Pegmatite Deposits. This text is based on the book of London (2008). Additional literature is listed in the references.

Size: px
Start display at page:

Download "Pegmatite Deposits. This text is based on the book of London (2008). Additional literature is listed in the references."

Transcription

1 Pegmatite Deposits This text is based on the book of London (2008). Additional literature is listed in the references. Definition: Pegmatites are often defined as very coarse-grained igneous rocks, usually of granitic composition, that tend to be enriched in normally rare elements such as lithium, beryllium, tantalum, and others. Indeed, most pegmatites have granitic composition but pegmatites of basic, intermediate or alkaline rocks are also well known. Therefore, it is recommended that a modifier such as granitic is used to state clearly what is the composition of the pegmatite under consideration. In addition, oregrade pegmatite bodies may contain very substantial amounts of minerals which are not present in granites or other igneous rocks (e.g., minerals of Li, Cs, Be, etc.) such that their composition deviates much from the composition of any common igneous rock. London (2008) provides a longer philosophical discussion of the deviations and exceptions from the definition of pegmatite. Geographic and age distribution: Essentially any igneous system can evolve into pegmatitic stage. That is not to say that every igneous system will have pegmatites but to indicate that pegmatites occur all around the world and were formed in all epochs of the evolution of Earth. Pegmatites occur on all continents, typically where orogenic roots were exposed and brought to the surface by exhumation and erosion. They range in their age from very old, for example the 3.5 billion years old (Archean) pegmatites in Kenya-Tanzania-Zimbabwe to young, 147 million years old (Jurassic) pegmatite near San Diego, California, USA. Ore-bearing pegmatites: Pegmatites which contain rare metals and valuable resources in an economically interesting amount of almost exclusively granitic pegmatites. Therefore, the following text will deal with granitic pegmatites only. The noted exception are the mafic pegmatitic rocks in the Bushveld complex which are enriched in platinum-group elements; these were described previously and will be not dealt with here. Pegmatite bodies often occur in metamorphic rocks; these are unzoned and hardly of any economic interest. They will be also neglected in the further text. Tectonic settings and geometry: Pegmatites, although they are close to granites in their composition, do not need to be hosted by granites. Actually, pegmatites commonly intrude the country rocks and form a variety of shapes. Segregations are sharply bounded pegmatite masses within their igneous rocks. They lack an intrusive contact and represent the last batches of the melt in the igneous system. A very common form are dikes and sills, with the usual geological meaning. These are tabular bodies, but pegmatite form rarely dikes or sills with a large length and width; size of several hundreds of meters can be regarded as large. Another form of occurrence are pods, lenticular or bulbous bodies. A transition from dikes or sills to pods is caused by the change in the rheology of the host rocks. Classification. Pegmatites (remember, we are dealing only with granitic pegmatites here) are important sources of valuable raw materials and are appealing as a geological and mineralogical enigma; last but not least, they are also sources of beautiful mineral specimens. Therefore, they attracted a significant attention which means that they have been classified in many different ways. A classification widely used today can be found in Černý and Ercit (2005) (see Fig. 1). Pegmatites are separated into classes with distinct formation P-T conditions and other features: (i) abyssal class. Pegmatites of this class are found in rocks of high metamorphic grade (amphibolite to granulite facies). Their textures are variable and may include some of the complex pegmatitic textures (e.g., graphic granite, see below)

2 (ii) muscovite class. Pegmatites of this class are typical for rocks with slightly lower P-T conditions than the abyssal class (cf. Fig. 1). Other than that, it is not quite clear what should be the clear separating point between the two classes. Pegmatites of this class are conformable with the host rocks and are thought to be generated locally by the anatexis (partial melting) of the high-grade metamorphic rocks. (iii) muscovite rare-element class. The pegmatites of this class are intrusive bodies which form a continuum from granite to rare-element pegmatites. (iv) rare-element class. These pegmatites intrude host rocks with the peak metamorphic conditions falling in the low-pressure portion of greenschist facies or amphibolites facies. This class is the most diverse in composition and the most important in terms of the economic usage of these rocks. (v) miarolitic class. This class is characterized by the presence of open cavities in the pegmatite. The cavities may remain open, be filled with clays, or lined with crystals. These pegmatites were probably emplaced in shallow depths. Fig. 1. Estimated P-T conditions of formation of different classes of pegmatites: AB = abyssal, MS = muscovite, RE = rare-element, MI = miarolitic. The stability field of the three Al 2 SiO 5 polymorphs are shown for an easier orientation in the P-T diagram. Simplified after London (2008, his Fig. 3-3). Furthermore, two pegmatite families are distinguished: 1. LCT family, where LCT stands for lithium, caesium, and tantalum. This assemblage of elements is found in highly evolved pegmatites in S-type granites. S-type granites are thought to originate by melting of sedimentary rocks rich in illite/muscovite. Additional elements which these pegmatites may contain are Be, B, F, P, Mn, Ga, Rb, Nb, Sn, and Hf. 2. NYF family, where NYF stands for niobium, yttrium, and fluorine. These elements are typical for pegmatites evolved from A-type granites, that is, anorogenic or within-plate granites. Additional elements in these pegmatites are heavy-rare earth elements, Be, Ti, Sc, and Zr. A common feature is the occurrence of amazonite, a green-colored Pb-bearing potassium feldspar. Internal anatomy of the pegmatite bodies: The anatomy and zonation of the pegmatites is of interest for the understanding of the processes which form these rocks but also in exploration and exploitation of the pegmatite bodies. Homogeneous bodies without zoning are common, especially if they are hosted by and associated with metamorphic rocks with high metamorphic grade. Lack of zoning does not mean, however, that such pegmatites are mineralogically and chemically simple and need not be further explored. Actually, the lithium-rich (spodumene-rich) pegmatites in North Carolina are unzoned but represent the largest lithium source which we have located so far.

3 Heterogeneous pegmatites do occur and several zones may be distinguished. As always in geology, we should understand that a single body has rarely all zones developed perfectly and in the expected sequence. Despite of that, these zones help us to describe the pegmatites, their geometry, textures, and mineralogy. (i) The border zone, if developed, is a thin (a few centimeters) contact zone between the pegmatite and the host rocks. The zone is fine-grained and is described as chilled margin. (ii) The wall zone is thicker (up to 1 meter) and coarser (1-3 cm) contact zone. Crystals of minerals (tourmaline, beryl, mica) may show preferred orientation, perpendicular to the contact with the host rock. (iii) The intermediate zones usually contain a single mineral (e.g., microcline, plagioclase, quartz, spodumene, petalite) in crystals of greater size (tens of centimeters). These zones are developed mostly in those portions of the pegmatite body where it reaches the greatest thickness. They tend to disappear when the body gets too thin. (iv) The core is the innermost unit of a pegmatite. Commonly, cores consist of quartz but cores of quartz plus other minerals are also abundant. (v) Fracture fillings mostly consist of quartz or other minerals which were remobilized from other zones. (vi) Replacement bodies can be recognized in some pegmatites. The other zones are purely descriptive but the term replacement bodies carries a genetic aspect. These portions of a pegmatite were previously formed by some other mineral and were replaced by the later fluids. The replacement processes may be highly selective, meaning that one mineral in an assemblage can be completely replaced by the mineral intergrown with it is left essentially untouched. Replacement can explain portions of pegmatites which are difficult to understand and model as igneous bodies. Generalized zoning sequence: From the margin of the pegmatites to the cores, a general zoning sequence can be written as: (1) Plagioclase quartz muscovite (2) Plagioclase quartz (3) Quartz plagioclase perthite +- muscovite +- biotite (4) Perthite quartz (5) Perthite quartz plagioclase amblygonite spodumene (6) Plagioclase quartz spodumene (7) Quartz spodumene (8) Lepidolite plagioclase quartz (9) Quartz microcline (10) Microcline plagioclase Li-rich micas quartz (11) Quartz This general zoning was later revised and other zoning models were proposed. For more details, see London (2008). Mineralogy of pegmatites: The primitive granitic pegmatites contain the common minerals as K- feldspar, plagioclase, quartz, and the micas muscovite and/or biotite. These minerals may be also mined from pegmatites but the rare minerals are of interest from the point of view of recovering rare elements which cannot be found elsewhere. The rarer but economically important pegmatite minerals are listed in Table 1. This table has been compiled from the text in London (2008) with a great amount of omissions and shortening. See that work for a more complete and much longer list of minerals.

4 Table 1. Minerals of pegmatites, omitting the very common minerals of the primitive pegmatites. From London (2008). mineral/group composition mineral/group composition lithium alumosilicates phosphates spodumene LiAlSi 2 O 6 monazite CePO 4 petalite LiAlSi 4 O 10 amblygonite LiAlPO 4 F tourmaline lithiophyllite LiMnPO 4 schorl NaFe 3 Al 6 (BO 3 ) 3 (OH) 4 Si 6 O 18 dravite NaMg 3 Al 6 (BO 3 ) 3 (OH) 4 Si 6 O 18 topaz Al 2 SiO 4 F 2 elbaite NaLi 1.5 Al 1.5 Al 6 (BO 3 ) 3 (OH) 4 Si 6 O 18 oxides garnets cassiterite SnO2 spessartine Mn 3 Al 2 (SiO 4 ) 3 columbite-tantalite (Mn,Fe)(Nb,Ta) 2 O 6 rutile TiO 2 beryl Be 3 Al 2 Si 6 O 18 uranitite UO 2 pollucite CsAlSi 2 O 6 zircon ZrSiO 4 Genetic model: Pegmatites are closely related to voluminous igneous rocks which originated by melting of pre-existing sediments or pre-existing igneous rocks. The sediments usually include greywackes and shales, the igneous rocks are more varied. These two precursors of granitic magmas and rocks can be distinguished based on the chemical and isotopic composition of the rocks. The metamorphism of pelitic rocks yields schists and gneisses, commonly rich in muscovite. Further increase in the P-T conditions may mean breakdown of muscovite and release of the water-rich fluid phase. Muscovite is the major reservoir of rare elements Li, Rb, Cs, Be, and Ba in such rocks. Therefore, not only water but also these elements are mobilized during high-metamorphic conditions. It is speculated that Ta originates from ilmenite (nominally FeTiO 3 ) which is also common in metapelites. Then, the complete suite of elements for the LCT pegmatites can be explained by melting of metapelitic source rocks. The sources of the A-type granites, which host and produce the NYF pegmatites, are not so well defined. The possible sources include gneissic rocks of the lower continental crust, basalts at the base of the continental crust, and the subcontinental mantle. The granitic magma, irrespective of where and how it is generated, will rise buoyantly through the sequences of neighboring rocks and be emplaced at higher structural levels of the crust. Upon cooling, granitic magmas expel water-rich fluids and the last batches of magma will eventually become watersaturated. The original silicate magma will be split into two fluids, one of the silicate-rich and the other one water-rich. These two fluids will exchange their components, not only between each other but also with the host rocks and their minerals. The distribution coefficients between the fluids and the minerals are known (see the slides below). In this process of exchange, the rest magmatic fluids will become so strongly enriched in rare elements that minerals of these elements can crystallize from the magma. Also, the low viscosity of the water-rich fluid or the water-saturated magma will allow for a faster distribution of chemical composition through the fluids and so possibly enable the growth of large to giant crystals. Exploration for pegmatites: An exploration project for rare-element pegmatites should begin with an examination of a regional geology map (see Selway et al. 2005). Rare-element pegmatites occur along large regional-scale faults in greenschist and amphibolite facies metamorphic terranes. The next step is to determine if the pluton is barren or fertile. Fertile granites have elevated rare element contents, Mg/Li ratio < 10, and Nb/Ta ratio < 8. They commonly contain blocky K-feldspar and green muscovite. Key fractionation indicators can be plotted on a map of the fertile granite pluton to determine the fractionation direction: presence of tourmaline, beryl, and ferrocolumbite; Mn content in garnet; Rb content in bulk K-feldspar; and Mg/Li and Nb/Ta ratios in bulk granite samples. Pegmatite dikes with the

5 most economic potential for Li-Cs-Ta deposits occur the greatest distance (up to 10 km) from the parent granite. Metasomatized host rocks are an indication of a nearby rare-element pegmatite. Metasomatic aureoles can be identified by their geochemistry: elevated Li, Rb, Cs, B, and F contents; and by their mineralogy: presence of tourmaline, (Rb, Cs)-enriched biotite, holmquistite, muscovite, and rarely garnet. Some discrimination diagrams which can reveal if a pegmatite field has potential for future exploration and exploitation (from Selway et al. 2005) are reproduced in the slides below. References Černý, P. 2005: The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons. In Rare-Element Geochemistry of ore Deposits (R. Linnen and I. Samson, eds.). Geological Association of Canada, Short Course Handbook 17, Černý, P., Ercit, T.S., 2005: The classification of granitic pegmatites revisited. Canadian Mineralogist 43, Guilbert, J.M., Park, C.F., Jr., 1986: The Geology of Ore Deposits. Pages London, D., 2008: Pegmatites. The Canadian Mineralogist, Special Publication 10. Selway, J.B., Breaks, F.W., Tindle, A.G., 2005: A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology 14, 1-30.

For personal use only

For personal use only EXPLORING FOR LCT PEGMATITES IN CANADA AND AUSTRALIA David Crook, Pioneer Resources Limited Nigel Brand, Geochemical Services AIG Presentation 15 August, 2016 1 Discussed granite fertility and LCT pegmatites;

More information

Rare metals in southeastern Manitoba: pegmatites from Bernic Lake and Rush Lake (parts of NTS 52L6) by T. Martins and P.D. Kremer

Rare metals in southeastern Manitoba: pegmatites from Bernic Lake and Rush Lake (parts of NTS 52L6) by T. Martins and P.D. Kremer GS-4 Rare metals in southeastern Manitoba: pegmatites from Bernic Lake and Rush Lake (parts of NTS 52L6) by T. Martins and P.D. Kremer Martins, T. and Kremer, P.D. 2012: Rare metals in southeastern Manitoba:

More information

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013 Igneous and Metamorphic Rock Forming Minerals Department of Geology Mr. Victor Tibane 1 SGM 210_2013 Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011

More information

Chapter 8 10/19/2012. Introduction. Metamorphism. and Metamorphic Rocks. Introduction. Introduction. The Agents of Metamorphism

Chapter 8 10/19/2012. Introduction. Metamorphism. and Metamorphic Rocks. Introduction. Introduction. The Agents of Metamorphism Chapter 8 Metamorphism Introduction Metamorphism - The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic rocks During

More information

Lab: Metamorphism: minerals, rocks and plate tectonics!

Lab: Metamorphism: minerals, rocks and plate tectonics! Introduction The Earth s crust is in a constant state of change. For example, plutonic igneous rocks are exposed at the surface through uplift and erosion. Many minerals within igneous rocks are unstable

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits

A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits Exploration and Mining Geology, Vol. 14, Nos. 1-4, pp. 1-30, 2005 2006 Canadian Institute of Mining, Metallurgy and Petroleum. All rights reserved. Printed in Canada. 0964-1823/00 $17.00 +.00 A Review

More information

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc.

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc. Chapter 8 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Metamorphism and dmetamorphic Rocks Tarbuck and Lutgens Chapter 8 Metamorphic Rocks What Is Metamorphism? Metamorphism means

More information

Rocks: Materials of the Solid Earth

Rocks: Materials of the Solid Earth 1 Rocks: Materials of the Solid Earth Presentation modified from: Instructor Resource Center on CD-ROM, Foundations of Earth Science,, 4 th Edition, Lutgens/Tarbuck, Rock Cycle Igneous Rocks Today 2 Rock

More information

CHAPTER 3.3: METAMORPHIC ROCKS

CHAPTER 3.3: METAMORPHIC ROCKS CHAPTER 3.3: METAMORPHIC ROCKS Introduction Metamorphism - the process of changes in texture and mineralogy of pre-existing rock due to changes in temperature and/or pressure. Metamorphic means change

More information

Introduction. Introduction. Chapter 7. Important Points: Metamorphism is driven by Earth s s internal heat

Introduction. Introduction. Chapter 7. Important Points: Metamorphism is driven by Earth s s internal heat Chapter 7 Metamorphism and Metamorphic Rocks Introduction Metamorphism - The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 4: IGNEOUS ROCKS Solids from Melts 2011 by W. H. Freeman and Company Chapter 4: Igneous Rocks: Solids from Melts 1 About Igneous Rocks Igneous

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Igneous Rocks and Intrusive Activity Chapter 3 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Characteristics

More information

GEOL FORENSIC GEOLOGY ROCK IDENTIFICATION

GEOL FORENSIC GEOLOGY ROCK IDENTIFICATION GEOL.2150 - FORENSIC GEOLOGY ROCK IDENTIFICATION Name I. Introduction There are three basic types of rocks - igneous, sedimentary, and metamorphic: Igneous. Igneous rocks have solidified from molten matter

More information

Lecture 5 Sedimentary rocks Recap+ continued. and Metamorphic rocks!

Lecture 5 Sedimentary rocks Recap+ continued. and Metamorphic rocks! Lecture 5 Sedimentary rocks Recap+ continued and Metamorphic rocks! Metamorphism Process that leads to changes in: Mineralogy Texture Sometimes chemical composition Metamorphic rocks are produced from

More information

Lab 6: Metamorphic Rocks

Lab 6: Metamorphic Rocks Introduction The Earth s crust is in a constant state of change. For example, plutonic igneous rocks are exposed at the surface through uplift and erosion. Many minerals within igneous rocks are unstable

More information

Igneous Rocks. Igneous Rocks. Genetic Classification of

Igneous Rocks. Igneous Rocks. Genetic Classification of Igneous Rocks Fig. 5.1 Genetic Classification of Igneous Rocks Intrusive: crystallized from slowly cooling magma intruded within the Earth s crust; e.g. granite, gabbro 1 Fig. 5.2 Genetic Classification

More information

Metamorphism: summary in haiku form

Metamorphism: summary in haiku form Metamorphism & Metamorphic Rocks Earth, Chapter 8 Metamorphism: summary in haiku form Shape-shifters in crust. Just add heat and/or pressure. Keep it solid please! What Is Metamorphism? Metamorphism means

More information

Metamorphism (means changed form

Metamorphism (means changed form Metamorphism (means changed form) is recrystallization without melting of a previously existing rock at depth in response to a change in the environment of temperature, pressure, and fluids. Common minerals

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

Engineering Geology. Metamorphic Rocks. Hussien Al - deeky

Engineering Geology. Metamorphic Rocks. Hussien Al - deeky Metamorphic Rocks Hussien Al - deeky 1 Definition Metamorphic rock is the result of the transformation of an existing rock type, the protolith (parent rock), in a process called metamorphism, which means

More information

Objectives of this Lab. Introduction. The Petrographic Microscope

Objectives of this Lab. Introduction. The Petrographic Microscope Geological Sciences 101 Lab #9 Introduction to Petrology Objectives of this Lab 1. Understand how the minerals and textures of rocks reflect the processes by which they were formed. 2. Understand how rocks

More information

"When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka

When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphosis "When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka Metamorphism The transformation of rock by temperature

More information

Petrogenetic classification of rare earth enriched pegmatites, with reference to their REE mineralogy and Australian occurrences

Petrogenetic classification of rare earth enriched pegmatites, with reference to their REE mineralogy and Australian occurrences Petrogenetic classification of rare earth enriched pegmatites, with reference to their REE mineralogy and Australian occurrences Marcus T. Sweetapple CSIRO Earth Science and Resource Engineering Granitic

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

Classification and Origin of Granites. A Multi-faceted Question

Classification and Origin of Granites. A Multi-faceted Question Classification and Origin of Granites A Multi-faceted Question What is a granite? IUGS classification Based on Modal Mineralogy Plutonic rock with less than 90% mafic minerals Alkali Granite Granite Quartz

More information

Igneous Rocks. Igneous Rocks - 1. Environment of Formation - Magma - Plutonic - rock that formed within the Earth. Intrusive - Earth s crust.

Igneous Rocks. Igneous Rocks - 1. Environment of Formation - Magma - Plutonic - rock that formed within the Earth. Intrusive - Earth s crust. Name: Date: Period: Minerals and Rocks The Physical Setting: Earth Science CLASS NOTES - Methods to classify igneous rocks: 1. Environment of Formation - Magma - Plutonic - rock that formed within the

More information

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks Name: Date: Igneous Rocks Igneous rocks form from the solidification of magma either below (intrusive igneous rocks) or above (extrusive igneous rocks) the Earth s surface. For example, the igneous rock

More information

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks EARTH SCIENCE Geology, the Environment and the Universe Chapter 5: Igneous Rocks CHAPTER 5 Igneous Rocks Section 5.1 What are igneous rocks? Section 5.2 Classification of Igneous Rocks Click a hyperlink

More information

REMINDER. MOVIE: Rocks that Originate Underground 5:41 to 12:40

REMINDER. MOVIE: Rocks that Originate Underground 5:41 to 12:40 REMINDER 2 chapters covered next week Sedimentary Rocks Soils and Weathering (first half) Learn vocabulary for both! Turn to Neighbor: Without using your book or notes, try to remember which te mineral

More information

Minerals Give Clues To Their Environment Of Formation. Also. Rocks: Mixtures of Minerals

Minerals Give Clues To Their Environment Of Formation. Also. Rocks: Mixtures of Minerals Minerals Give Clues To Their Environment Of Formation!!Can be a unique set of conditions to form a particular mineral or rock!!temperature and pressure determine conditions to form diamond or graphite

More information

Metamorphism / Metamorphic Rocks

Metamorphism / Metamorphic Rocks Metamorphism / Metamorphic Rocks Metamorphism: occurs when rocks are subjected to heat, pressure, and/or other environmental conditions - The rock remains a solid during this time period - Why Should You

More information

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Block: Igneous Rocks. From this list, select the terms which answer the following questions. Geology 12 Name: Mix and Match: Igneous Rocks Refer to the following list. Block: porphyritic volatiles mafic glassy magma mixing concordant discontinuous reaction series igneous vesicular partial melting

More information

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar Rocks A naturally occurring aggregate of one or more minerals (e.g., granite), or a body of non-crystalline material (e.g., obsidian glass), or of solid organic material (e.g., coal). Rock Cycle A sequence

More information

Lithogeochemistry of Pegmatites at Broken Hill: An Exploration Vector to Mineralisation

Lithogeochemistry of Pegmatites at Broken Hill: An Exploration Vector to Mineralisation Lithogeochemistry of Pegmatites at Broken Hill: An Exploration Vector to Mineralisation G. M. Coianiz* C. E. Torrey Exploris Pty Ltd Silver City Minerals Ltd 8 Gordon Street 80 Chandos Street Lismore NSW

More information

About Earth Materials

About Earth Materials Grotzinger Jordan Understanding Earth Sixth Edition Chapter 3: EARTH MATERIALS Minerals and Rocks 2011 by W. H. Freeman and Company About Earth Materials All Earth materials are composed of atoms bound

More information

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks Introduction Metamorphism The transformation of rocks, usually beneath Earth's surface, as the result of heat, pressure, and/or fluid activity, produces metamorphic rocks Metamorphism and Metamorphic Rocks

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the approximate density of a mineral with a mass of 262.2 grams that displaces 46 cubic centimeters of water? A) 6.1 g/cm 3 C) 1.8 g/cm 3 B) 5.7 g/cm 3 D) 12.2 g/cm 3 2) In which two Earth

More information

Practice Test Rocks and Minerals. Name. Page 1

Practice Test Rocks and Minerals. Name. Page 1 Name Practice Test Rocks and Minerals 1. Which rock would be the best source of the mineral garnet? A) basalt B) limestone C) schist D) slate 2. Which mineral is mined for its iron content? A) hematite

More information

Introduction to Geology Spring 2008

Introduction to Geology Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.001 Introduction to Geology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Regional metamorphism

More information

THE USE OF FRACTURE MINERALS TO DEFINE METASOMATIC AUREOLES AROUND RARE-METAL PEGMATITES

THE USE OF FRACTURE MINERALS TO DEFINE METASOMATIC AUREOLES AROUND RARE-METAL PEGMATITES THE USE OF FRACTURE MINERALS TO DEFINE METASOMATIC AUREOLES AROUND RARE-METAL PEGMATITES Robert L. Linnen 1, Carey Galeschuk 2 and Norman M. Halden 3 1 Department of Earth Sciences, Western University,

More information

Prof. Tejas S Patil Dept Of Geology M.J.College.

Prof. Tejas S Patil Dept Of Geology M.J.College. Prof. Tejas S Patil Dept Of Geology M.J.College. Metamorphic rocks When rocks are baked by heat of molten magma or squeezed by the movements of huge tectonic plates or by the pressure of overlying thick

More information

Big Island Field Trip

Big Island Field Trip Big Island Field Trip Space Still Available Group Airline Tickets May be available if enough people sign on If interested send email to Greg Ravizza Planning Meeting Next Week Will

More information

16. Metamorphic Rocks II (p )

16. Metamorphic Rocks II (p ) 16. Metamorphic Rocks II (p. 233-242) Causes of Metamorphism The two main processes that occur within a rock during metamorphism are: : physical processes like squeezing and crushing - caused by strong

More information

Metamorphism and Metamorphic Rocks

Metamorphism and Metamorphic Rocks Page 1 of 13 EENS 1110 Tulane University Physical Geology Prof. Stephen A. Nelson Metamorphism and Metamorphic Rocks This page last updated on 25-Sep-2017 Definition of Metamorphism The word "Metamorphism"

More information

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition Metamorphic Energy Flow Categories of Metamorphism Best, Chapter 10 Metamorphic processes are endothermic They absorb heat and mechanical energy Absorption of heat in orogenic belts Causes growth of mineral

More information

Imagine the first rock and the cycles that it has been through.

Imagine the first rock and the cycles that it has been through. A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one type of rocky material gets transformed into another The Rock Cycle Representation

More information

LAB 5: COMMON MINERALS IN IGNEOUS ROCKS

LAB 5: COMMON MINERALS IN IGNEOUS ROCKS EESC 2100: Mineralogy LAB 5: COMMON MINERALS IN IGNEOUS ROCKS Part 1: Minerals in Granitic Rocks Learning Objectives: Students will be able to identify the most common minerals in granitoids Students will

More information

Review - Unit 2 - Rocks and Minerals

Review - Unit 2 - Rocks and Minerals Review - Unit 2 - Rocks and Minerals Base your answers to questions 1 and 2 on the diagram below, which shows the results of three different physical tests, A, B, and C, that were performed on a mineral.

More information

METAMORPHIC ROCKS CHAPTER 8

METAMORPHIC ROCKS CHAPTER 8 Lecture 6 October 18, 20, 23 October 19, 24 METAMORPHIC ROCKS CHAPTER 8 This is only an outline of the lecture. You will need to go to class to fill in the outline, although much of the relevant information

More information

Rare and Unusual Minerals from the Petaca Pegmatite District of New Mexico. Michael N. Spilde, Brian L. Salem, Steve Dubyk and William P.

Rare and Unusual Minerals from the Petaca Pegmatite District of New Mexico. Michael N. Spilde, Brian L. Salem, Steve Dubyk and William P. Rare and Unusual Minerals from the Petaca Pegmatite District of New Mexico Michael N. Spilde, Brian L. Salem, Steve Dubyk and William P. Moats November 12, 2011 1 Why Study the Petaca District? Pegmatites

More information

Unit 2 Exam: Rocks & Minerals

Unit 2 Exam: Rocks & Minerals Name: Date: 1. Base your answer(s) to the following question(s) on the 2001 edition of the Earth Science Reference Tables, the map and cross section below, and your knowledge of Earth science. The shaded

More information

ENVI.2030L Geologic Time

ENVI.2030L Geologic Time Name ENVI.2030L Geologic Time I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt

More information

Metamorphism: Alteration of Rocks by Temperature and Pressure

Metamorphism: Alteration of Rocks by Temperature and Pressure CHAPTER 6 Metamorphism: Alteration of Rocks by Temperature and Pressure Chapter Summary Metamorphism is the alteration in the solid state of preexisting rocks, including older metamorphic rocks. Increases

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

RR#7 - Multiple Choice

RR#7 - Multiple Choice 1. Which mineral is mined for its iron content? 1) hematite 2) fluorite 3) galena 4) talc 2. Which rock is composed of the mineral halite that formed when seawater evaporated? 1) limestone 2) dolostone

More information

Student Name: College: Grade:

Student Name: College: Grade: Student Name: College: Grade: Physical Geology Laboratory IGNEOUS MINERALS AND ROCKS IDENTIFICATION - INTRODUCTION & PURPOSE: In this lab you will learn to identify igneous rocks in hand samples from their

More information

THE ROCK CYCLE & ROCKS. Subtitle

THE ROCK CYCLE & ROCKS. Subtitle THE ROCK CYCLE & ROCKS Subtitle 3. Three rocks that do not have minerals or are composed of nonmineral matter. Coal Pumuce Obsidian THE ROCK CYCLE Why do scientists study rocks? Rocks contain clues about

More information

Metamorphic Rocks. SWHS Geology

Metamorphic Rocks. SWHS Geology Metamorphic Rocks SWHS Geology What are they? From the greek roots meta (change) and morphos (form): Rocks that have been changed in form from the temperature, pressure, and fluids inside the earth. A

More information

Understanding Earth Fifth Edition

Understanding Earth Fifth Edition Understanding Earth Fifth Edition Grotzinger Jordan Press Siever Chapter 6: METAMORPHISM Modification of Rocks by Temperature and Pressure Lecturer: H Mohammadzadeh Assistant professors, Department of

More information

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS Learning outcomes The student is able to: 1. understand and identify rocks 2. understand and identify parent materials 3. recognize

More information

PHY120AExam questions 0.5 points each; 19 True/False, 31 Multiple Choice

PHY120AExam questions 0.5 points each; 19 True/False, 31 Multiple Choice 1 PHY120AExam 1 2018 50 questions 0.5 points each; 19 True/False, 31 Multiple Choice True/False Indicate whether the statement is true or false. F 1. The distribution of volcanoes is random.. F 2. The

More information

A Rock is A group of minerals that have been put together in several different ways.

A Rock is A group of minerals that have been put together in several different ways. A Rock is A group of minerals that have been put together in several different ways. Depending on how they are put together, rocks are classified as: 1. Sedimentary 2. Igneous 3. Metamorphic Sedimentary

More information

Lithogeochemistry Constraints on Assimilation and Fractional Crystallization Processes in the South Mountain Batholith, Nova Scotia

Lithogeochemistry Constraints on Assimilation and Fractional Crystallization Processes in the South Mountain Batholith, Nova Scotia Lithogeochemistry Constraints on Assimilation and Fractional Crystallization Processes in the South Mountain Batholith, Nova Scotia Michael Whitbread, iogeochemistry iogeochemistry,, Brisbane, Queensland,

More information

Types of Metamorphism!

Types of Metamorphism! Types of Metamorphism! The Types of Metamorphism 2 different approaches to classification 1. Based on principal process or agent Dynamic Metamorphism Thermal Metamorphism Dynamo-thermal Metamorphism The

More information

Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals

Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals Student Name: College: Grade: Physical Geology 101 Laboratory MINERALS II Silicate and Carbonate Rock-Forming Minerals I. INTRODUCTION: The purpose of this lab is you will improve your mineral identification

More information

Metamorphic Petrology GLY 262 P-T-t paths

Metamorphic Petrology GLY 262 P-T-t paths Metamorphic Petrology GLY 262 P-T-t paths Pressure-Temperature-Time (P-T-t) Paths The complete set of T-P conditions that a rock may experience during a metamorphic cycle from burial to metamorphism (and

More information

ZONED PEGMATITES OF THE MICANITE DISTRICT FREMONT & PARK COUNTIES, COLORADO

ZONED PEGMATITES OF THE MICANITE DISTRICT FREMONT & PARK COUNTIES, COLORADO ZONED PEGMATITES OF THE MICANITE DISTRICT FREMONT & PARK COUNTIES, COLORADO By Andy Weinzapfel INTRODUCTION The below article is based on library research and field work conducted during 2007. The Micanite

More information

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire UNIT 3 EXAM ROCKS AND MINERALS NAME: BLOCK: DATE: 1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire FRANCONIA, N.H. Crowds

More information

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Metamorphism What happens to rocks that are

More information

Lecture 6 - Igneous Rocks and Volcanoes

Lecture 6 - Igneous Rocks and Volcanoes Lecture 6 - Igneous Rocks and Volcanoes Learning objectives Understand and be able to predict where and why magma will be forming at different tectonic settings Understand the factors controlling magma

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

GEOL Lab 11 (Metamorphic Rocks in Hand Sample and Thin Section)

GEOL Lab 11 (Metamorphic Rocks in Hand Sample and Thin Section) GEOL 333 - Lab 11 (Metamorphic Rocks in Hand Sample and Thin Section) Introduction - Metamorphic rock forms from any pre-existing rock that undergoes changes due to intense heat and pressure without melting.

More information

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals.

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals. Skills Worksheet Directed Reading Section: Rocks and the Rock Cycle 1. The solid part of Earth is made up of material called a. glacial ice. b. lava. c. rock. d. wood. 2. Rock can be a collection of one

More information

Earth Science Chapter 6 Rocks

Earth Science Chapter 6 Rocks Earth Science Chapter 6 Rocks I. Rocks and the Rock Cycle * Material that makes up the solid part of the Earth. * Made of a variety of different combinations of minerals and organic matter. A. Three Major

More information

Grade 7 Science Revision Sheet for third term final exam

Grade 7 Science Revision Sheet for third term final exam Grade 7 Science Revision Sheet for third term final exam Material for the final exam : 1- Chapter 4 sections 1+2+3+4 [rock cycle + igneous rocks + sedimentary rocks + metamorphic rocks ] pages from the

More information

The Nature of Igneous Rocks

The Nature of Igneous Rocks The Nature of Igneous Rocks Form from Magma Hot, partially molten mixture of solid liquid and gas Mineral crystals form in the magma making a crystal slush Gases - H 2 O, CO 2, etc. - are dissolved in

More information

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4

EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Name: EPS 50 Lab 2: Igneous Rocks Grotzinger and Jordan, Chapter 4 Introduction In the previous lab, we learned about mineral characteristics, properties and identities as well as the three basic rock

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Igneous Rocks What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. extrusive igneous rock intrusive

More information

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle Bell Ringer Name the 3 types of rock. Is one type of rock able to change into a different

More information

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? Name: 1) Which diagram best shows the grain size of some common sedimentary rocks? 1663-1 - Page 1 5) The flowchart below illustrates the change from melted rock to basalt. 2) Which processes most likely

More information

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Rocks Rock- A group of minerals, glass, mineroid bound together in some way. Rocks Rock- A group of minerals, glass, mineroid bound together in some way. All rocks fit into one of three categories: Igneous- formed by the cooling and hardening of hot molten rock Sedimentary- formed

More information

GY 112 Lecture Notes Archean Geology

GY 112 Lecture Notes Archean Geology GY 112 Lecture Notes D. Haywick (2006) 1 GY 112 Lecture Notes Archean Geology Lecture Goals: A) Time frame (the Archean and earlier) B) Rocks and tectonic elements (shield/platform/craton) C) Tectonics

More information

Hafeet mountain. Rocks

Hafeet mountain. Rocks Hafeet mountain Rocks There are several steps that lead to form the rocks Weathering Erosion Deposition Heat and pressure Weathering Ice (expand inside the rock fractures) Plants (grows through fractures

More information

Rocks. 3.1 The Rock Cycle. 3.1 The Rock Cycle. 3.1 The Rock Cycle. The Rock Cycle. I. Rocks

Rocks. 3.1 The Rock Cycle. 3.1 The Rock Cycle. 3.1 The Rock Cycle. The Rock Cycle. I. Rocks Rocks Tarbuck Lutgens 3.1 The Rock Cycle 3.1 The Rock Cycle I. Rocks Rocks are any solid mass of mineral or mineral-like matter occurring naturally as part of our planet. Types of Rocks 1. Igneous rock

More information

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle Chapter 10 Rocks 1 Chapter 10 Section 1 Rocks and the Rock Cycle 2 10.1 Rocks and the Rock Cycle Magma is the parent material for all rocks. Once the magma cools and hardens, many changes can occur. Geology:

More information

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex Archean Terranes Archean Rocks Chapter 15A >2.5 Gy old Younger supracrustal sequences Greenstone belts Calc-alkaline metavolcanic rocks Older gneiss complexes Quartzo-feldspathic rocks Tonalites and migmatites

More information

Announcements. Homework 2 due today Reading: p LMI

Announcements. Homework 2 due today Reading: p LMI Announcements Homework 2 due today Reading: p.219-241 LMI The many shapes and sizes of igneous intrusions plutons Concordant and discordant intrusions Note scale in future slides! From Winter, Intro to

More information

Magmatic Ore Deposits:

Magmatic Ore Deposits: Magmatic Ore Deposits: A number of processes that occur during cooling and crystallization of magmatic bodies can lead to the separation and concentration of minerals. 1- Pegmatites 2- Layered intrusions

More information

Factors cause Metamorphism:

Factors cause Metamorphism: Metamorphic Rocks: A rock whose original mineralogy, texture and/or composition has changed due to pressure, temperature and/or fluids. It can be formed from igneous, sedimentary, or previously metamorphosed

More information

Table 7.1 Mineralogy of metamorphic rocks related to protolith and grade

Table 7.1 Mineralogy of metamorphic rocks related to protolith and grade Geology 101 Name(s): Lab 7: Metamorphic rocks Metamorphic rocks have been subjected to sufficient heat and/or pressure to melt some of their constituent minerals, but not all of them. As a result of this

More information

Name. GEOL.3250 Geology for Engineers Igneous Rocks

Name. GEOL.3250 Geology for Engineers Igneous Rocks Name GEOL.3250 Geology for Engineers Igneous Rocks I. Introduction The bulk of the earth's crust is composed of relatively few minerals. These can be mixed together, however, to give an endless variety

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 3 Rocks 3.1 The Rock Cycle Rocks Rocks are any solid mass of mineral or mineral-like matter occurring naturally as part of our planet. Types of Rocks

More information

Introduction to Prospecting. Session Two Geology

Introduction to Prospecting. Session Two Geology Introduction to Prospecting Session Two Geology The Earth Earth is 4.6 billion years old (Ba). Bacteria & algae +3.5 Ba. Microscopic animals ~2 Ba. Animals ~600 million years (Ma) old. Mankind about 100,000

More information

LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING

LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING ZOZULYA DMITRY 1, EBY NELSON 2 1 - Geological Institute Kola Science Centre RAS, Apatity, Russia 2 - Department of Environmental,

More information

Engineering Geology ECIV 3302

Engineering Geology ECIV 3302 Engineering Geology ECIV 3302 Instructor : Dr. Jehad Hamad 2019-2018 Chapter (7) Metamorphic Rocks Chapter 7 Metamorphism and Metamorphic Rocks Metamorphism The transition of one rock into another by temperatures

More information

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D 1. A student obtains a cup of quartz sand from a beach. A saltwater solution is poured into the sand and allowed to evaporate. The mineral residue from the saltwater solution cements the sand grains together,

More information

ד"ר חנן גינת ד"ר ירון פינצי

דר חנן גינת דר ירון פינצי Geology The rock cycle Earth materials and their stories Experiments in the lab and working with rock kits (in school) Plate Tectonics The Dynamic Earth The story of fossils The Geological History of the

More information