Fracture and vein patterns as indicators of deformation history: a numerical study

Size: px
Start display at page:

Download "Fracture and vein patterns as indicators of deformation history: a numerical study"

Transcription

1 Geological Society, London, Special Publications Fracture and vein patterns as indicators of deformation history: a numerical study Daniel Koehn, Jochen Arnold and Cees W. Passchier Geological Society, London, Special Publications 2005; v. 243; p doi: /gsl.sp alerting service click here to receive free alerts when new articles cite this article Permission click here to seek permission to re-use all or part of this article request Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes Downloaded by on 23 May Geological Society of London

2 Fracture and vein patterns as indicators of deformation history: a numerical study DANIEL KOEHN, JOCHEN ARNOLD & CEES W. PASSCHIER Tectonophysics, Institute for Geosciences, Becherweg 21, University of Mainz, Mainz, Germany ( mail. uni-mainz, de) Abstract: Fracture and vein patterns in the brittle crust of the Earth contain information on the stress and strain field during deformation. Natural examples of fracture and vein patterns can have complex geometries including combinations of extension and conjugate shear fractures. Examples are conjugate joint systems that are oriented with a small angle to the principal stress axis and veins that show an oblique opening direction. We developed a discrete numerical model within the modelling environment 'Elle' to study the progressive development of fractures in two dimensions. Results show that pure shear deformation alone can produce complex patterns with combinations of extension and shear fractures. These patterns change in geometry and spacing depending on the Young's modulus of the deforming aggregate and the initial noise in the system. A complex deformation history, including primary uniaxial loading of the aggregate that is followed by tectonic strain, leads to conjugate shear fractures. During progressive deformation these conjugate shear fractures may accommodate extensional strain or may be followed by a secondary set of extension fractures. The numerical patterns are consistent with joint, fault and vein geometries found in natural examples. The study suggests that fracture patterns can record complex deformation histories that include primary uniaxial loading due to an overlying rock sequence followed by tectonic strain. Brittle deformation involving fracturing of rocks is a very important deformation mechanism in the upper crust of the Earth (Patterson 1978; Ranalli 1995). Many sedimentary rocks that are exposed today are filled with joints, faults and veins with characteristic patterns reflecting the importance of brittle deformation (Price & Cosgrove 1990). In addition, fracture and vein patterns are used by structural geologists as a map of the far-field stress orientation at the time of fracture formation (Ramsay & Huber 1983; Price & Cosgrove 1990; Oliver & Bons 2001). Fractures are generally classified into mode I, mode II and mode III fractures (Pollard & Segall 1987; Scholz 2002). Mode I fractures are extensional and open perpendicular to the maximum tensile stress. They accommodate strain by opening and may contain vein material that precipitates in the open space. Mode II fractures are shear fractures that develop at an angle to the maximum principal stress. They accommodate strain by slip along the fracture plane and are therefore called shear fractures or faults if significant slip has taken place along them (Bonnet et al. 2001). Mode III fractures are important in three dimensions and will not be considered further in this paper since the presented models are two-dimensional. In order to understand what kind of fracture will form under a given stress condition and what orientation it will have with respect to one of the major stress axes it is useful to construct a Mohr circle diagram (Jaeger & Cook 1976) with the normal stress on the x-axis and the shear stress on the y-axis (Fig. 1). The Mohr envelope or failure curve in Figure 1 is constructed after Griffith (Griffith 1920; Jaeger & Cook 1976; Scholz 2002). If the Mohr circle crosses the failure curve in the regime of tensile stress, mode I fractures will develop, if it cuts the failure curve in the compressive stress regime, mode II fractures will form with an angle 0 to the direction of the compressive stress. We will term fractures that form by a coalescence of small mode I cracks, extension fractures (joints in a larger volume of rock or veins if they are filled with new material) and fractures that form by a coalescence of mainly mode II cracks, shear fractures (faults in a larger volume of rock if slip takes place). In addition, Hancock (1985) and Price & Cosgrove (1990) mention an intermediate From: GAPAIS, D., BRUN, J. P. & COBBOLD, P. R. (eds) Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere. Geological Society, London, Special Publications, 243, /05/$ The Geological Society of London 2005.

3 12 D. KOEHN ET AL. i hybrid ~ mode II (3"1, Oli ~ failure curve ~, T i,,, Ze=4To(O'n+To) ",,.., ", 0- I T (In ', ~ failure ' AO curve Fig. 1. A Mohr circle diagram with the normal stress (o-.) on the x-axis and the shear stress (~-) on the y-axis. The failure curve is constructed using the Griffith failure criterion (Jaeger & Cook 1976). Two Mohr circles with different sizes are shown. The smaller circle cuts the failure envelope in the tensile regime and produces mode I fractures and hybrid extension/shear fractures. The larger circle cuts the failure envelope in the compressive regime and produces mode II shear fractures. The mean stress (o-m), differential stress (Act) and the two main principal stress components (o'l, o'2) are indicated next to the larger Mohr circle. To represents the tensile strength. fracture type called hybrid extension/shear fractures that form at an angle to the compressive stress direction but still lie in the tensile stress regime (Fig. 1) and form probably by a coalescence of mode I and II cracks. One has to note, however, that the occurrence of hybrid extension/shear fractures as propagating cracks and their orientation with respect to the principal stress direction and thus their connection to the parabolic failure curve in Figure 1 is questionable (Engelder 1999; Ramsay & Chester 2004). Rocks in the brittle regime can only sustain small amounts of elastic strain before they start to form fractures (Means 1976). If fractures develop, the overall behaviour of the rock will be plastic (Paterson 1978). Fractures accommodate strain in a rock and relieve the overall stress. However, since fractures, are two-dimensional planar structures, in order to accommodate threedimensional strain, complex fracture patterns develop. Anderson (1951) introduced the idea of conjugate faults, which intersect in the intermediate stress direction. The plane perpendicular to the intermediate stress axis then includes the minimum and maximum stress directions and the slip vectors of the faults. This concept, however, only works if the intermediate stress is zero or close to zero. Otherwise more complex fault or fracture patterns develop with at least four sets of coeval faults, arranged in an orthorhombic symmetry (Oertel 1965; Aydin & Reches 1982; Krantz 1988). Fractures that are filled with vein material pose a problem. Rocks are normally loaded by the overlying rock sequence before they are deformed tectonically, so both the vertical and horizontal stresses will be compressional. Therefore extension fractures are not expected to form since the Mohr circle will cut the failure envelope in the compressive regime (Jaeger & Cook 1976; Means 1976; Suppe 1985; Price & Cosgrove 1990). However, veins are formed quite often in the upper crust, so an alternative mechanism is needed to produce tensile stresses. Two possible sources are (1) a heterogeneous layered sequence where tensile stresses are concentrated in competent layers forming fractureboudinage or (2) the presence of a high fluid pressure that shifts the Mohr circle towards the tensile regime (Price & Cosgrove 1990; Ranalli 1995). In these cases one can find extension fractures that are filled with vein material if material can precipitate. An example of a hybrid shear fracture that is filled with vein material and laterally extends into extension fractures is shown in Figure 2a. An interesting question is if a vein set like the one shown in Figure 2b can also be associated with a single set of conjugate hybrid shear fractures. Examples of conjugate hybrid joint sets can be found in Hancock (1985). In this paper we model the dynamic development of fracture patterns in a two-dimensional approach. We simulate different deformation histories starting from a simple case where we investigate different internal model parameters. Then we extend to more complex deformation histories that include gravitational loading and tectonic strain. We will argue that the initial fracture geometries that later develop into veins contain a record of the gravitational loading that preceded tectonic deformation. It will be shown that even during a simple deformation history different stress states in the samples will lead to different kinds of failures. The model In order to model two-dimensional fracture patterns we developed a discrete-element model based on the work of Malthe-Screnssen et al. (1998b) and combined it with the modelling environment 'Elle' (Jessell et al. 2001). With this kind of model, linear elastic behaviour of rock aggregates can be simulated with the full description of the strain and stress field. The

4 (a) FRACTURE AND VEIN PATTERNS (b) 13 Fig. 2. (a) Sketch of a vein that may have developed partly as a hybrid shear fracture (after Price & Cosgrove 1990, Fig. 1.63). (b) Bedding plane with conjugate sets of veins from a locality near Sestri Levante in the Liguride units, Italy (see hammer for scale). model also allows the introduction of fractures by bond-breaking and can thus be used to investigate the behaviour of the aggregate beyond linear elasticity theory. Studies with this kind of model have shown that it reproduces the scaling behaviour and statistics of experimental fracture patterns (Walmann et al. 1996; Malthe- S0renssen et al. 1998a, b, 1999) and more complex systems (Jamtveit et al. 2000; Flekk0y et al. 2002). In the discrete model circular particles are connected with their neighbours by linear elastic springs (Fig. 3a). We use a triangular lattice in two dimensions since it reproduces linear elasticity theory with only nearest neighbour interaction (Flekkcy et al. 2002). The force acting on a particle from a neighbour is proportional to the extension or compression of the connecting spring with respect to the equilibrium distance. By definition, compressive stresses in the model are negative and tensile stresses positive. The lattice is in equilibrium condition if all forces acting on a particle cancel out. If the equilibrium condition is perturbed, for example by applying a deformation to the lattice, particles.(~)~~ ~ (b bound,ary (c) fracture Fig. 3. Sketches of the discrete particle model that is used for the numerical simulations. (a) Triangular lattice showing particles and springs that connect particles. (b) Boundary particles (in grey) are used to apply deformation on the modelled aggregate. (c) Fractures are induced by the possibility of breaking springs. Springs break once they have reached a critical tensile stress and are irreversibly removed from the model. are moved according to resulting forces until all particles are in an equilibrium position defined by a given threshold. In order to find equilibrium for the whole lattice efficiently it is over-relaxed by moving the particles by an 'over-relaxation factor' beyond their equilibrium condition (Allen 1954). In the model, particles fill an initial area called the deformation box. Particles along the box boundaries are defined as wall-particles and are used to apply kinematic boundary conditions (Fig. 3b). These particles are fixed perpendicular to the boundary of the model but can move freely parallel to it, for example, free-slip boundary conditions are applied. In order to strain the model, walls are moved inwards to apply compression or outwards to apply extension. Once a wall is moved all particles in the deformation box are moved assuming homogeneous deformation. Then the relaxation algorithm starts. Once the lattice is in an equilibrium condition after a deformation step, all springs are checked for breaking. If the stress associated with a spring reaches a critical tensile value, fracturing is induced by breaking springs (Fig. 3c). The spring with the highest probability of breaking will do so and a new relaxation routine will start. This procedure is repeated until all springs are below the breaking threshold and a new deformation step is applied. The fracturing process is therefore highly nonlinear; the whole lattice can fail at once between two deformation steps. This microscopic failure criterion will result in shear and extension failure between two neighbouring particles because particles are connected with six springs to their neighbours. Particles with broken springs are still repulsive. The coupling of the discrete code with the 'Elle' environment is performed as follows. In 'Elle' the microstructure of a rock is defined by nodes, which are connected with boundary

5 14 D. KOEHN ETAL. Fig. 4. (a) Combination of the 'Elle' modelling environment with the discrete model. In Elle, grains are defined by double and triple nodes that are connected by straight segments. Particles of the discrete model that lie within an Elle grain have the same properties. (b) Example of a microstructure that was used for most of the simulations shown in this paper. segments that define grains (Fig. 4a). In the discrete code grains are filled with particles. All particles within a grain can have specific parameters like the elastic constant and the breaking strength of springs. Springs that connect particles of different grains define grain boundaries and have different properties to springs that lie within grains. In all the presented models grain boundary springs have about half the tensile strength of intragrain springs. This value is chosen in order to have an influence of grain shapes on fracture development. Therefore most fractures will be intergranular. Intragranular fractures mainly appear when shear fractures develop. We expect grain boundaries to have a lower cohesion due to the presence of fluids or impurities. In order to reduce lattice effects, noise is distributed in the model by three different methods. First an initial microstructure is drawn and used as an input file with a certain spatial distribution of grain boundaries (Fig. 4b). Then a statistical distribution is applied to the elastic constants of different grains. Each grain has an individual elastic constant chosen by a random function from a gauss distribution. The mean elastic constant of the whole deformation box is represented by the mean value of the distribution. The breaking strength of all springs is statistically dispersed using a linear distribution because a rock is also expected to be disordered on a scale smaller than the grain size (Malthe-SOrenssen et al. 1998b). This distribution is not dependent on grains and grain boundary springs still have about half the breaking strength of intragrain springs. The presented simulations have a resolution of particles within the deformation box. In all simulations we strain the model in small steps of 0.02%. In the model the unscaled mean value of the initial elastic constant is 1.0 and the breaking strength of intragranular springs is Grain boundaries always have half the breaking strength of intragranular springs. We scale these values in the results section in order to discuss the models in a geological context. We assume that the breaking strength of grain boundaries is 30MPa. Therefore a value of in the model scales to 1 MPa. An initial spring constant of 1.0 thus represents an elastic constant of 10 GPa. This leads to a mean tensile strength of the aggregates used in the simulations of about 25 MPa and a mean compressive strength of about 90 MPa under pure shear deformation (starting from zero strain and zero stress). This compressive strength is relatively low because in pure shear deformation one principal stress is tensile if the experiment is not preloaded. If this stress is also compressive the breaking strength will be considerably higher. This relation is also seen in laboratory experiments and is predicted by theory (Jaeger & Cook 1976; Paterson 1978). If the aggregate in our simulations is preloaded before tectonic deformation is applied (the confining pressure is increased), the compressive strength rises to about MPa. Results We present a number of simulations of fracture development with different deformation histories

6 and show the dependence of the pattern on the initial noise in the system and differences in the mean elastic constant of the aggregate. First we discuss fracture patterns that develop under pure shear deformation. We investigate the influence of noise and mean elastic constant of the aggregate on pattern formation using examples that experience the same pure shear deformation history. Then we move on to discuss deformation patterns that develop during area increase (expanding the model area). Finally we include complex deformation histories where samples experience an initial uniaxial loading and then a tectonic deformation. This leads to a number of deformation histories, which produce the vein and fracture patterns geologists can find in some field areas. Pure shear deformation First we examine fracture patterns that are generated in a sample that experiences pure shear deformation. The initial sample is not stressed, deformation starts from a completely relaxed state. Figure 5a shows the stress-strain relationship during deformation. Different curves correspond to the maximum and minimum stress, the (a) 8o (b)~l;~n ~(upa) FRACTURE AND VEIN PATTERNS 15 mean stress and the differential stress. Note that compressive stress is negative. Figure 5b shows schematic Mohr circles that represent stress states for some of the deformation events shown in Figure 5a. The developing patterns are illustrated in Figure 5c. Starting from a completely relaxed state, during progressive deformation the stress field behaves according to linear elasticity theory. Principal stresses are oriented parallel to the directions of compression and extension and increase linearly with the same slope into the tensile and compressive field. Consequently the mean stress remains zero and the differential stress curve has a slope that is twice as steep as that of a single principal stress component (Fig. 5a). The corresponding Mohr circle grows but remains stationary at the intersection of the axis of the diagram. A peak in the curve of the tensile stress marks the intersection when the Mohr circle reaches the tensile part of the failure envelope. At this point tensile fractures grow in the sample perpendicular to the extension direction. They cross most of the sample and show a distinct spacing. These fractures accommodate extensional strain and relax tensile stresses. This effect is also seen in the stress-strain curve in Figure 5a. The tensile 400 A(~~ (~m -40 I (+) (') ~ / Z E ~ A ~ T " -,~ Fig. 5. Simulation of pure shear deformation of an aggregate. (a) Stress-strain relation showing the two principal stresses (oh, ~r2), the mean stress (Crm) and the differential stress (Ao-). (b) Schematic Mohr circle diagram of (a) showing Mohr circles during different stages of the simulation. They mark the initial starting configuration, mode I failure and mode II failure. Note that the x-axis is negative towards the right-hand side since compressive stresses are negative in this paper. (c) Three successive stages during the simulation. The picture on the left-hand side shows development of mode I fractures. The pictures in the middle and on the right-hand side show development of mode II shear fractures.

7 16 D. KOEHN ET AL. stress drops, the mean stress starts to increase and deviates from zero and the differential stress has a slope that is less steep. The compressive stress is not much affected by extension fractures because the vertical load is still supported by the sample. The Mohr circle in Figure 5b starts to move from the tensile regime into the compressive region and continues to grow in radius. The next failure event is reached when the differential stress is high enough so that the Mohr circle cuts the upper part of the failure curve and shear fractures develop. Before this moment is reached the stress curves show increasingly flattening slopes due to the local development of small shear fractures prior to failure of the whole sample. The failure of the sample is accommodated by slip along shear fractures (shear fracture becomes a distinct fault), which relaxes the compressive stress in the sample in a number of steps as seen in the stress-strain curve. The differential stress is also relaxed until the sample reaches a quasi steady-state where stresses remain almost constant and the bulk behaviour is almost purely plastic. This deformation history will result in the primary growth of extension fractures and a secondary growth of conjugate shear fractures. Extension fractures will progressively open to accommodate extensional strain so that veins can form whereas the shear fractures will mainly show slip along their surfaces and develop into faults. Thus, in a natural example one would expect only one set of veins that develops out of extension fractures. Differences in initial noise and elastic constant Differences in initial statistical noise and in the mean elastic constant of the aggregate influence the developing pattern. By initial noise in the system we mean the width of the distribution of elastic constants of different grains and the breaking strength of individual grains. Figure 6 shows two simulations with identical initial microstructure and elastic constants as in Figure 5, but with varying width of the distribution of the breaking strengths. The simulation shown in Figure 6a has a distribution of breaking strengths from 24 to 36 MPa whereas the simulation shown in Figure 6b has a distribution of breaking strengths ranging from 12 to 48 MPa. For each simulation two successive stages at the same amount of strain are shown, deformation is (a} t ) i,. / /...,~ : ~, (? (b)./ 3, 4. 9 '! Fig. 6. Two simulations with the same boundary conditions but different initial distributions of breaking thresholds, where (a) has a narrower distribution of breaking thresholds than (b). (a) Less noise in the system produces stronger localization of structures. (b) More noise produces more dispersed fractures with different sizes.

8 FRACTURE AND VEIN PATTERNS 17 pure shear where compression is vertical. Stage one shows the initial development of extension fractures and stage two the development of secondary shear fractures. Two important differences can be observed between the different distributions of breaking strengths. First a wider distribution of breaking strengths results in a more dispersed development of fractures whereas a narrow distribution results in localized fractures that cut the whole aggregate. Secondly, the absolute breaking strength is lowered using a wider distribution of breaking strengths; more fractures develop in Figure 6b than in Figure 6a. The first effect can be explained as follows. A narrow distribution of breaking strength, which means that the initial noise in the system is low, represents a very brittle material. A lot of springs in the aggregate will reach their tensile strength within a single deformation step. This will result in an almost instantaneous propagation of large fractures through the aggregate. In particular, an extension fracture will continue to propagate once it nucleates since tensile stresses at the fracture tip will increase while the fracture grows in length. Once a large fracture is present it will be able to relax stresses in the surrounding aggregate so that additional fractures will only develop at a certain distance to the initial fracture. This stress shielding mechanism produces a distinct spacing of fractures in the aggregate. If the width of the distribution of breaking strengths in the model is larger (Fig. 6b), fractures can develop at lower strains. This will reduce the overall breaking strength of the aggregate. Since the strength of springs varies significantly, fractures that nucleate may stop propagating. Therefore a range of fractures develops initially with different lengths. More fractures nucleate in an aggregate with a wider distribution of breaking strengths and the developing spacing of fractures will not be as distinct as in the example with the narrow distribution. The material has a bulk response to deformation that is less brittle. The effect of the mean elastic constant (Young's modulus) of the aggregate on pattern formation and rheological behaviour is shown in Figure 7. The mean Young's modulus of the aggregate increases from Figure 7a to e. Figure 7a to e shows an aggregate with a mean Young's modulus of 1, 2.5, 5, 7.5, and 12.5GPa. All simulations were performed (a),( '. 2 " " ' (b) Cc) it!! 0 ~ i 9, _,oi I ,0~ / E ";'F"" I -~o I ~- mode,, I~ 0 0,Ol 0.02 Fig. 7. (a) to (e) show simulations under the same pure shear conditions with increasing mean elastic constant. A lower elastic constant produces stronger localization and a wider spacing of mode I fractures. If the elastic constant is higher, mode II fractures dominate. (f) Stress-strain relation for (a). Mode I failure shows a sawtooth curve typical for fast propagation of large mode I fractures. (g) Stress-strain relation for (e). Mode I failure is continuous with no sudden drop of the tensile stress (02 curve). Mode II failure results in a drop of the differential stress.

9 18 D. KOEHN ET AL. using pure shear deformation and the snapshots presented are taken at similar amounts of finite strain. The breaking strength of springs in all simulations has the same distribution and mean value. Consequently failure will occur at lower strains in an aggregate that has a higher elastic constant. Therefore the number of fractures increases from Figure 7a to e. In addition, the compressive stresses are not high enough to induce shear failure in Figure 7a and only to a minor extent in Figure 7b and c, whereas shear fractures dominate in Figure 7e. An aggregate with a lower elastic constant localizes extensional strain in tensile fractures, which open and form large veins in Figure 7a and to a minor extent in Figure 7b and c. Figure 7d shows a combination of extension fractures and shear fractures. The spacing of extension fractures depends on the mean elastic constant of the aggregate. In the simulation in Figure 7a one large vein develops within the model whereas Figure 7b shows two and Figure 7c three large veins. The spacing is reduced with an increase in Young's modulus. A softer material with a lower elastic constant can relax a larger region around an opening fracture and thus produces a larger spacing than a material with a higher Young's modulus. This relation becomes disturbed in Figure 7d and e, where shear fractures start to dominate the pattern. Spacing of shear fractures does not show a simple relation with increasing Young's modulus. Figure 7f shows the stress-strain relationship for the simulation presented in Figure 7a, and Figure 7g the stress-strain curve for the simulation presented in Figure 7e. These curves illustrate that the rheological behaviour of the aggregate also changes significantly with increasing elastic modulus. Failure due to the development of extension fractures shows significant differences in the stress-strain relationship of the two examples and failure due to the development of shear fractures only occurs at the finite strain shown in the example of Figure 7g. Figure 7f shows a sudden drop of the tensile stress (0"2) at the beginning of extension fracture development. This indicates that the fractures develop relatively fast and grow large enough to invoke failure of the whole aggregate and reduce the tensile stress almost completely. The overall failure also reduces the differential stress. Figure 7g shows the aggregate with the highest Young's modulus in the presented sequence. It experiences a more continuous development of extension fractures that grow progressively while the aggregate reaches higher extensional strains. Therefore the tensile stress is released gradually and the differential stress continues to increase after extension fracture development. Increase in area Figure 8 shows three simulations with an area increase of the deformation box. The simulations have horizontal and vertical tensile boundary conditions where the horizontal component is larger in Figure 8a and b. Figure 8a shows a simulation with a large differential stress where the horizontal stress component is three times as large as the vertical component. Figure 8b shows a simulation where the vertical stress component is about 70% of the horizontal stress component. Both extension components in the vertical and horizontal direction are identical in the simulation shown in Figure 8c. The fracture pattern in Figure 8a represents the dominant horizontal extension. A small number of horizontal fractures develop due to the vertical extension component. Figure 8b shows a different pattern where the dominance of the horizontal extension component can still be seen but the (a),.) q 't'.r l,f (. (b).4 i,-r. '~ "~,'3- (c) 9,~ ~..' r "1 ( >i.,,j "], r,," N.tl -i s!_~ "'t" ~ - ", J... ] Fig. 8. Three simulations with two extension directions and an increase in modelling area9 (a) Dominant horizontal extension produces well-oriented mode I fractures. (b) Both extension components become more similar so that fractures start to curve9 Orientation of fractures becomes more diffuse than in (a). (c) Horizontal and vertical extension components are the same, no relation of the orientation of fractures and the model boundaries can be observed. Fractures form polygons similar to mud cracks.

10 FRACTURE AND VEIN PATTERNS 19 vertical extension component also influences fracture development. Fractures start to curve and lose a dominant orientation with respect to a principal stress direction because the stresses are similar. Fractures still produce a distinct spacing. In Figure 8c the stress field has no dominant extension direction and the developing fracture pattern shows no preferred orientation with respect to the simulation boundaries. Fracture development and orientation is controlled by the initial noise in the system. Once the first fractures develop they influence the stress field in the aggregate, which leads to a polygonization with a distinct spacing similar to the structures found in mud cracks in shrinking sediments (Suppe 1985). Gravitational loading and pure shear deformation In a normal tectonic environment one would expect that sedimentary sequences are loaded during their deposition and then experience tectonic strain afterwards (Price & Cosgrove 1990). In order to investigate the effects of initial gravitational loading on fracture and vein patterns several simulations were performed with complex deformation histories including different tectonic settings9 In the first simulation with a two-stage deformation history we load the sample uniaxially and then apply a pure shear boundary condition. The sample is loaded vertically with fixed sidewalls. The vertical stress is proportional to the deformation steps and the horizontal stress is compressive due to Poisson effects. After a given amount of vertical strain we apply a pure shear deformation with vertical constrictional strain and horizontal extensional strain. The developing fracture patterns are shown in Figure 9a in three successive steps. Figure 9b shows the stress-strain diagram for the simulation and Figure 9c the corresponding Mohr diagram with four different Mohr circles a to 6 that are indicated in the stress-strain diagram of Figure 9b. The region on the left-hand side,ool (b) (c) 't T 8 ~5 -t00 (+) (+) 0 o Fig. 9. Complex deformation history involving a compaction event followed by pure shear deformation. (a) Three successive fracture patterns during the simulation. Conjugate mode II fractures dominate the pattern. Only at the latest stage do small mode I fractures develop in the model in order to accommodate local tensile strain. (b) Stress-strain relation of the simulation. Both principal stresses are compressive during the compaction (regime L). Once tectonic deformation starts (regime T) the horizontal stress is relaxed but the differential stress increases. (c) Mohr circle diagrams for (b). The diagram on the left-hand side marks three successive stages during the compaction process. The diagram on the right-hand side shows the successive growth of the Mohr circle during tectonic deformation and the following failure that produces the dominant conjugate mode li fractures. Note that the x-axis is negative towards the right-hand side since compressive stresses are negative in this paper.

11 20 D. KOEHN ET AL. of the vertical line in Figure 9b indicates the gravitational loading regime (marked L for loading). The two principal stresses are compressive and the mean stress and differential stress increase successively. The development of the Mohr circle during initial loading is indicated in Figure 9c on the left-hand side where c~ marks the initial starting point and/3 and y the successive growth and movement of the Mohr circle into the compressive regime. After gravitational loading pure shear deformation shows an increase in compressive stress and decrease in tensile stress (Figure 9b in tectonic regime marked T). The mean stress stays constant and the differential stress increases with a steeper slope than in the loading regime. At point 6 in Figure 9b failure is initiated so that in Figure 9c the Mohr circle cuts the failure envelope. Since differential stress and mean stress are high the developing fractures are shear fractures with typical conjugate sets, which can be seen in Figure 9a. The Mohr circle will not reach the tensile part of the failure curve without crossing the failure curve in the compressive regime if pure shear deformation is applied after the uniaxial loading. The developing pattern will mainly consist of conjugate shear fractures. Small extension fractures will only grow at a larger amount of deformation in order to accommodate local tensile strains as can be seen in Figure 9a. However, if fluid pressure is involved, the Mohr circle may cross the failure curve in the tensile regime during deformation (see discussion). Gravitational loading and area increase In this section we take a look at fracture patterns that develop during different kinds of initial loading followed by a tectonic deformation that is characterized by a large area increase so that both major components of the strain in the modelled plane are extensional. The developing fracture patterns and corresponding stress-strain curves are shown in Figure 10a to d. Figure 10a shows a simulation with a small amount of initial loading. Tectonic deformation is dominant with a large horizontal extension component. During extension the compressive stresses are relaxed and the horizontal stress component becomes tensile, which results in the development of vertical extension fractures that are opening. Failure of the whole aggregate is fast, which is illustrated by the sawtooth stress curves in Figure 10a. The material behaves in a brittle manner and shows a strong localization of strain in two to three tensile fractures that are opening and that show a distinct spacing. Following failure the aggregate reaches a quasi steady-state plastic behaviour where stresses remain at relatively constant values while the strain increases. Small fluctuations in the tensile stress represent growth of secondary extension fractures to accommodate strain. Figure 10b shows a simulation where gravitational loading is dominating. Failure of the aggregate starts during initial loading when a peak differential stress is reached. During this stage conjugate sets of shear fractures develop. Successive tectonic deformation reduces all stress components and leads to a local growth of small extension fractures. The resulting fracture pattern is very similar to that of Figure 9, where a smaller amount of initial loading was followed by a pure shear deformation. Both simulations show a dominant primary growth of conjugate shear fractures and a successive development of secondary small-scale extension fractures. An intermediate pattern between the simulations shown in Figure 10a and b is shown in Figure 10c. Here the aggregate is initially loaded by an intermediate amount so that initial loading itself does not induce failure. The aggregate is then extended in the horizontal and vertical direction where the horizontal extension component is dominant. During failure of the aggregate, conjugate shear fractures develop with a smaller angle towards the principal compressive stress direction than in Figure 10b. The fractures in Figure 10c are of the hybrid extension/shear type of Price & Cosgrove (1990), an intermediate type of fracture. In the simulation shown in Figure 10c these conjugate fractures accommodate successive amounts of extensional strain and are opening. Figure 10d shows a different type of gravitational loading where the aggregate is initially loaded by the same horizontal and vertical amount. Therefore the differential stress stays at zero and the two principal stress components as well as the mean stress increase by the same amount. The following tectonic deformation has a horizontal extension component. During extension all stresses are relaxed. The differential stress starts to increase as a result of the large horizontal extension component. This resulted in the growth of conjugate hybrid extension/ shear fractures similar to those shown in the simulation of Figure 10c. In summary gravitational loading can lead to the development of primary conjugate sets of hybrid extension or shear fractures that will accommodate extensional strain during successive deformation. It can be seen therefore that fractures and veins in a rock have a record of

12 FRACTURE AND VEIN PATTERNS 21 (a) 'LJ;...,.i' ; (b),. '... },, 0 (MPa L zc / o~ r AO O o~ 100 o( o o21 o ~ loo i E Z s 0 O,OOS s Fig. 10. Four different simulations and the corresponding stress-strain curves for deformation histories involving different kinds of compaction that are followed by tectonic deformation that involves extension in the modelling plane. (a) Small amount of compaction results in a situation where mode I fractures are dominant. (b) Large amount of compaction results in the development of conjugate mode II fractures during compaction. The following tectonic extension produces local mode I fractures but strain is mainly accommodated by the already existing fracture network. (c) A simulation with intermediate compaction followed by tectonic extension results in the growth of hybrid extension/shear fractures that are opening. (d) Compaction that is hydrostatic can also lead to hybrid extension/shear fractures if the following tectonic deformation is strongly non-hydrostatic so that extension is dominating in the horizontal direction.

13 22 D. KOEHN ETAL. the gravitational loading of the rock prior to tectonic deformation. Discussion We compare the results of the numerical study with the vein sets shown in Figure 2. The vein in Figure 2a may have started as a hybrid extension fracture and may reflect a stress state that would produce that type of fracture. This stress state would then be represented by the whole history of the vein development. However, our simulations show that quite a number of different stress states may develop during a deformation history. Therefore this vein could also form as a shear fracture (or hybrid shear depending on its orientation relative to the principal stress axis) initially and then open afterwards due to an extension component during deformation. Such a setting could also produce vein patterns similar to the ones shown in Figure 2b where conjugate shear (or hybrid shear) fractures may form first and then later extension takes over and the initial fractures are opening as veins. However, further study on the internal geometries of such vein sets is needed in order to prove that the proposed scenario can develop in nature. We use hyperbolic Mohr circle diagrams to illustrate the stress states and failure in our simulations. There is still much debate on whether a hyperbolic Mohr circle can be used for intermediate failure types between mode I and mode II, namely hybrid extension/shear fractures. Engelder (1999) illustrates that these intermediate structures cannot be explained as propagating cracks by linear elastic fracture mechanics theory. He rather concludes that they may form by an out-of-plane propagation of mode I fractures that are subject to a shear stress. In our simulation a number of scenarios produce patterns that are dominated either by mode I or mode II fractures. In intermediate settings quite often a combination of mode I and mode II fractures develop where both failure modes still show distinct sets of fractures. Only in a narrow range do we find fractures that have an intermediate orientation (between mode I and II), which fall into the category of hybrid extension/shear fractures (Fig. 10c). These may well be combinations of mode I and mode II fractures as proposed by Engelder (1999). It is interesting to see that in a number of simulations quasi steady-state behaviours are reached (Figs 5a and 10a, c). The fracture systems that develop can accommodate additional strain with only minor increase in stress, which is probably due to additional growth of small fractures or friction along shear fractures. Prior to this quasi steady-state behaviour, stresses drop significantly when the whole systems fails. The remaining tensile stress component is very small since most tensile stresses can be accommodated by opening fractures or veins. Compressive stresses are higher and can probably be related to friction along shear fractures as long as one component of the stress tensor in the modelling plane is compressive. As long as the system does not heal after failure stresses will probably remain low. If this steady state is also reached in natural rocks, it has a strong influence on the strength of brittle faults and earthquake behaviour (Scholz 2002). Once a rock fails by fracturing it may deform in a plastic way without significant increase in stress (Paterson 1978; Zhang et al. 1990; Karato 1995). Once a fault forms and develops a cataclasite it may behave as a plastic material with no major increase in stress if fractures are not healing. Therefore no successive earthquakes will be expected along such a fault. However, if veins grow and fill the fractures, the cataclasite may heal and retain a certain strength again. Then it may fracture by catastrophic failure at high stresses (Scholz 2002). What we have not yet taken into account is the effect of fluid pressure on the developing fracture patterns. This is certainly an important component that we will include in the future. A high fluid pressure can shift the Mohr circle towards the tensile regime so that mode I fracture may develop during the loading history instead of conjugate shear fractures (Price & Cosgrove 1990; FlekkCy et al. 2002). However, conjugate shear fractures may also develop in this case if the differential stress is already high due to a non-hydrostatic initial loading. Fluid pressure and developing fractures will influence each other depending on how effectively fractures can drain an existing fluid pressure. If the tectonic stress is non-hydrostatic or if fluid pressure gradients exist along anisotropies, fluid pressure will provoke failure (Bercovici et al. 2001). Once fractures develop, the fluid pressure may drop because the permeability of the rock increases. Whether or not the fluid pressure influenced fracture and vein development in the natural samples that were presented in this paper is not clear. Bedding parallel veins in the area may have formed during high fluid pressures because they are located along the bedding planes between porous sandstones and less porous mudstones. Fluid pressure gradients can be expected along these anisotropies, which may invoke failure. The veins that are presented

14 FRACTURE AND VEIN PATTERNS 23 in this paper are however located within the more porous sandstones and are probably more associated with tensile strain than a higher fluid pressure. However, additional research is needed in order to fully understand the effect of fluid pressure on the development of these systems. In the following paragraphs we will discuss some additional boundary effects of the model that we used. The box boundaries have an influence on the development of shear fractures. Box boundaries reflect shear fractures because the boundaries behave like rigid pistons and boundary particles are fixed perpendicular to the walls. They cannot accommodate a shear displacement of the boundary so that shear fractures that hit the walls are repelled and a new shear fracture grows back into the model. This effect will influence the density of shear fractures in the model and also their spacing. In some cases shear fractures will dominate near to the compressive walls (upper and lower wall) whereas extension fractures dominate in the centre of the model (Fig. 7). However, this effect is not always observed (Fig. 10c). An additional problem arises because the underlying lattice is triangular. Therefore fracturing is partly anisotropic, which is especially important in the case of shear fractures where slip should take place. The anisotropies of the lattice can be overcome by adding distributions to the elastic constants and spring breaking strengths that are larger than the lattice anisotropies (Malthe-SCrenssen et al. 1998b). Mode I fractures show no lattice-preferred orientation in our model, which can be best observed in Figure 8c where stresses are hydrostatic and no lattice directions nor any effects of the model boundaries are observed. Shear fractures may however still be influenced by the lattice (Fig. 10b) but can also develop in non-lattice directions (Fig. 10c). One has to note that the direction of the shear fractures in Figure 10b is more or less a lattice direction, but also the direction where the fractures would develop anyhow. The threshold of relaxation in the model can also change the developing pattern. This is recorded in detail in Malthe-SCrenssen et al. (1998b). Since we are moving all particles assuming homogeneous strain in the model before relaxation starts and since our relaxation threshold is very small relative to the applied strain, it has no major influence on the developing pattern. However, if a significantly higher relaxation threshold is used, different spacing of mode I fractures will result since the system will be progressively slower and relaxation will be more localized. Conclusions Modelling of progressive fracture development in aggregates shows that different type of fractures can grow during one tectonic deformation event. Pure shear deformation produces primary extension fractures that are followed by a secondary set of conjugate shear fractures. These patterns change depending on the properties of the aggregate, namely its mean elastic constant and the initial noise in the system. Pure extension of the modelling area leads to one dominant extension fracture set or to a polygonal set of fractures if the principal stresses are equal. A more complex deformation history that includes gravitational loading as well as tectonic strain can lead to the development of conjugate shear fracture sets that can accommodate extensional strain and thus form veins during later stages of deformation. These conjugate sets of veins may be followed by secondary extension fractures. These complex veins may record gravitational loading preceding the tectonic deformation. Their orientation can be used to find the orientation of the non-hydrostatic stress field that existed during gravitational loading or tectonic deformation. We thank T. Engelder and J. Cosgrove for constructive reviews. We also thank A. Malthe-SCrenssen for his help with the discrete element code. JA acknowledges funding by the DFG-Graduiertenkolleg 'Composition and Evolution of Crust and Mantle'. References ALLEN, D. M. DE G Relaxation Methods. McGraw Hill, New York. ANDERSON, E. M The Dynamics of Faulting and Dike Formation. Oliver and Boyd, Edinburgh. AYDIN, A. & RECHES, Z Number and orientation of fault sets in the field and in experiments. Geology, 10, BERCOVICI, D., RICARD, Y. & SCHUBERT, G A two phase model for compaction and damage, 3: Applications to shear localization and plate boundary formation. Journal of Geophysical Research, 106, BONNET, E., BOUR, O., ODLING, N. E., DAVY, P., MAIN, I., COWIE, P. & BERKOWITZ, B Scaling of fracture systems in geological media. Reviews in Geophysics, 39, ENGELDER, T The transitional-tensile fracture: A status report. Journal of Structural Geology, 21, FLEKK~3Y, E. G., MALTHE-S~3RENSSEN, A. & JAMTVEIT, B Modeling hydrofracture. Journal of Geophysical Research B8, ECV 1, GRI~ITH, A. A The phenomena of rupture and flow in solids. Transactions of the Royal Socie~ Series A, 221,

15 24 D. KOEHN ET AL. HANCOCK, P. L Brittle microtectonics: principles and practice. Journal of Structural Geology, 7, HUDSON, J. A. 8z COSGROVE, J Integrated structural geology and engineering rock mechanics approach to site characterization. International Journal of Rock Mechanics and Mining Science, 34, 577. JAEGER, J. C. 8z COOK, N. G. W Fundamentals of Rock Mechanics. Chapman and Hall, London. JAMTVEIT, B., AUSTRHEIM, H. 8z MALTHE- SORENSSEN, A Accelerated hydration of the Earth's deep crust induced by stress perturbations. Nature, 408, JESSELL, M. W., BONS, P. D., EVANS, L., BARR, T. D. & STt3WE, K Elle, The numerical simulation of metamorphic and deformation textures. Computers and Geosciences, 27, KARATO, S Rock deformation: Ductile and brittle. Reviews in Geophysics, American Geophysical Union, 33. KRANTZ, R. W Multiple fault sets and threedimensional strain; theory and application. Journal of Structural Geology, 10, MALTHE-SORENSSEN, m., WALMANN, T., JAMTVEIT, B., FEDER, J. J~SSANG, T. 1998a. Modeling and characterization of fracture patterns in the Vatnajokull glacier. Geology, 26, MALTHE-SORENSSEN, A., WALMANN, T., FEDER, J., JOSSANG, T. & MEAKIN, P. 1998b. Simulation of extensional clay fractures. Physical Review E, 58(5), MALTHE-SORENSSEN, A., WALMANN, T., JAMTVEIT, B., FEDER, J. 8z JOSSANG, T Simulation and characterization of fracture patterns in glaciers. Journal of Geophysical Research, B104, MEANS, W. D Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists. Springer- Verlag, New York. OERTEL, G The mechanism of faulting in clay experiments. Tectonophysics, 2, OLIVER, N. H. S. & BONS, P. D Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from veinwallrock patterns, geometry and microstructure. Geofluids, 1(2), 137. PATERSON, M. S Experimental Rock Deformation - Brittle Field. Springer Verlag, Berlin. POLLARD, D. D. & SEGALL, P Theoretical displacements and stresses near fractures in rocks: with applications to faults, joints, dikes and solution surfaces. In: ATKINSON, B. K. (ed) Fracture Mechanics of Rock. Academic Press, London, PRICE, N. J. & COSGROVE, J. W Analysis of Geological Structures. Cambridge University Press, Cambridge. RAMSAY, M. R. & CHESTER, F. M Hybrid fracture and the transition from extension fracture to shear fracture. Nature, 428, RAMSAY, J. G. & HUBER, M. I The Techniques of Modern Structural Geology, 1: Strain Analysis. Academic Press, London. RANALLI, G Rheology of the Earth, 2nd edn. Chapman & Hall, London, UK. SCHOLZ, C. H The Mechanics of Earthquakes and Faulting, 2nd edn. Cambridge University Press, Cambridge. SUPPE, J Principles of Structural Geology. Prentice-Hall, New Jersey. WALMANN, T., MALTHE-SORENSSEN, A., FEDER, J., JOSSANG, T., MEAKIN, P. ~r HARDY, H. H Scaling relations for the lengths and widths of fractures. Physical Review Letters, 77, ZHANG, J., WONG, T.-F. & DAVIS, D. M Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research, 95,

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

The Frictional Regime

The Frictional Regime The Frictional Regime Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/25/2016 10:08 AM We Discuss The Frictional Regime Processes of Brittle Deformation

More information

Dynamic analysis. 1. Force and stress

Dynamic analysis. 1. Force and stress Dynamic analysis 1. Force and stress Dynamics is the part of structural geology that involves energy, force, stress, and strength. It's very important to distinguish dynamic concepts from kinematic ones.

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Mohr's Circle and Earth Stress (The Elastic Earth)

Mohr's Circle and Earth Stress (The Elastic Earth) Lect. 1 - Mohr s Circle and Earth Stress 6 Mohr's Circle and Earth Stress (The Elastic Earth) In the equations that we derived for Mohr s circle, we measured the angle, θ, as the angle between σ 1 and

More information

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f Material undergoes plastic deformation when stress exceeds yield stress σ 0 Permanent strain results from

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Surface changes caused by erosion and sedimentation were treated by solving: (2) GSA DATA REPOSITORY 214279 GUY SIMPSON Model with dynamic faulting and surface processes The model used for the simulations reported in Figures 1-3 of the main text is based on two dimensional (plane strain)

More information

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Geology for Engineers Rock Mechanics and Deformation of Earth Materials 89.325 Geology for Engineers Rock Mechanics and Deformation of Earth Materials Why do rocks break? Rock mechanics experiments a first order understanding. Faults and Fractures Triaxial load machine. a)

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

Failure and Failure Theories for Anisotropic Rocks

Failure and Failure Theories for Anisotropic Rocks 17th international Mining Congress and Exhibition of Turkey- IMCET 2001, 2001, ISBN 975-395-417-4 Failure and Failure Theories for Anisotropic Rocks E. Yaşar Department of Mining Engineering, Çukurova

More information

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

More information

Role of lithological layering on spatial variation of natural and induced fractures in hydraulic fracture stimulation

Role of lithological layering on spatial variation of natural and induced fractures in hydraulic fracture stimulation Role of lithological layering on spatial variation of natural and induced fractures in hydraulic fracture stimulation Vincent Roche *, Department of Physics, University of Alberta, Edmonton roche@ualberta.ca

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD

Tectonics. Lecture 12 Earthquake Faulting GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Tectonics Lecture 12 Earthquake Faulting Plane strain 3 Strain occurs only in a plane. In the third direction strain is zero. 1 ε 2 = 0 3 2 Assumption of plane strain for faulting e.g., reverse fault:

More information

Reservoir Geomechanics and Faults

Reservoir Geomechanics and Faults Reservoir Geomechanics and Faults Dr David McNamara National University of Ireland, Galway david.d.mcnamara@nuigalway.ie @mcnamadd What is a Geological Structure? Geological structures include fractures

More information

1 Introduction. 1.1 Aims. 1.2 Rock fractures

1 Introduction. 1.1 Aims. 1.2 Rock fractures 1 Introduction 1.1 Aims Rock fractures occur in a variety of geological processes and range in size from plate boundaries at the scale of hundreds of kilometres to microcracks in crystals at the scale

More information

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:

MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME: MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925

More information

Classical fracture and failure hypotheses

Classical fracture and failure hypotheses : Chapter 2 Classical fracture and failure hypotheses In this chapter, a brief outline on classical fracture and failure hypotheses for materials under static loading will be given. The word classical

More information

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach S. Stefanizzi GEODATA SpA, Turin, Italy G. Barla Department of Structural and Geotechnical Engineering,

More information

20. Rheology & Linear Elasticity

20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava

More information

Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale Predictions

Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale Predictions Software Limited Bench-Scale to Field-Scale Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale Predictions Thornton, Dean A., Roberts, Daniel T., Crook, Anthony

More information

Crustal Deformation Earth - Chapter Pearson Education, Inc.

Crustal Deformation Earth - Chapter Pearson Education, Inc. Crustal Deformation Earth - Chapter 10 Structural Geology Structural geologists study the architecture and processes responsible for deformation of Earth s crust. A working knowledge of rock structures

More information

1. classic definition = study of deformed rocks in the upper crust

1. classic definition = study of deformed rocks in the upper crust Structural Geology I. Introduction 1. classic definition = study of deformed rocks in the upper crust deformed includes translation, rotation, and strain (change of shape) All rocks are deformed in some

More information

Elastoplastic Deformation in a Wedge-Shaped Plate Caused By a Subducting Seamount

Elastoplastic Deformation in a Wedge-Shaped Plate Caused By a Subducting Seamount Elastoplastic Deformation in a Wedge-Shaped Plate Caused By a Subducting Seamount Min Ding* 1, and Jian Lin 2 1 MIT/WHOI Joint Program, 2 Woods Hole Oceanographic Institution *Woods Hole Oceanographic

More information

Introduction and Background

Introduction and Background Introduction and Background Itasca Consulting Group, Inc. (Itasca) has been participating in the geomechanical design of the underground 118-Zone at the Capstone Minto Mine (Minto) in the Yukon, in northwestern

More information

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change

More information

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating. CH Earthquakes Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating Earthquakes Section 19.4: Earthquakes and Society Section 19.1 Forces

More information

The Mechanics of Earthquakes and Faulting

The Mechanics of Earthquakes and Faulting The Mechanics of Earthquakes and Faulting Christopher H. Scholz Lamont-Doherty Geological Observatory and Department of Earth and Environmental Sciences, Columbia University 2nd edition CAMBRIDGE UNIVERSITY

More information

Brittle fracture of rock

Brittle fracture of rock 1 Brittle fracture of rock Under the low temperature and pressure conditions of Earth s upper lithosphere, silicate rock responds to large strains by brittle fracture. The mechanism of brittle behavior

More information

Faults. Strike-slip fault. Normal fault. Thrust fault

Faults. Strike-slip fault. Normal fault. Thrust fault Faults Strike-slip fault Normal fault Thrust fault Fault any surface or narrow zone with visible shear displacement along the zone Normal fault Strike-slip fault Reverse fault Thrust fault

More information

Physics and Chemistry of the Earth and Terrestrial Planets

Physics and Chemistry of the Earth and Terrestrial Planets MIT OpenCourseWare http://ocw.mit.edu 12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

EAS FINAL EXAM

EAS FINAL EXAM EAS 326-03 FINAL EXAM This exam is closed book and closed notes. It is worth 150 points; the value of each question is shown at the end of each question. At the end of the exam, you will find two pages

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength. Earthquakes Vocabulary: Stress Strain Elastic Deformation Plastic Deformation Fault Seismic Wave Primary Wave Secondary Wave Focus Epicenter Define stress and strain as they apply to rocks. Distinguish

More information

A circular tunnel in a Mohr-Coulomb medium with an overlying fault

A circular tunnel in a Mohr-Coulomb medium with an overlying fault MAP3D VERIFICATION EXAMPLE 9 A circular tunnel in a Mohr-Coulomb medium with an overlying fault 1 Description This example involves calculating the stresses and displacements on a fault overlying a 5 m

More information

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 5 Rheology Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton; unless noted otherwise Rheology is... the study of deformation and flow of

More information

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress Geologic Structures Changes in the shape and/or orientation of rocks in response to applied stress Figure 15.19 Can be as big as a breadbox Or much bigger than a breadbox Three basic types Fractures >>>

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

Rheology: What is it?

Rheology: What is it? Schedule Rheology basics Viscous, elastic and plastic Creep processes Flow laws Yielding mechanisms Deformation maps Yield strength envelopes Constraints on the rheology from the laboratory, geology, geophysics

More information

Copyright 2014 The Authors. Deposited on: 25 June 2014

Copyright 2014 The Authors.  Deposited on: 25 June 2014 Sachau, T., and Koehn, D. (2014) A new mixed-mode fracture criterion for large-scale lattice models. Geoscientific Model Development, 7 (1). pp. 243-247. ISSN 1991-959X Copyright 2014 The Authors http://eprints.gla.ac.uk/94706

More information

Effect of buttress on reduction of rock slope sliding along geological boundary

Effect of buttress on reduction of rock slope sliding along geological boundary Paper No. 20 ISMS 2016 Effect of buttress on reduction of rock slope sliding along geological boundary Ryota MORIYA *, Daisuke FUKUDA, Jun-ichi KODAMA, Yoshiaki FUJII Faculty of Engineering, Hokkaido University,

More information

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS

ON THE FACE STABILITY OF TUNNELS IN WEAK ROCKS 33 rd 33 Annual rd Annual General General Conference conference of the Canadian of the Canadian Society for Society Civil Engineering for Civil Engineering 33 e Congrès général annuel de la Société canadienne

More information

Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient. Hai Huang, Earl Mattson and Rob Podgorney

Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient. Hai Huang, Earl Mattson and Rob Podgorney Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient Hai Huang, Earl Mattson and Rob Podgorney

More information

FRACTURE SPACING IN LAYERED MATERIALS: A NEW EXPLANATION BASED ON TWO-DIMENSIONAL FAILURE PROCESS MODELING

FRACTURE SPACING IN LAYERED MATERIALS: A NEW EXPLANATION BASED ON TWO-DIMENSIONAL FAILURE PROCESS MODELING [American Journal of Science, Vol. 308, January, 2008, P.49 72, DOI 10.2475/01.2008.02] FRACTURE SPACING IN LAYERED MATERIALS: A NEW EXPLANATION BASED ON TWO-DIMENSIONAL FAILURE PROCESS MODELING C. A.

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

Enabling Technologies

Enabling Technologies Enabling Technologies Mechanical Modelling 1 Key Parameter Mineral System Exploration is reflected in scale-dependent translation A. Gradient in hydraulic potential B. Permeability C. Solubility sensitivity

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS ROCK DEFORMATION Tectonic forces exert different types of stress on rocks in different geologic environments. STRESS The first, called confining stress

More information

Joints and Veins. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 1/26/ :28

Joints and Veins. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 1/26/ :28 Joints and Veins Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 1/26/2017 18:28 We Discuss Joints and Veins Crack Modes Surface Features Formation

More information

arxiv:cond-mat/ v1 25 Feb 1994

arxiv:cond-mat/ v1 25 Feb 1994 A Model for Fracture in Fibrous Materials A. T. Bernardes Departamento de Física - ICEB arxiv:cond-mat/9402110v1 25 Feb 1994 Universidade Federal de Ouro Preto Campus do Morro do Cruzeiro 35410-000 Ouro

More information

The Mine Geostress Testing Methods and Design

The Mine Geostress Testing Methods and Design Open Journal of Geology, 2014, 4, 622-626 Published Online December 2014 in SciRes. http://www.scirp.org/journal/ojg http://dx.doi.org/10.4236/ojg.2014.412046 The Mine Geostress Testing Methods and Design

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Exercise: concepts from chapter 5

Exercise: concepts from chapter 5 Reading: Fundamentals of Structural Geology, Ch 5 1) Study the oöids depicted in Figure 1a and 1b. Figure 1a Figure 1b Figure 1. Nearly undeformed (1a) and significantly deformed (1b) oöids with spherulitic

More information

Textures in experimentally deformed olivine aggregates: the effects of added water and melt.

Textures in experimentally deformed olivine aggregates: the effects of added water and melt. Textures in experimentally deformed olivine aggregates: the effects of added water and melt. F. Heidelbach 1, a, B. Holtzman 2, b, S. Hier-Majumder 2, c and D. Kohlstedt 2, d 1 Bayerisches Geoinstitut,

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

A review of friction laws and their application for simulation of microseismicity prior to hydraulic fracturing

A review of friction laws and their application for simulation of microseismicity prior to hydraulic fracturing A review of friction laws and their application for simulation of microseismicity prior to hydraulic fracturing Jiyang Ye, Mirko Van Der Baan (Email: jiyang1@ualberta.ca, Mirko.VanderBaan@ualberta.ca)

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

Earthquake and Volcano Deformation

Earthquake and Volcano Deformation Earthquake and Volcano Deformation Paul Segall Stanford University Draft Copy September, 2005 Last Updated Sept, 2008 COPYRIGHT NOTICE: To be published by Princeton University Press and copyrighted, c

More information

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone

Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone Rock Mechanics, Fuenkajorn & Phien-wej (eds) 211. ISBN 978 974 533 636 Effect of intermediate principal stresses on compressive strength of Phra Wihan sandstone T. Pobwandee & K. Fuenkajorn Geomechanics

More information

EAS MIDTERM EXAM

EAS MIDTERM EXAM Ave = 98/150, s.d. = 21 EAS 326-03 MIDTERM EXAM This exam is closed book and closed notes. It is worth 150 points; the value of each question is shown at the end of each question. At the end of the exam,

More information

Critical Borehole Orientations Rock Mechanics Aspects

Critical Borehole Orientations Rock Mechanics Aspects Critical Borehole Orientations Rock Mechanics Aspects By R. BRAUN* Abstract This article discusses rock mechanics aspects of the relationship between borehole stability and borehole orientation. Two kinds

More information

Simulation of the cutting action of a single PDC cutter using DEM

Simulation of the cutting action of a single PDC cutter using DEM Petroleum and Mineral Resources 143 Simulation of the cutting action of a single PDC cutter using DEM B. Joodi, M. Sarmadivaleh, V. Rasouli & A. Nabipour Department of Petroleum Engineering, Curtin University,

More information

Finite element modelling of fault stress triggering due to hydraulic fracturing

Finite element modelling of fault stress triggering due to hydraulic fracturing Finite element modelling of fault stress triggering due to hydraulic fracturing Arsalan, Sattari and David, Eaton University of Calgary, Geoscience Department Summary In this study we aim to model fault

More information

3D Finite Element Modeling of fault-slip triggering caused by porepressure

3D Finite Element Modeling of fault-slip triggering caused by porepressure 3D Finite Element Modeling of fault-slip triggering caused by porepressure changes Arsalan Sattari and David W. Eaton Department of Geoscience, University of Calgary Suary We present a 3D model using a

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials GG303 Lecture 2 0 9/4/01 1 RHEOLOGY & LINEAR ELASTICITY I II Main Topics A Rheology: Macroscopic deformation behavior B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous

More information

RHEOLOGY & LINEAR ELASTICITY

RHEOLOGY & LINEAR ELASTICITY GG303 Lecture 20 10/25/09 1 RHEOLOGY & LINEAR ELASTICITY I Main Topics A Rheology: Macroscopic deformation behavior B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

Data Repository Hampel et al., page 1/5

Data Repository Hampel et al., page 1/5 GSA DATA REPOSITORY 2138 Data Repositor Hampel et al., page 1/5 SETUP OF THE FINITE-ELEMENT MODEL The finite-element models were created with the software ABAQUS and consist of a 1-km-thick lithosphere,

More information

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions

Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions Thesis Summary October 2015 Shear Rupture of Massive Brittle Rock under Constant Normal Stress and Stiffness Boundary Conditions Abstract Robert Paul Bewick, Ph.D., P.Eng. Supervisors: Peter K Kaiser (recently

More information

Weak Rock - Controlling Ground Deformations

Weak Rock - Controlling Ground Deformations EOSC 547: Tunnelling & Underground Design Topic 7: Ground Characteristic & Support Reaction Curves 1 of 35 Tunnelling Grad Class (2014) Dr. Erik Eberhardt Weak Rock - Controlling Ground Deformations To

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling

Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2006 Methods of Interpreting Ground Stress Based on Underground Stress Measurements and

More information

What Causes Rock to Deform?

What Causes Rock to Deform? Crustal Deformation Earth, Chapter 10 Chapter 10 Crustal Deformation What Causes Rock to Deform? Deformation is a general term that refers to all changes in the shape or position of a rock body in response

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Tensor character of pore pressure/stress coupling in reservoir depletion and injection

Tensor character of pore pressure/stress coupling in reservoir depletion and injection Tensor character of pore pressure/stress coupling in reservoir depletion and injection Müller, B., Altmann, J.B., Müller, T.M., Weißhardt, A., Shapiro, S., Schilling, F.R., Heidbach, O. Geophysical Institute

More information

Preface and Overview. Folded strata in the mountains of Italy (ca AD), Leonardo da Vinci

Preface and Overview. Folded strata in the mountains of Italy (ca AD), Leonardo da Vinci Preface and Overview Folded strata in the mountains of Italy (ca. 1500 AD), Leonardo da Vinci Models of Mountain Building and Associated Deformation as represented by G.P. Scrope Deformation Feature: Scales

More information

(Refer Slide Time: 01:15)

(Refer Slide Time: 01:15) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 56 Stability analysis of slopes II Welcome to lecture two on stability analysis of

More information

THE HETEROGENEOUS STRUCTURE OF FAULT ZONES WITHIN CARBONATE ROCKS: EVIDENCE FROM OUTCROP STUDIES AND IMPLICATIONS FOR FLUID FLOW

THE HETEROGENEOUS STRUCTURE OF FAULT ZONES WITHIN CARBONATE ROCKS: EVIDENCE FROM OUTCROP STUDIES AND IMPLICATIONS FOR FLUID FLOW THE HETEROGENEOUS STRUCTURE OF FAULT ZONES WITHIN CARBONATE ROCKS: EVIDENCE FROM OUTCROP STUDIES AND IMPLICATIONS FOR FLUID FLOW C.G. Bonson*, J.J. Walsh, C. Childs, M.P.J. Schöpfer & V. Carboni Fault

More information

STRAIN AND SCALING RELATIONSHIPS OF FAULTS AND VEINS AT KILVE, SOMERSET

STRAIN AND SCALING RELATIONSHIPS OF FAULTS AND VEINS AT KILVE, SOMERSET Read at the Annual Conference of the Ussher Society, January 1995 STRAIN AND SCALING RELATIONSHIPS OF FAULTS AND VEINS AT KILVE, SOMERSET M. O'N. BOWYER AND P. G. KELLY Bowyer, M. O'N. and Kelly, P.G.

More information

Faults, folds and mountain building

Faults, folds and mountain building Faults, folds and mountain building Mountain belts Deformation Orogens (Oro = Greek all changes for mountain, in size, shape, genesis orientation, = Greek for or formation) position of a rock mass Structural

More information

Lecture 7. Joints and Veins. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Lecture 7. Joints and Veins. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 7 Joints and Veins Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton; unless noted otherwise Joints Three sets of systematic joints controlling

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures

Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures ENRU LIU, SERAFEIM VLASTOS, and XIANG-YANG LI, Edinburgh

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

Stability Assessment of a Heavily Jointed Rock Slope using Limit Equilibrium and Finite Element Methods

Stability Assessment of a Heavily Jointed Rock Slope using Limit Equilibrium and Finite Element Methods Indian Geotechnical Conference 2017 GeoNEst 14-16 December 2017, IIT Guwahati, India Stability Assessment of a Heavily Jointed Rock Slope using Limit Equilibrium and Finite Element Methods Aswathi CK Amalesh

More information

friction friction a-b slow fast increases during sliding

friction friction a-b slow fast increases during sliding µ increases during sliding faster sliding --> stronger fault --> slows sliding leads to stable slip: no earthquakes can start velocity-strengthening friction slow fast µ velocity-strengthening friction

More information

Gas Shale Hydraulic Fracturing, Enhancement. Ahmad Ghassemi

Gas Shale Hydraulic Fracturing, Enhancement. Ahmad Ghassemi Gas Shale Hydraulic Fracturing, Stimulated Volume and Permeability Enhancement Ahmad Ghassemi Tight Gas A reservoir that cannot produce gas in economic quantities without massive fracture stimulation treatments

More information

Understanding hydraulic fracture variability through a penny shaped crack model for pre-rupture faults

Understanding hydraulic fracture variability through a penny shaped crack model for pre-rupture faults Penny shaped crack model for pre-rupture faults Understanding hydraulic fracture variability through a penny shaped crack model for pre-rupture faults David Cho, Gary F. Margrave, Shawn Maxwell and Mark

More information

The finite difference code (fully staggered grid) includes a marker-in-cell Lagrangian marker

The finite difference code (fully staggered grid) includes a marker-in-cell Lagrangian marker GSA Data Repository 2018289 Ruh et al., 2018, Shale-related minibasins atop a massive olistostrome in an active accretionary wedge setting: Two-dimensional numerical modeling applied to the Iranian Makran:

More information

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT *D.S. Subrahmanyam National Institute of Rock Mechanics, Bangalore

More information