GY 402: Sedimentary Petrology

Size: px
Start display at page:

Download "GY 402: Sedimentary Petrology"

Transcription

1 UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 5: Bedform Development (Flume Studies) Instructor: Dr. Douglas W. Haywick

2 Today s Lecture 1. What s a flume? 2. Traction induced bed forms (sedimentary structures) 3. Flow regime

3 Flume Studies A flume is an elongated plastic or glass tank through which a water current flows. Sediment is placed at the bottom of the flume and moves down current as bed load.

4 Flume Studies A flume is an elongated plastic or glass tank through which a water current flows. Sediment is placed at the bottom of the flume and moves down current as bed load. Recall what this is

5 Sediment loads Sediment moving along the base of a channel* that mostly stays in contact with the substrate is called Current * A channel here is defined as a moving column of water that is confined to a narrow pathway

6 Sediment loads Sediment moving along the base of a channel that mostly stays in contact with the substrate is called Current Bed load

7 Sediment loads Sediment moving along the base of a channel that mostly stays in contact with the substrate is called Current Bed load saltation rolling sliding Types of bed load transport (traction)

8 Flume Studies Flumes come in different sizes; from a few cm long to a few hundred metres long.

9 small Flume Studies

10 small Flume Studies

11 Big Flume Studies

12 Big Flume Studies

13 Flume Studies

14 Flume Studies Sand (bed load) Sediment movement results in bed forms (sedimentary structures)

15 Flume Studies Increasing current velocity under controlled situations (fixed water depth, constrained grain size) yields the following structures:

16 Flume Studies Increasing current velocity under controlled situations (fixed water depth, constrained grain size) yields the following structures: Plan lamination (lower)

17 Flume Studies Increasing current velocity under controlled situations (fixed water depth, constrained grain size) yields the following structures: Plan lamination (lower) Small current ripples

18 Flume Studies Increasing current velocity under controlled situations (fixed water depth, constrained grain size) yields the following structures: Plan lamination (lower) Small current ripples Large current ripples (dunes)

19 Flume Studies Increasing current velocity under controlled situations (fixed water depth, constrained grain size) yields the following structures: Plan lamination (lower) Small current ripples Large current ripples (dunes) Plan lamination (upper)

20 Flume Studies Increasing current velocity under controlled situations (fixed water depth, constrained grain size) yields the following structures: Plan lamination (lower) Small current ripples Large current ripples (dunes) Plan lamination (upper) Antidunes

21 Flume Studies Increasing current velocity under controlled situations (fixed water depth, constrained grain size) yields the following structures: Plan lamination (lower) Small current ripples Large current ripples (dunes) Plan lamination (upper) Antidunes Increasing water velocity

22 Flume Studies A do it yourself recipe to make your own flume

23 Flume Studies Take one large tank. The best flumes are capable of passing a consistent current from one end to the next. Water is recycled through a recirculation pump Sediment/water movement is monitored through the glass sides of the flume

24 Add water. Flume Studies

25 Add sediment. Flume Studies

26 Flume Studies current Add a current.

27 Flume Studies current Add a current.. Observe!

28 Flume Studies: 1) lower plan lamination very slow currents (or none at all) U = very low

29 Flume Studies: 1) lower plan lamination very slow currents (or none at all) U = very low Flat bed, containing finely laminated* parallel sedimentary structures

30 Flume Studies: 1) lower plan lamination laminations versus bedding; it s all a matter of scale:

31 Flume Studies: 1) lower plan lamination laminations versus bedding; it s all a matter of scale: laminations: parallel layers less than 1 cm apart: thick (1cm-5mm spacing); medium (5mm-1mm spacing); thin (<1mm spacing)

32 Flume Studies: 1) lower plan lamination laminations versus bedding; it s all a matter of scale: bedding: parallel layers more than 1 cm apart: thick (> 50 cm spacing); medium (10 to 50 cm spacing); thin (1cm-10 cm spacing)

33 Flume Studies: 2) small current ripples slow currents: U = low Something wonderful happens.

34 Flume Studies: 2) small current ripples Laminations start to fade

35 Flume Studies: 2) small current ripples Flat bed, passes gradually into a rippled bed form

36 Flume Studies: 2) small current ripples Asymmetrical

37 Flume Studies: 2) small current ripples Asymmetrical

38 Flume Studies: 2) small current ripples Asymmetrical

39 Flume Studies: 2) small current ripples Lee side slopes range from o

40 Flume Studies: 2) small current ripples ripple height: 3 to 5 cm

41 Flume Studies: 2) small current ripples ripple wavelength: 4 to 40 cm

42 Flume Studies: 2) small current ripples ripple wavelength: 4 to 40 cm Ripple index (height to wavelength ratio): 10 to 40

43 Flume Studies: 2) summary ripple morphology From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p.

44 Flume Studies: 2) small current ripples Ripples migrate down current

45 Flume Studies: 2) small current ripples Ripples migrate down current

46 Flume Studies: 2) small current ripples Ripples migrate down current

47 Flume Studies: 2) small current ripples current Net result is that an inclined lamination (marking the former lee side of the ripple) develops

48 Flume Studies: 2) small current ripples current Net result is that an inclined lamination (marking the former lee side of the ripple) develops = cross stratification

49 Flume Studies: 2) small current ripples

50 Flume Studies: 2) small current ripples?

51 Flume Studies: 2) small current ripples

52 Flume Studies: 2) small current ripples Dune fraction Bypass fraction

53 Flume Studies: 2) small current ripples Big quartz Small quartz Heavy minerals Which grains become part of the dune fraction; which ones are part of the bypass fraction?

54 Flume Studies: 2) small current ripples Big quartz Small quartz Heavy minerals Heavy and larger grains usually become part of the dune fraction; smaller and lighter grains become part of the bypass fraction

55 Flume Studies: 2) small current ripples Migration direction

56 Flume Studies: 2) small current ripples Migration direction ripple cosets

57 Flume Studies: 2) small current ripples Migration direction steep angle shallow angle

58 Flume Studies: 2) small current ripples Migration direction depositional up steep angle shallow angle

59 Flume Studies: 2) small current ripples 38 cm Video of ripple migration in a flume (Bird eye view) 59 cm Click image to start The movie was compiled from 1161 video images collected at the rate of 1 per minute for a duration of approximately 19 hours. Source: USGS Coastal & Marine Geology Web page (

60 Flume Studies: 2) small current ripples Computer animation of ripple migration Click image to start Source: USGS Coastal & Marine Geology Web page (

61 Flume Studies: current ripple crest morphology increasing velocity (or decreasing water depth) straight sinuous linguiodal From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p.

62 Flume Studies: 3) large current ripples Moderate currents U = moderate

63 Flume Studies: 3) large current ripples Moderate currents U = moderate Small current ripples gradually pass into larger ones

64 Flume Studies: 3) large current ripples Lee side angle: 10 to 34 o Ripple height: >5cm (commonly exceeds 10 s of m) Wavelength: 60 cm to 100 s of m Note: also known as megaripples and dunes

65 Flume Studies: 4) upper plan lamination High currents; U = fast

66 Flume Studies: 4) upper plan lamination High currents; U = fast Something wonderful happens again! Large current ripples start to fade and.

67 Flume Studies: 4) upper plan lamination. plan lamination forms again

68 Flume Studies: 4) upper plan lamination This form of plan lamination forms only during very fast currents; sediment is literally streaming along the substrate.

69 Flume Studies: 5) antidunes Very high currents; U = very fast

70 Flume Studies: 5) antidunes Very high currents; U = very fast Upper plan lamination fades and is replaced by.

71 Flume Studies: 5) antidunes Very high currents; U = very fast Upper plan lamination fades and is replaced by.. antidunes

72 Flume Studies summary of structures From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p.

73 Flume Studies Plan lamination (lower) Small current ripples Large current ripples (dunes) Plan lamination (upper) Antidunes Chutes & pools (erosion) Increasing velocity From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p.

74 Flume Studies and Flow Regime From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p.

75 Flume Studies and Flow Regime Lower From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p.

76 Flume Studies and Flow Regime Upper From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p.

77 Modified Hjustrom s diagram Current velocity (cm/s) From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p. Grain size (mm)

78 Water depth as a variable Water depth (cm) From Collinson, J.D. and Thompson, D.B Sedimentary Structures. George Allen & Unwin, 194p.

79 Upcoming Stuff Homework 1) Activity 2 (Rock descriptions Due Thursday) 2) Writing Assignment 2-redo (Hypothesis and methods: Due Thursday) Today s Lab Grain size analysis Online: Lecture 6: More Sedimentary Structures Thursday: Lecture 7: Sedimentary Sections

80 GY 402: Sedimentary Petrology Lecture 5: Bedforms Instructor: Dr. Doug Haywick This is a free open access lecture, but not for commercial purposed. For personal use only.

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 6: Primary and Diagnostic Sedimentary Structures Instructor: Dr. Douglas W. Haywick Today s Lecture 1. Models of traction structures 2.

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 17: Sandy Fluvial Depositional Environments Instructor: Dr. Douglas W. Haywick Last Time Volcaniclastic Sedimentary Rocks 1. Origin of

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 7: Sedimentary Sections Instructor: Dr. Douglas W. Haywick Last Time (online) 1. Models of traction structures 2. Sediment transport versus

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 14: Sedimentary Rocks Part 2: Alluvial Fans and Rivers Instructor: Dr. Douglas W. Haywick Last Time 1) Types of Sediment 2) Sedimentary Rock

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 22: Reefs Instructor: Dr. Douglas W. Haywick Last Time Shelves Definition and a bit of history Factors controlling shelf sedimentation

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 9: Walther s Law Instructor: Dr. Douglas W. Haywick Today s Agenda 1. Walther s Law 2. Sequence stratigraphy 3. Markov Chain Analysis Named

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 8: Sedimentary Facies Instructor: Dr. Douglas W. Haywick Last Time Sedimentary sections 1. Important sedimentary data 2. Examples of sedimentary

More information

402: Sedimentary Petrology

402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA 402: Sedimentary Petrology Lecture 14: Siliciclastic Diagenesis Instructor: Dr. Douglas W. Haywick Last Time (online) Immature siliciclastic sediment and sedimentary rocks Pictorial

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 12: Petrology of Immature Siliciclastic Sed. Rocks Instructor: Dr. Douglas W. Haywick Last Time 1. Factors promoting beach development

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 13: Immature Siliciclastic Sedimentary Environments Alluvial Fans, Braided Streams Instructor: Dr. Douglas W. Haywick Last Time Immature

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 16: Volcaniclastic Petrography Instructor: Dr. Douglas W. Haywick Last Time (online) Moscow Landing, Alabama Photo credit: Jan Smit (http://www.geo.vu.nl/~smit/indexjansmit/jansmitindex.htm)

More information

GEL 109 Midterm W05, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!

GEL 109 Midterm W05, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers! GEL 109 Midterm W05, Page 1 50 points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!) 1. Are the following flow types typically laminar or turbulent and

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 21: Rock Deformation Instructor: Dr. Douglas W. Haywick Last Time A) How long is long? B) Geological time divisions Web notes 20 Geological

More information

GY 112L: Earth History

GY 112L: Earth History UNIVERSITY OF SOUTH ALABAMA GY 112L: Earth History Lab Lecture 1: Rock Review Instructor: Dr. Douglas W. Haywick Introductory Agenda 1. Contact info for D. Haywick 2. GY 112L Course Outline (syllabus)

More information

Quiz Four (9:30-9:35 AM)

Quiz Four (9:30-9:35 AM) Quiz Four (9:30-9:35 AM) UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Fossils Part 1: Telling Time Instructor: Dr. Douglas W. Haywick Last Time A) Stable isotopes of use to geology (fractionation)

More information

Aqueous and Aeolian Bedforms

Aqueous and Aeolian Bedforms Aqueous and Aeolian Bedforms 1 Further reading & review articles R.A. Bagnold, 1941, The physics of blown sand and desert dunes Charru et al., 2013, Sand ripples and dunes, Ann. Review of Fluid Mech. 2

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 2: Grain size and Descriptive Parameters Instructor: Dr. Douglas W. Haywick Lecture 2 Agenda A) Basic sediment grain size B) Ternary plots

More information

Quiz Seven (2:00 to 2:02 PM)

Quiz Seven (2:00 to 2:02 PM) Quiz Seven (2:00 to 2:02 PM) UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 22: Agents of Metamorphism Instructor: Dr. Douglas W. Haywick Last Time Rock Deformation A) Confining pressure

More information

Lecture 24: Paleozoic 1:

Lecture 24: Paleozoic 1: UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lecture 24: Paleozoic 1: Laurentia Instructor: Dr. Douglas W. Haywick Last Time (before the exam) The Cambrian Explosion A) Why a Cambrian explosion B)

More information

G433. Review of sedimentary structures. September 1 and 8, 2010

G433. Review of sedimentary structures. September 1 and 8, 2010 G433 Review of sedimentary structures September 1 and 8, 2010 Fluid Parameters The three main parameters that determine the stable bedform in unidirectional flow conditions are: grain size flow velocity

More information

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas Lecture Goals A) Rivers and Deltas (types) B) Water Flow and sedimentation in river/deltas

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 28: Student Choice Lecture 1: Sequence Stratigraphy Instructor: Dr. Douglas W. Haywick Today Sequence Stratigraphy The basic concept (systems

More information

GY 112: Earth History. Fossils Part:

GY 112: Earth History. Fossils Part: UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Fossils Part: Telling Time Predicting Paleoenvironments Instructor: Dr. Douglas W. Haywick Last Time 1. Chronostratigraphy versus biostratigraphy 2. Paleontological

More information

Primary Structures in Sedimentary Rocks. Engr. Sultan A. Khoso

Primary Structures in Sedimentary Rocks. Engr. Sultan A. Khoso Primary Structures in Sedimentary Rocks Engr. Sultan A. Khoso Sedimentary rocks Sedimentary rocks are those rocks which are formed by the weathered sediments of pre existing rocks (igneous or metamorphic

More information

(3) Sediment Movement Classes of sediment transported

(3) Sediment Movement Classes of sediment transported 9/17/15 (3) Sediment Movement Classes of sediment transported Dissolved load Suspended load Important for scouring algae Bedload (5-10% total load) Moves along bed during floods Source of crushing for

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Classification of sedimentary rocks Sedimentary rocks are products of weathered, fragmented or dissolved,

More information

NAME: GEL 109 Final Winter 2010

NAME: GEL 109 Final Winter 2010 GEL 109 Final Winter 2010 1. The following stratigraphic sections represents a single event followed by the slow accumulation of background sedimentation of shale. Describe the flows that produced the

More information

Aeolian Environments. And Controls on Sedimentation. John Luchok, Kyle Balling, Cristopher Alvarez

Aeolian Environments. And Controls on Sedimentation. John Luchok, Kyle Balling, Cristopher Alvarez Aeolian Environments And Controls on Sedimentation John Luchok, Kyle Balling, Cristopher Alvarez The Aeolian Environment Aeolian Processes - geologic activity with regards to wind Desert Environments (Hyper-Arid,

More information

GY 402: Sedimentary Petrology

GY 402: Sedimentary Petrology UNIVERSITY OF SOUTH ALABAMA GY 402: Sedimentary Petrology Lecture 27: Introduction to Wireline Log Interpretations Instructor: Dr. Douglas W. Haywick Last Time Carbonate Diagenesis Diagenesis 0.5 mm PPL

More information

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes

Geo 302D: Age of Dinosaurs. LAB 2: Sedimentary rocks and processes Geo 302D: Age of Dinosaurs LAB 2: Sedimentary rocks and processes Last week we covered the basic types of rocks and the rock cycle. This lab concentrates on sedimentary rocks. Sedimentary rocks have special

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 1: Introduction to Physical Geology Instructor: Dr. Douglas W. Haywick Today s Agenda 1. Introductions and class policy 2. What do geologists

More information

Sediment and Sedimentary rock

Sediment and Sedimentary rock Sediment and Sedimentary rock Sediment: An accumulation of loose mineral grains, such as boulders, pebbles, sand, silt or mud, which are not cemented together. Mechanical and chemical weathering produces

More information

NAME: GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test.

NAME: GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test. GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test. 1. Sketch a map view of three types of deltas showing the differences in river,

More information

GEOS 302 Lab 3: Sedimentary Structures (Reference Boggs, Chap.4)

GEOS 302 Lab 3: Sedimentary Structures (Reference Boggs, Chap.4) GEOS 302 Lab 3: Sedimentary Structures (Reference Boggs, Chap.4) Objectives: 1. Become familiar with the different sedimentary structures 2. Understand the origin of these different structures and be able

More information

(3) Sediment Movement Classes of sediment transported

(3) Sediment Movement Classes of sediment transported (3) Sediment Movement Classes of sediment transported Dissolved load Suspended (and wash load ) Important for scouring algae Bedload (5-10% total load Moves along bed during floods Source of crushing for

More information

Lectures 6 & 7: Flow, bedforms and sedimentary structures in oscillatory and multidirectional flows

Lectures 6 & 7: Flow, bedforms and sedimentary structures in oscillatory and multidirectional flows GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lectures 6 & 7: Flow, bedforms and sedimentary structures in oscillatory and multidirectional flows Today, aim to examine:

More information

Quiz 12 Bonus 2 (9:30-9:35 AM)

Quiz 12 Bonus 2 (9:30-9:35 AM) Quiz 12 Bonus 2 (9:30-9:35 AM) UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lectures 32 and 33: Mesozoic Sedimentation Instructor: Dr. Douglas W. Haywick Last Time Mesozoic Tectonics A) The Triassic

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 3: The Rock Cycle Instructor: Dr. Douglas W. Haywick Last Time 1. Alfred Wegener and Drifting Continents 2. The Plate Tectonic Revolution 3.

More information

UNIT SEVEN: Earth s Water. Chapter 21 Water and Solutions. Chapter 22 Water Systems. Chapter 23 How Water Shapes the Land

UNIT SEVEN: Earth s Water. Chapter 21 Water and Solutions. Chapter 22 Water Systems. Chapter 23 How Water Shapes the Land UNIT SEVEN: Earth s Water Chapter 21 Water and Solutions Chapter 22 Water Systems Chapter 23 How Water Shapes the Land Chapter Twenty-Three: How Water Shapes the Land 23.1 Weathering and Erosion 23.2

More information

Sedimentary Geology An Introduction To Sedimentary Rocks And Stratigraphy Unstated Edition By Prothero Donald R Schwab Fred 1996 Hardcover

Sedimentary Geology An Introduction To Sedimentary Rocks And Stratigraphy Unstated Edition By Prothero Donald R Schwab Fred 1996 Hardcover Sedimentary Geology An Introduction To Sedimentary Rocks And Stratigraphy Unstated Edition By Prothero We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our

More information

LAB-SCALE INVESTIGATION ONBAR FORMATION COORDINATES IN RIVER BASED ON FLOW AND SEDIMENT

LAB-SCALE INVESTIGATION ONBAR FORMATION COORDINATES IN RIVER BASED ON FLOW AND SEDIMENT LAB-SCALE INVESTIGATION ONBAR FORMATION COORDINATES IN RIVER BASED ON FLOW AND SEDIMENT Mat Salleh M. Z., Ariffin J., Mohd-Noor M. F. and Yusof N. A. U. Faculty of Civil Engineering, University Technology

More information

EOLIAN PROCESSES & LANDFORMS

EOLIAN PROCESSES & LANDFORMS EOLIAN PROCESSES & LANDFORMS Wind can be an effective geomorphic agent under conditions of sparse vegetation & abundant unconsolidated sediment egs. hot & cold deserts, beaches & coastal regions, glacial

More information

GEL 109 Midterm W01, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!

GEL 109 Midterm W01, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers! GEL 109 Midterm W01, Page 1 50 points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!) 1. Where in a water flow is there usually a zone of laminar flow even

More information

Stream Entrainment, Erosion, Transportation & Deposition

Stream Entrainment, Erosion, Transportation & Deposition Lecture 12 Zone 2 of the Fluvial System, Continued Stream Entrainment, Erosion, Transportation & Deposition Erosion in a Fluvial Landscape Corrosion Chemical Erosion Corrasion Mechanical Weathering Cavitation

More information

Sedimentary Structures

Sedimentary Structures Sedimentary Structures irection of transport cards A5 cards with a sedimentary structure diagram on each are held up one at a time for students to work whether the direction is to the left or right. Interpreting

More information

GY 302: Crystallography & Mineralogy

GY 302: Crystallography & Mineralogy UNIVERSITY OF SOUTH ALABAMA GY 302: Crystallography & Mineralogy Lecture 7b: Optical Mineralogy Instructor: Dr. Douglas Haywick Last Time 1. Properties of light 2. Minerals and light transmission Light

More information

Primary Features of Marine Sedimentary Rocks

Primary Features of Marine Sedimentary Rocks 9 Primary Features of Marine Sedimentary Rocks 9-1. Beds and Bedding Sections 9-1 through 9-6 describe sedimentary structures, many of which may be either marine or nonmarine. The remainder of the chapter

More information

Anticipation guide # 3

Anticipation guide # 3 Wind Anticipation guide # 3 Creep is a type of mass movement that happens slowly over many years Oxidation is a type of physical weathering A delta is a depositional feature that occurs with glaciers The

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 31: Mountain Building 1: Isostasy and Thrusting Last Time Earthquakes A) Earthquake intensity and magnitude B) Seismographs C) Case Studies

More information

Google Mars: Wind Processes

Google Mars: Wind Processes Google Mars: Wind Processes This assignment will require the use of the latest version of Google Earth (version 5.0 or later), which you can download for free from http://earth.google.com. You must have

More information

GY 112L Earth History

GY 112L Earth History GY 112L Earth History Lab 2 Vertical Successions and Sequences of Events GY 112L Instructors: Douglas Haywick, James Connors, Mary Anne Connors Department of Earth Sciences, University of South Alabama

More information

Wind Erosion Activity

Wind Erosion Activity Wind Erosion Activity Activity Description: Students will be able to witness the effects of wind on our Earth s surface from a bird s eye view by utilizing a model that mimics wind erosion in a container.

More information

Quiz Five (9:30-9:35 AM)

Quiz Five (9:30-9:35 AM) Quiz Five (9:30-9:35 AM) UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 10: Intrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) Pyro-what? (air fall volcanic rocks) 2)

More information

GY 302: Crystallography & Mineralogy

GY 302: Crystallography & Mineralogy UNIVERSITY OF SOUTH ALABAMA GY 302: Crystallography & Mineralogy Lecture 7a: Optical Mineralogy (two day lecture) Instructor: Dr. Douglas Haywick This Week s Agenda 1. Properties of light 2. Minerals and

More information

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26

Geomorphology Geology 450/750 Spring Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 Geomorphology Geology 450/750 Spring 2004 Fluvial Processes Project Analysis of Redwood Creek Field Data Due Wednesday, May 26 This exercise is intended to give you experience using field data you collected

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 9: Extrusive Igneous Rocks Instructor: Dr. Douglas W. Haywick Last Time 1) The chemical composition of the crust 2) Crystallization of molten

More information

GEOLOGY MEDIA SUITE Chapter 5

GEOLOGY MEDIA SUITE Chapter 5 UNDERSTANDING EARTH, SIXTH EDITION GROTZINGER JORDAN GEOLOGY MEDIA SUITE Chapter 5 Sedimentation Rocks Formed by Surface Processes 2010 W.H. Freeman and Company Mineralogy of sandstones Key Figure 5.12

More information

Lecture Outline Wednesday - Friday February 14-16, 2018

Lecture Outline Wednesday - Friday February 14-16, 2018 Lecture Outline Wednesday - Friday February 14-16, 2018 Quiz 2 scheduled for Friday Feb 23 (Interlude B, Chapters 6,7) Questions? Chapter 6 Pages of the Past: Sedimentary Rocks Key Points for today Be

More information

Fluvial Systems Lab Environmental Geology Lab Dr. Johnson

Fluvial Systems Lab Environmental Geology Lab Dr. Johnson Fluvial Systems Lab Environmental Geology Lab Dr. Johnson *Introductory sections of this lab were adapted from Pidwirny, M. (2006). "Streamflow and Fluvial Processes". Fundamentals of Physical Geography,

More information

Bedform Morphology under Combined Flows*

Bedform Morphology under Combined Flows* Click to view videos. Unidirectional oscillatory flow For measuring vertical longitudinal distances For measuring wave length - time Bedform Morphology under Combined Flows* Mauricio M. Perillo 1,2, Miwa

More information

Facies Cryptic description Depositional processes Depositional environments Very well sorted. Desert dunes. Migration of straight crested mega ripples

Facies Cryptic description Depositional processes Depositional environments Very well sorted. Desert dunes. Migration of straight crested mega ripples Very well sorted Travelled grate distance, effective sorting 5 medium-grained sandstone with well rounded grains; large scale high angle planar cross-beds. Migration of straight crested mega ripples Desert

More information

The Nature of Sedimentary Rocks

The Nature of Sedimentary Rocks The Nature of Sedimentary Rocks Sedimentary rocks are composed of: Fragments of other rocks Chemical precipitates Organic matter or biochemically produced materials The Nature of Sedimentary Rocks Sedimentary

More information

PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE

PART 2:! FLUVIAL HYDRAULICS HYDROEUROPE PART 2:! FLUVIAL HYDRAULICS" HYDROEUROPE 2009 1 HYDROEUROPE 2009 2 About shear stress!! Extremely complex concept, can not be measured directly!! Computation is based on very primitive hypotheses that

More information

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Lecture 04 Soil Erosion - Mechanics Hello friends

More information

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16

Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Cattaraugus Creek: A Story of Flowing Water and the Geology of the Channel It Flows Through Presentation to West Valley Citizen Task Force 4/27/16 Raymond C. Vaughan, Ph.D. What happens if you drop a

More information

Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows

Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows Although this laboratory will pertain to oceanic sediments similar processes can also be observed on land and other aquatic systems

More information

Lecture 19: Fluvial Facies

Lecture 19: Fluvial Facies GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lecture 19: Fluvial Facies Aims Examine controls on alluvial channel pattern List the types of channel pattern Examine meandering

More information

GY 112L: Earth History Lab

GY 112L: Earth History Lab UNIVERSITY OF SOUTH ALABAMA GY 112L: Earth History Lab Week 9: Paleozoic Part 3 Instructor: Dr. Douglas W. Haywick Today s Agenda The Paleozoic Part 3 (Week 9 exercises) 1) Brachiopods 2) Molluscs 3) Alabama

More information

ES120 Sedimentology/Stratigraphy

ES120 Sedimentology/Stratigraphy Midterm Exam 5/05/08 NAME: 1. List or describe 3 physical processes that contribute to the weathering of rocks (3pts). exfoliation frost wedging many others. roots, thermal expansion/contraction also credit

More information

Paleocurrents. Why measure paleocurrent directions? Features that give paleocurrent directions. Correction to paleocurrent measurements

Paleocurrents. Why measure paleocurrent directions? Features that give paleocurrent directions. Correction to paleocurrent measurements Why measure paleocurrent directions? Paleocurrent measurements can provide valuable information on ancient flow conditions, which can often shed light on paleogeography. For example, paleocurrent data

More information

EOSC221 SEDIMENTARY STRUCTURES

EOSC221 SEDIMENTARY STRUCTURES EOSC221 SEDIMENTARY STRUCTURES 1 SEDIMENTARY STRUCTURES LECTURE OUTLINE Sedimentary Structures Deposi?onal Erosional Post Deposi?onal Biological Components Nodules and Concre?ons 2 Sedimentary Structures

More information

Ch. 8: Mass Movements, Wind and Glaciers

Ch. 8: Mass Movements, Wind and Glaciers Ch. 8: Mass Movements, Wind and Glaciers Every day the landscape around us undergoes changes. Changes that are powered by gravity alone are called mass movement or mass wasting. Mass movement includes

More information

GY 111: Physical Geology

GY 111: Physical Geology UNIVERSITY OF SOUTH ALABAMA GY 111: Physical Geology Lecture 25: Metamorphic Facies Last Time Contact Metamorphism A) Metamorphic Aureoles B) Isograds C) Index minerals and metamorphic grade Contact Metamorphism

More information

GY 112: Earth History

GY 112: Earth History UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lecture 4: Clever Thinking: Geological Principles Instructor: Dr. Douglas W. Haywick Last Time 1. Formation of the solar system 2. Formation and differentiation

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

Paleo Lab #4 - Sedimentary Environments

Paleo Lab #4 - Sedimentary Environments Paleo Lab #4 - Sedimentary Environments page - 1. CHARACTERISTICS OF SEDIMENT Grain size and grain shape: The sizes and shapes of sedimentary particles (grains) are modified considerably during their transportation

More information

ESC102. Sedimentary Rocks. Our keys to the past. Monday, February 11, 13

ESC102. Sedimentary Rocks. Our keys to the past. Monday, February 11, 13 ESC102 Sedimentary Rocks Our keys to the past Sedimentary Rocks Sedimentary rocks are rocks that form through the accumulation of sediment and the process of lithification. Lithification occurs after deposition

More information

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material River Processes Learning Objective: Discover how a river erodes, transports and deposits material Learning Outcomes: Compare vertical and lateral erosion Describe how a river erodes, transports and deposits

More information

On interfacial instability as a cause of transverse subcritical bed forms

On interfacial instability as a cause of transverse subcritical bed forms On interfacial instability as a cause of transverse subcritical bed forms Venditti, J.G., Church, M. and Bennett, S. J. (2006) Water Resources Research, 42 Two main questions 1. By what processes are bed

More information

Sediment Deposition Lab

Sediment Deposition Lab Page 1 of 5 Sediment Deposition Lab by John J. Gara Objectives: 1. All students will use a stream table to observe sediment deposition in the laboratory, record data on where various sizes of sediments

More information

GY 112 Lecture Notes Stable Isotope Stratigraphy

GY 112 Lecture Notes Stable Isotope Stratigraphy GY 112 Lecture Notes D. Haywick (2006) 1 GY 112 Lecture Notes Stable Isotope Stratigraphy Lecture Goals: A) Stable isotopes of use to geology (fractionation) B) Delta values and isotopic standards C) Delta

More information

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives:

C E C U R R I C U L U M I E N S C B L E I T A. i N T E G R A T I N G A R T S i n O N A T I D U C B L I P U. Student Learning Objectives: Sedimentation E Q U I T A B L E S C I E N C E C U R R I C U L U M Lesson 3 i N T E G R A T I N G A R T S i n P U B L I C E D U C A T I O N NGSS Science Standard: 4-ESS1-1 Identify evidence from patterns

More information

Quiz Three (9:30-9:35 AM)

Quiz Three (9:30-9:35 AM) Quiz Three (9:30-9:35 AM) UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lecture 7 & 8: Dating Instructor: Dr. Douglas W. Haywick Last Time 1. William Smith and Water 2. Stratigraphic Principles 3.

More information

GY 112: Earth History

GY 112: Earth History UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lectures 31: Mesozoic Tectonics Instructor: Dr. Douglas W. Haywick Last Time Mesozoic Overview A) The end of the Paleozoic B) Mesozoic time frame and evolutionary

More information

The Effect of Bedform-induced Spatial Acceleration on Turbulence and Sediment Transport

The Effect of Bedform-induced Spatial Acceleration on Turbulence and Sediment Transport The Effect of Bedform-induced Spatial Acceleration on Turbulence and Sediment Transport S. McLean (1) (1) Mechanical and Environmental Engineering Dept., University of California, Santa Barbara, CA 93106,

More information

GY 112L: Earth History Lab

GY 112L: Earth History Lab UNIVERSITY OF SOUTH ALABAMA GY 112L: Earth History Lab Week 11 Paleozoic Part 2 Instructor: Dr. Douglas W. Haywick Today s Agenda The Paleozoic Part 2 (Lab 8 exercises) 1) Sponges & Stromatoporoids 2)

More information

Morphology and Sedimentology of Panther Creek, Montgomery County Preserve

Morphology and Sedimentology of Panther Creek, Montgomery County Preserve Morphology and Sedimentology of Panther Creek, Montgomery County Preserve, Ph.D. Houston, Texas February, 2014 This guide is for educational use. The author gives permission to reproduce this guide for

More information

Grade 7 Science Revision Sheet for third term final exam

Grade 7 Science Revision Sheet for third term final exam Grade 7 Science Revision Sheet for third term final exam Material for the final exam : 1- Chapter 4 sections 1+2+3+4 [rock cycle + igneous rocks + sedimentary rocks + metamorphic rocks ] pages from the

More information

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water.

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water. Aggradation raising of the streambed by deposition that occurs when the energy of the water flowing through a stream reach is insufficient to transport sediment conveyed from upstream. Alluvium a general

More information

Teacher s Pack Key Stages 1 and 2 GEOGRAPHY

Teacher s Pack Key Stages 1 and 2 GEOGRAPHY Teacher s Pack Key Stages 1 and 2 GEOGRAPHY Geography Key Stage 1 & 2 Fieldwork Worksheet Rivers: 1. Is the water fresh or salty? (test its resistance or specific gravity) FRESH 2. Do you know where the

More information

Sediment and sedimentary rocks Sediment

Sediment and sedimentary rocks Sediment Sediment and sedimentary rocks Sediment From sediments to sedimentary rocks (transportation, deposition, preservation and lithification) Types of sedimentary rocks (clastic, chemical and organic) Sedimentary

More information

Day 3 Weathering and Erosion.notebook. October 02, Section 7.2. Erosion and Deposition. Objectives

Day 3 Weathering and Erosion.notebook. October 02, Section 7.2. Erosion and Deposition. Objectives Objectives Describe the relationship of gravity to all agents of erosion. Contrast the features left from different types of erosion. Analyze the impact of living and nonliving things on the processes

More information

2/23/2009. Visualizing Earth Science. Chapter Overview. Deserts and Drylands. Glaciers and Ice Sheets

2/23/2009. Visualizing Earth Science. Chapter Overview. Deserts and Drylands. Glaciers and Ice Sheets Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 6 Deserts, Glaciers and Ice Sheets Chapter Overview Deserts and Drylands Glaciers and Ice Sheets Deserts Geography Categorization of deserts

More information

13. Sedimentary Rocks I (p )

13. Sedimentary Rocks I (p ) 13. Sedimentary Rocks I (p. 194-208) Sediment Deposition Weathering results in rock being broken down into smaller fragments, called regolith. This regolith is then broken down to form soil. The regolith

More information

Weathering, Erosion and Deposition

Weathering, Erosion and Deposition Weathering, Erosion and Deposition Shaping the Earth s Surface Weathering the process of breaking down rocks into smaller fragments Erosion the transport of rock fragments from one location to another

More information

What are the different ways rocks can be weathered?

What are the different ways rocks can be weathered? Romano - 223 What are the different ways rocks can be weathered? Weathering - the breakdown of rocks and minerals at the Earth s surface 1. 2. PHYSICAL WEATHERING Rock is broken into smaller pieces with

More information

SAMPLE Earth science BOOSTERS CARDS. Copyright Regents Boosters 2013 EARTH SCIENCE BOOSTERS 1

SAMPLE Earth science BOOSTERS CARDS. Copyright Regents Boosters 2013 EARTH SCIENCE BOOSTERS 1 SAMPLE Earth science BOOSTERS CARDS Copyright Regents Boosters 2013 EARTH SCIENCE BOOSTERS 1 Here is a selection from Earth Science Boosters on Deposition. Copyright Regents Boosters 2013 EARTH SCIENCE

More information

GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits. Lectures 17 & 18: Aeolian Facies

GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits. Lectures 17 & 18: Aeolian Facies GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lectures 17 & 18: Aeolian Facies Today: Processes air/water differences Deposits bedforms Facies a little on models and controls

More information

GLG Chapter 7 Sedimentary Environments & Rocks

GLG Chapter 7 Sedimentary Environments & Rocks GLG 101 - Chapter 7 Sedimentary Environments & Rocks Name Note, Oct 11: I ll be writing this study sheet over the next few days. Each day I will add questions until the entire chapter is done, hopefully

More information

GY 112: Earth History

GY 112: Earth History UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lecture 8a: Stable Isotope Stratigraphy Instructor: Dr. Douglas W. Haywick GY 112: Lecture test preparation Thursday February 9th Word List for Lecture

More information