 50, 313 325, 1998 Deformation of the 1995 North Sakhalin earthquake detected by JERS-1/SAR interferometry Mikio Tobita 1, Satoshi Fujiwara 2, Shinzaburo Ozawa 1, Paul A. Rosen 2, Eric

More information

InSAR-based hydrology of the Everglades, South Florida

InSAR-based hydrology of the Everglades, South Florida InSAR-based hydrology of the Everglades, South Florida Shimon Wdowinski (1), Falk Amelung (1), Fernando Miralles-Wilhelm (2), Tim Dixon (1), and Richard Carande (3) (1) Division of Marine Geology and Geophysics,

More information

3-Dimension Deformation Mapping from InSAR & Multiaperture. Hyung-Sup Jung The Univ. of Seoul, Korea Zhong Lu U.S. Geological Survey, U.S.A.

3-Dimension Deformation Mapping from InSAR & Multiaperture. Hyung-Sup Jung The Univ. of Seoul, Korea Zhong Lu U.S. Geological Survey, U.S.A. 3-Dimension Deformation Mapping from InSAR & Multiaperture InSAR Hyung-Sup Jung The Univ. of Seoul, Korea Zhong Lu U.S. Geological Survey, U.S.A. Outline Introduction to multiple-aperture InSAR (MAI) 3-D

More information

Monitoring long-term ground movements and Deep Seated Gravitational

Monitoring long-term ground movements and Deep Seated Gravitational Monitoring long-term ground movements and Deep Seated Gravitational Slope Deformations by InSAR time series: cases studies in Italy Salvatore Stramondo (1), M. Saroli (1, 2), M. Moro (1, 2), S. Atzori

More information

Surface Deformation Measurements Scientific Requirements & Challenges

Surface Deformation Measurements Scientific Requirements & Challenges Surface Deformation Measurements Scientific Requirements & Challenges 1st Science and Application Workshop for Germany-Japan Next-Generation SAR M. Eineder, C. Minet, A. Parizzi Tokyo, 27.6.2013 Tandem-L

More information

The financial and communal impact of a catastrophe instantiated by. volcanoes endlessly impact on lives and damage expensive infrastructure every

The financial and communal impact of a catastrophe instantiated by. volcanoes endlessly impact on lives and damage expensive infrastructure every Chapter 1 Introduction The financial and communal impact of a catastrophe instantiated by geophysical activity is significant. Landslides, subsidence, earthquakes and volcanoes endlessly impact on lives

More information

Ground deformation in Thessaly, Central Greece, between 1992 and 2000 by means of ERS multi-temporal InSAR

Ground deformation in Thessaly, Central Greece, between 1992 and 2000 by means of ERS multi-temporal InSAR INGV Ground deformation in Thessaly, Central Greece, between 1992 and 2000 by means of ERS multi-temporal InSAR S. Atzori (1), C. Tolomei (1), S. Salvi (1), A. Ganas (2), S. Stramondo (1) and L. Colini

More information

Publication V Finnish Society of Photogrammetry and Remote Sensing (FSPRS)

Publication V Finnish Society of Photogrammetry and Remote Sensing (FSPRS) Publication V Kirsi Karila, Mika Karjalainen, and Juha Hyyppä. 2005. Urban land subsidence studies in Finland using synthetic aperture radar images and coherent targets. The Photogrammetric Journal of

More information

Detecting the Source Location of Recent Summit Inflation via Three-Dimensional InSAR Observation of Kīlauea Volcano

Detecting the Source Location of Recent Summit Inflation via Three-Dimensional InSAR Observation of Kīlauea Volcano Remote Sens. 2015, 7, 14386-14402; doi:10.3390/rs71114386 Article OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Detecting the Source Location of Recent Summit Inflation via

More information

PSI Precision, accuracy and validation aspects

PSI Precision, accuracy and validation aspects PSI Precision, accuracy and validation aspects Urs Wegmüller Gamma Remote Sensing AG, Gümligen, Switzerland, wegmuller@gamma-rs.ch Contents - Precision - Accuracy - Systematic errors - Atmospheric effects

More information

InSAR atmospheric effects over volcanoes - atmospheric modelling and persistent scatterer techniques

InSAR atmospheric effects over volcanoes - atmospheric modelling and persistent scatterer techniques InSAR atmospheric effects over volcanoes - atmospheric modelling and persistent scatterer techniques Rachel Holley 1,2, Geoff Wadge 1, Min Zhu 1, Ian James 3, Peter Clark 4 Changgui Wang 4 1. Environmental

More information

DEM GENERATION AND ANALYSIS ON RUGGED TERRAIN USING ENVISAT/ASAR ENVISAT/ASAR MULTI-ANGLE INSAR DATA

DEM GENERATION AND ANALYSIS ON RUGGED TERRAIN USING ENVISAT/ASAR ENVISAT/ASAR MULTI-ANGLE INSAR DATA DEM GENERATION AND ANALYSIS ON RUGGED TERRAIN USING ENVISAT/ASAR ENVISAT/ASAR MULTI-ANGLE INSAR DATA Li xinwu Guo Huadong Li Zhen State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing

More information

V. Pinel, A. Hooper, S. de la Cruz-Reyna, G. Reyes-Davila, M.P. Doin

V. Pinel, A. Hooper, S. de la Cruz-Reyna, G. Reyes-Davila, M.P. Doin !"#$%&'(&")*&$*('+,-".'/&(.*0$&'(&"1'&-2".3*&4*5.2-/& 6"+-"'3'02-/'*6 78'9'2-"*9*"0 -/$&&:'0.,- ;'02-/'

More information

Ground deformation monitoring at the Phlegrean Fields (Naples, Italy) from the exploitation of SAR data in the framework of CAT-1 and DUP activities

Ground deformation monitoring at the Phlegrean Fields (Naples, Italy) from the exploitation of SAR data in the framework of CAT-1 and DUP activities Ground deformation monitoring at the Phlegrean Fields (Naples, Italy) from the exploitation of SAR data in the framework of CAT-1 and DUP activities Borgström S., Aquino I., Del Gaudio C., Ricco C., Siniscalchi

More information

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 2, APRIL

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 2, APRIL IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 2, APRIL 2004 57 Delta-K Interferometric SAR Technique for Snow Water Equivalent (SWE) Retrieval Geir Engen, Tore Guneriussen, and Øyvind Overrein

More information

SAR Data Analysis: An Useful Tool for Urban Areas Applications

SAR Data Analysis: An Useful Tool for Urban Areas Applications SAR Data Analysis: An Useful Tool for Urban Areas Applications M. Ferri, A. Fanelli, A. Siciliano, A. Vitale Dipartimento di Scienza e Ingegneria dello Spazio Luigi G. Napolitano Università degli Studi

More information

Chapter 18. Abstract. Introduction. By Chang-Wook Lee 1, Zhong Lu 2, Hyung-Sup Jung 3, Joong-Sun Won 4, and Daniel Dzurisin 5

Chapter 18. Abstract. Introduction. By Chang-Wook Lee 1, Zhong Lu 2, Hyung-Sup Jung 3, Joong-Sun Won 4, and Daniel Dzurisin 5 The 2006 Eruption of Augustine Volcano, Alaska Power, J.A., Coombs, M.L., and Freymueller, J.T., editors U.S. Geological Survey Professional Paper 1769 Chapter 18 Surface Deformation of Augustine Volcano,

More information

SAR interferometry Status and future directions. Rüdiger Gens

SAR interferometry Status and future directions. Rüdiger Gens SAR interferometry Status and future directions Rüdiger Gens Polarimetric InSAR Polarimetric InSAR InSAR - Status and future directions sensitivity to changes in surface scattering, even in the presence

More information

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 8, AUGUST

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 8, AUGUST IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 11, NO. 8, AUGUST 2014 1355 Multitemporal Multitrack Monitoring of Wetland Water Levels in the Florida Everglades Using ALOS PALSAR Data With Interferometric

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1857 1 Volcanic subsidence triggered by the 2011 Tohoku earthquake in Japan 2 3 Supplementary Information 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

More information

Università di Roma La Sapienza, Facoltà d Ingegneria, Dipartimento di Idraulica,Trasporti e Strade (D.I.T.S.) 00185, Roma, Italy

Università di Roma La Sapienza, Facoltà d Ingegneria, Dipartimento di Idraulica,Trasporti e Strade (D.I.T.S.) 00185, Roma, Italy DORIS FP7-EU PROJECT: EXPLOITATION OF 20 YEARS DINSAR DATA ARCHIVE FOR LANDSLIDE MONITORING Manunta M. (1), Calò F. (1), Paglia L., (1), Bonano M. (1,2), Lanari R. (1) (1) IREA-CNR, Via Diocleziano 328,

More information

GSNL - Geohazard Supersites and Natural Laboratories. Biennial report for Candidate/Permanent Supersite. Hawaiʻi Supersite. Annex to report

GSNL - Geohazard Supersites and Natural Laboratories. Biennial report for Candidate/Permanent Supersite. Hawaiʻi Supersite. Annex to report Introduction Biennial report for Candidate/Permanent Supersite Hawaiʻi Supersite Annex to 2014 2016 report During 2014 2016, the Hawaiʻi Supersite achieved a number of noteworthy results. This annex details

More information

SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH S SURFACE TOPOGRAPHY AND ITS DEFORMATION

SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH S SURFACE TOPOGRAPHY AND ITS DEFORMATION Annu. Rev. Earth Planet. Sci. 2000. 28:169 209 Copyright 2000 by Annual Reviews. All rights reserved SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH S SURFACE TOPOGRAPHY AND ITS DEFORMATION Roland

More information

PHASE UNWRAPPING. Sept. 3, 2007 Lecture D1Lb4 Interferometry: Phase unwrapping Rocca

PHASE UNWRAPPING. Sept. 3, 2007 Lecture D1Lb4 Interferometry: Phase unwrapping Rocca PHASE UNWRAPPING 1 Phase unwrapping 2 1D Phase unwrapping Problem: given the wrapped phase ψ=w(φ) find the unwrapped one ψ. The wrapping operator: W(φ)=angle(exp(j φ)), gives always solution -π π and is

More information

Zenith delay [mm] Time [min]

Zenith delay [mm] Time [min] GPS Nieuwsbrief, (1), 2., Nov. 2. Cross-Validation of tropospheric delay variability observed by GPS and SAR interferometry Andre van der Hoeven, Ramon Hanssen, Boudewijn Ambrosius Delft Institute for

More information

MEASUREMENT OF SURFACE DISPLACEMENT CAUSED BY UNDERGROUND NUCLEAR EXPLOSIONS BY DIFFERENTIAL SAR INTERFEROMETRY

MEASUREMENT OF SURFACE DISPLACEMENT CAUSED BY UNDERGROUND NUCLEAR EXPLOSIONS BY DIFFERENTIAL SAR INTERFEROMETRY MEASUREMENT OF SURFACE DISPLACEMENT CAUSED BY UNDERGROUND NUCLEAR EXPLOSIONS BY DIFFERENTIAL SAR INTERFEROMETRY X. Cong a, KH. Gutjahr b, J. Schlittenhardt a, U. Soergel c, a Bundesanstalt für Geowissenschaften

More information

4600 Rickenbacker Cswy, Miami 33149, FL. U.S.A., (2)

4600 Rickenbacker Cswy, Miami 33149, FL. U.S.A., (2) POSTSEISMIC DEFORMATION FOLLOWING THE 2010 HAITI EARTHQUAKE: TIME-DEPENDENT SURFACE SUBSIDENCE INDUCED BY GROUNDWATER FLOW IN RESPONSE TO A SUDDEN UPLIFT Shimon Wdowinski (1), Sang-Hoon Hong (1)(2) (1)

More information

Generation and Validation of Digital Elevation Model using ERS - SAR Interferometry Remote Sensing Data

Generation and Validation of Digital Elevation Model using ERS - SAR Interferometry Remote Sensing Data Jour. Agric. Physics, Vol. 7, pp. 8-13 (2007) Generation and Validation of Digital Elevation Model using ERS - SAR Interferometry Remote Sensing Data SHELTON PADUA 1, VINAY K. SEHGAL 2 AND K.S. SUNDARA

More information

DEFORMATION DUE TO MAGMA MOVEMENT AND ICE UNLOADING AT KATLA VOLCANO, ICELAND, DETECTED BY PERSISTENT SCATTERER INSAR

DEFORMATION DUE TO MAGMA MOVEMENT AND ICE UNLOADING AT KATLA VOLCANO, ICELAND, DETECTED BY PERSISTENT SCATTERER INSAR DEFORMATION DUE TO MAGMA MOVEMENT AND ICE UNLOADING AT KATLA VOLCANO, ICELAND, DETECTED BY PERSISTENT SCATTERER INSAR Andrew Hooper and Rikke Pedersen Nordic Volcanological Center, Institute of Earth Sciences,

More information

Supporting the response to the 2018 lower East Rift Zone and summit collapse at Kīlauea Volcano, Hawaiʻi

Supporting the response to the 2018 lower East Rift Zone and summit collapse at Kīlauea Volcano, Hawaiʻi Hawaiʻi Supersite success story Supporting the response to the 2018 lower East Rift Zone and summit collapse at Kīlauea Volcano, Hawaiʻi Since 1983, Kīlauea Volcano, on the Island of Hawaiʻi, has actively

More information

The Santorini Inflation Episode, Monitored by InSAR and GPS

The Santorini Inflation Episode, Monitored by InSAR and GPS The Santorini Inflation Episode, Monitored by InSAR and GPS Ioannis Papoutsis 1,2, Xanthos Papanikolaou 2, Michael Floyd 3, Kang Hyeun Ji 4, Charalampos Kontoes 1, Demitris Paradissis 2, Demitris Anastasiou

More information

SAR INTERFEROMETRIC ANALYSIS OF GROUND DEFORMATION AT SANTORINI VOLCANO (GREECE)

SAR INTERFEROMETRIC ANALYSIS OF GROUND DEFORMATION AT SANTORINI VOLCANO (GREECE) SAR INTERFEROMETRIC ANALYSIS OF GROUND DEFORMATION AT SANTORINI VOLCANO (GREECE) Papageorgiou Elena (1), Foumelis Michael (2), Parcharidis Issaak (2) (1) National and Kapodistrian University of Athens,

More information

Interferometric SAR analysis for Characterizing Surface Changes of an Active Volcano using Open Source Software

Interferometric SAR analysis for Characterizing Surface Changes of an Active Volcano using Open Source Software Interferometric SAR analysis for Characterizing Surface Changes of an Active Volcano using Open Source Software Asep SAEPULOH1, Katsuaki KOIKE1, Makoto OMURA2 1 Department of Life and Environmental Sciences,

More information

ERAD Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics

ERAD Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics Proceedings of ERAD (2002): 190 194 c Copernicus GmbH 2002 ERAD 2002 Water vapor observations with SAR, microwave radiometer and GPS: comparison of scaling characteristics D. N. Moisseev 1, R. F. Hanssen

More information

Diverse deformation patterns of Aleutian volcanoes from InSAR

Diverse deformation patterns of Aleutian volcanoes from InSAR Diverse deformation patterns of Aleutian volcanoes from InSAR Zhong Lu 1, Dan Dzurisin 1, Chuck Wicks 2, and John Power 3 U.S. Geological Survey 1 Cascades Volcano Observatory, Vancouver, Washington 2

More information

Monitoring Mount Sinabung in Indonesia Using Multi- Temporal InSAR

Monitoring Mount Sinabung in Indonesia Using Multi- Temporal InSAR Korean Journal of Remote Sensing, Vol.33, No.1, 2017, pp.37~46 http://dx.doi.org/10.7780/kjrs.2017.33.1.4 ISSN 1225-6161 ( Print ) ISSN 2287-9307 (Online) Article Monitoring Mount Sinabung in Indonesia

More information

MODELING INTERFEROGRAM STACKS FOR SENTINEL - 1

MODELING INTERFEROGRAM STACKS FOR SENTINEL - 1 MODELING INTERFEROGRAM STACKS FOR SENTINEL - 1 Fabio Rocca (1) (1) Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy, Email: rocca@elet.polimi.it ABSTRACT The dispersion of the optimal estimate

More information

Two-pass DInSAR uses an interferometric image pair and an external digital elevation model (DEM). Among the two singlelook complex (SLC) images, one i

Two-pass DInSAR uses an interferometric image pair and an external digital elevation model (DEM). Among the two singlelook complex (SLC) images, one i DIFFERENTIAL RADAR INTERFEROMETRY AND ITS APPLICATION IN MONITORING UNDERGROUND COAL MINING-INDUCED SUBSIDENCE Yaobin Sheng a, b, c, *, Yunjia Wang a, b, Linlin Ge c, Chris Rizos c a Jiangsu Key Laboratory

More information

Supplementary information. Analytical Techniques and Measurement Uncertainty

Supplementary information. Analytical Techniques and Measurement Uncertainty Supplementary information Analytical Techniques and Measurement Uncertainty Interferomeric SAR (InSAR) allows measurement of millimetre-level surface displacements, including land subsidence, in the radar

More information

DETECTION OF GROUND MOTION IN THE LISBON REGION WITH PERSISTENT SCATTERER INTERFEROMETRY (PSI)

DETECTION OF GROUND MOTION IN THE LISBON REGION WITH PERSISTENT SCATTERER INTERFEROMETRY (PSI) DETECTION OF GROUND MOTION IN THE LISBON REGION WITH PERSISTENT SCATTERER INTERFEROMETRY (PSI) Sandra HELENO 1, Afonso LOUREIRO 1,2, João FONSECA 1, João MATOS 1, João CARVALHO 3, Geraint COOKSLEY 4, Ana

More information

MERIS and OSCAR: Online Services for Correcting Atmosphere in Radar

MERIS and OSCAR: Online Services for Correcting Atmosphere in Radar National Aeronautics and Space Administration MERIS and OSCAR: Online Services for Correcting Atmosphere in Radar Eric Fielding and Evan Fishbein Jet Propulsion Laboratory, California Inst. of Tech. Zhenhong

More information

MONITORING OF GLACIAL CHANGE IN THE HEAD OF THE YANGTZE RIVER FROM 1997 TO 2007 USING INSAR TECHNIQUE

MONITORING OF GLACIAL CHANGE IN THE HEAD OF THE YANGTZE RIVER FROM 1997 TO 2007 USING INSAR TECHNIQUE MONITORING OF GLACIAL CHANGE IN THE HEAD OF THE YANGTZE RIVER FROM 1997 TO 2007 USING INSAR TECHNIQUE Hong an Wu a, *, Yonghong Zhang a, Jixian Zhang a, Zhong Lu b, Weifan Zhong a a Chinese Academy of

More information

SNOW MASS RETRIEVAL BY MEANS OF SAR INTERFEROMETRY

SNOW MASS RETRIEVAL BY MEANS OF SAR INTERFEROMETRY SNOW MASS RETRIEVAL BY MEANS OF SAR INTERFEROMETRY Helmut Rott (1), Thomas Nagler (1), Rolf Scheiber (2) (1) ENVEO, Environmental Earth Observation OEG, Exlgasse 39, A-6020 Innsbruck, Austria E-mail: Helmut.Rott@enveo.at

More information

Spatiotemporal analysis of ground deformation at Campi Flegrei and Mt Vesuvius, Italy, observed by Envisat and Radarsat-2 InSAR during

Spatiotemporal analysis of ground deformation at Campi Flegrei and Mt Vesuvius, Italy, observed by Envisat and Radarsat-2 InSAR during Spatiotemporal analysis of ground deformation at Campi Flegrei and Mt Vesuvius, Italy, observed by Envisat and Radarsat InSAR during 233 Sergey V. Samsonov, Pablo J. González, Kristy F. Tiampo, Antonio

More information

Observation of Surface Displacements on Glaciers, Sea Ice, and Ice Shelves Around Canisteo Peninsula, West Antarctica Using 4-Pass DInSAR

Observation of Surface Displacements on Glaciers, Sea Ice, and Ice Shelves Around Canisteo Peninsula, West Antarctica Using 4-Pass DInSAR 4 hyangsun@kangwon.ac.kr, hoonyol@kangwon.ac.kr Observation of Surface Displacements on Glaciers, Sea Ice, and Ice Shelves Around Canisteo Peninsula, West Antarctica Using 4-Pass DInSAR Hyangsun Han and

More information

Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR)

Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR) Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR) Tectonophysics 637 (2014) 163 177 Speaker:Yi-Huei,Cho Advisor :Loung-Yie,Tsai Date:2016/12/08

More information

J. Manuel Delgado (1,2), Roberto Cuccu (1), Giancarlo Rivolta (1)

J. Manuel Delgado (1,2), Roberto Cuccu (1), Giancarlo Rivolta (1) MONITORING GROUND DEFORMATION USING PERSISTENT SCATTERS INTERFEROMETRY (PSI) AND SMALL BASELINES (SBAS) TECHNIQUES INTEGRATED IN THE ESA RSS SERVICE: THE CASE STUDY OF VALENCIA, ROME AND SOUTH SARDINIA

More information

EAS 116 Earthquakes and Volcanoes

EAS 116 Earthquakes and Volcanoes EAS 116 Earthquakes and Volcanoes J. Haase Forecasting Volcanic Eruptions Assessment of Volcanic Hazard Is that volcano active? Mount Lassen: 12000 BP and 1915 Santorini, IT: 180,000 BP, 70,000 BP, 21000

More information

PSInSAR as a new tool to monitor pre eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise

PSInSAR as a new tool to monitor pre eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl043846, 2010 PSInSAR as a new tool to monitor pre eruptive volcano ground deformation: Validation using GPS measurements

More information

PRESENTATION OF THE SMALL BASELINE NSBAS PROCESSING CHAIN ON A CASE EXAMPLE: THE ETNA DEFORMATION MONITORING FROM 2003 TO 2010 USING ENVISAT DATA

PRESENTATION OF THE SMALL BASELINE NSBAS PROCESSING CHAIN ON A CASE EXAMPLE: THE ETNA DEFORMATION MONITORING FROM 2003 TO 2010 USING ENVISAT DATA PRESENTATION OF THE SMALL BASELINE NSBAS PROCESSING CHAIN ON A CASE EXAMPLE: THE ETNA DEFORMATION MONITORING FROM 2003 TO 2010 USING ENVISAT DATA Marie-Pierre Doin 1, Felicity Lodge 3, Stéphane Guillaso

More information

ATMOSPHERIC EFFECTS REMOVAL OF ASAR-DERIVED INSAR PRODUCTS USING MERIS DATA AND GPS

ATMOSPHERIC EFFECTS REMOVAL OF ASAR-DERIVED INSAR PRODUCTS USING MERIS DATA AND GPS ATMOSPHERIC EFFECTS REMOVAL OF ASAR-DERIVED INSAR PRODUCTS USING MERIS DATA AND GPS S. Adham Khiabani a, M. J. Valadan Zoej a, M. R. Mobasheri a, M. Dehghani a Geodesy and Geomatics Engineering Faculty,

More information

ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION.

ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION. ACHIEVING THE ERS-2 ENVISAT INTER-SATELLITE INTERFEROMETRY TANDEM CONSTELLATION M. A. Martín Serrano (1), M. A. García Matatoros (2), M. E. Engdahl (3) (1) VCS-SciSys at ESA/ESOC, Robert-Bosch-Strasse

More information

Potential and limitation of ERS-Differential SAR Interferometry for landslide studies in the French Alps and Pyrenees

Potential and limitation of ERS-Differential SAR Interferometry for landslide studies in the French Alps and Pyrenees Potential and limitation of ERS-Differential SAR Interferometry for landslide studies in the French Alps and Pyrenees Delacourt C (1), Allemand P (1), Squarzoni C (1), Picard F (1), Raucoules D (2), Carnec

More information

On the variations of InSAR-ICA altitudes in a mountain area of the Sele Valley (South Italy)

On the variations of InSAR-ICA altitudes in a mountain area of the Sele Valley (South Italy) ANNALS OF GEOPHYSICS, VOL. 52, N. 2, April 2009 On the variations of InSAR-ICA altitudes in a mountain area of the Sele Valley (South Italy) Paola Ballatore Mediterranean Agency for Remote Sensing and

More information

Evaluation of spatial moisture distribution during CLARA 96 using spaceborne radar interferometry

Evaluation of spatial moisture distribution during CLARA 96 using spaceborne radar interferometry Evaluation of spatial moisture distribution during CLARA 96 using spaceborne radar interferometry Ramon F. Hanssen and Tammy M. Weckwerth DEOS, Delft Institute for Earth-Oriented Space, Delft University

More information

Atmospheric Effects on InSAR Measurements in Southern China and Australia: A Comparative Study

Atmospheric Effects on InSAR Measurements in Southern China and Australia: A Comparative Study Atmospheric Effects on InSAR Measurements in Southern China and Australia: A Comparative Study X. L. Ding a, *, L. Ge b, Z. W. Li a, C. Rizos b a Dept. of Land Surveying and Geo-Informatics, Hong Kong

More information

sensors ISSN

sensors ISSN Sensors 008, 8, 546-5448; DOI: 10.3390/s809546 OPEN ACCESS sensors ISSN 144-80 www.mdpi.org/sensors Review Atmospheric Effects on InSAR Measurements and Their Mitigation Xiao-li Ding 1, *, Zhi-wei Li,

More information

Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets

Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets Detection from Space of Active Volcanism on Earth and, Potentially, on Venus and Rocky Exoplanets Pete Mouginis Mark Hawaii Institute Geophysics and Planetology University of Hawaii Overview Styles of

More information

ATMOSPHERIC ERROR, PHASE TREND AND DECORRELATION NOISE IN TERRASAR-X DIFFERENTIAL INTERFEROGRAMS

ATMOSPHERIC ERROR, PHASE TREND AND DECORRELATION NOISE IN TERRASAR-X DIFFERENTIAL INTERFEROGRAMS ATMOSPHERIC ERROR, PHASE TREND AND DECORRELATION NOISE IN TERRASAR-X DIFFERENTIAL INTERFEROGRAMS Steffen Knospe () () Institute of Geotechnical Engineering and Mine Surveying, Clausthal University of Technology,

More information