Geomorphology: Mechanics and Evolution of Landscapes (GES )

Size: px
Start display at page:

Download "Geomorphology: Mechanics and Evolution of Landscapes (GES )"

Transcription

1 Geomorphology: Mechanics and Evolution of Landscapes (GES ) Instructor: Itai Haviv, room 331, building 58, office hours: Tuesday 11:15-13:15 Teaching assistant: May-Tal Sadeh, Room 127, building 58, office hours: Wednesday 09:00-11:00 Your info inputs: -Degree, Year, Department -background in Math, Physics, Geomorphology -software experience (Excel, Matlab, ArcGIS)

2 Geomorphology: Mechanics and Evolution of Landscapes (GES ) Course focus Process geomorphology: more emphasis on Why and How? Less on Where and When? Hillslopes, alluvial rivers, sediment transport, bedrock channels, hydrology, glaciers. Assignments and grading Labs and problem sets 30% Field work reports 20% Critical review 10% Exam 40% ALL MANDATORY! Field trips: Sunday Sunday During the field trip weeks Labs will be held on Thursday from 17:00 to 19:00

3 Geomorphology: Mechanics and Evolution of Landscapes (GES ) Textbook: Geomorphology: The mechanics and chemistry of landscapes, Anderson and Anderson, Cambridge University Press, 2010 Course material s will be posted in Highlearn

4 Why study geomorphology? Grand challenges in earth surface processes USA National Research Council, 2010 Landscapes on the Edge: New Horizons for Research on Earth's Surface

5 Landscapes are the interface for lithosphere-atmosphere interactions

6

7

8 Molnar, 2004

9 Interacting processes

10 Guiding principles Conservation (of mass, energy, momentum) Transport Rules (flow of water and ice, transport of sediment, etc) Event Size, Frequency and Duration (storms, floods, climate variations, etc)

11 An exiting era for GeomorphologyNew frontiers 1. New geochronologic methods 2. Highly improved computational efficiency 3. Wide spread availability of high resolutions datasets including satellite imagery and Digital Elevation Models (DEM s). The ability to measure and quantify geomorphic features on all scales. 4. Data on extra-terrestrial landscapes

12 LIDAR (Light Detection and Ranging)

13 An exiting era for GeomorphologyNew frontiers 1. New geochronologic methods 2. Highly improved computational efficiency 3. Wide spread availability of high resolutions datasets including satellite imagery and Digital Elevation Models (DEM s). The ability to measure and quantify geomorphic features on all scales. 4. Data on extra-terrestrial landscapes

14

15 1 reconstruct Earth s past in increasing detail including aspects of its geochemistry, biotic processes, topography, and particle and solute fluxes.

16 2

17 2

18 2

19 2 Perron et al., 2009, Nature

20 3 Hasbergen and Paola, Geology

21 Hasbergen and Paola, Geology

22 Lave and Avouac, 2001, JGR

23 Are long-term exhumation rates correlated with monsoon precipitation? Bookhagen and Burbank, 2006

24

25 Egholm et al., 2009, Nature

26 Topography Key questions Horizontal strain Steady state topographic profiles Steady state erosion rate x8 rainfall Stolar, Roe and Willett, 2007 (JGR) Rainfall intensity 3. Are long-term exhumation rates correlated with monsoon precipitation? Hodges, 2006

27 Whipple (2009), Nature modified from Willett (1999), JGR

28 Tree throw Gophers burrowing Gabet et al., 2003

29 Roering (2008)

30 Early concepts and prominent figures Grove Karl Gilbert ( , USGS director): The geology of the Henry mountains. Equality of action and dynamic equilibrium, graded rivers Lake Bonneville, discovered crustal flexure due to isostatic rebound and calculated mantle viscosity The convexity of Hilltops 1914 The transportation of debris by running water. Created a flume, modeled transport. Balanced force and resistance. Gilbert, 1909

31 Early concepts and prominent figures William Morris Davis ( , Harvard Professor): 1899 The geographical cycle The erosion cycle: Mountains evolve to peneplains. Structure, Process and Time dictate landscape evolution. Historical approach. Used evolution to explain natural cycles of landscapes. Assumed rapid (instantaneous) uplift. Davis, 1899

32

33 Early concepts and prominent figures Walther Penck ( , Austrian) Morphological Analysis of Landforms (in German) (English version)

34

35

36

Down-stream process transition (f (q s ) = 1)

Down-stream process transition (f (q s ) = 1) Down-stream process transition (f (q s ) = 1) Detachment Limited S d >> S t Transport Limited Channel Gradient (m/m) 10-1 Stochastic Variation { Detachment Limited Equilibrium Slope S d = k sd A -θ d S

More information

Intro to Geomorphology Key Concepts

Intro to Geomorphology Key Concepts Intro to Geomorphology Key Concepts Geomorphology Literally means the study of earth landforms - Geo = Earth - Morph=Form - Logos= Study of Involves understanding of - Mineralogy - Structure - Tectonics

More information

Environmental Science EES B02H3 PRINCIPLES OF GEOMORPHOLOGY

Environmental Science EES B02H3 PRINCIPLES OF GEOMORPHOLOGY THE UNIVERSITY of TORONTO at SCARBOROUGH January, 2009 Department of Physical & Environmental Sciences Environmental Science EES B02H3 PRINCIPLES OF GEOMORPHOLOGY The earth s surface form and its dynamic

More information

Topographic metrics and bedrock channels Outline of this lecture

Topographic metrics and bedrock channels Outline of this lecture Topographic metrics and bedrock channels Outline of this lecture Topographic metrics Fluvial scaling and slope-area relationships Channel steepness sensitivity to rock uplift Advancing understanding of

More information

THE UNIVERSITY of TORONTO at SCARBOROUGH January, 2010 Department of Physical & Environmental Sciences

THE UNIVERSITY of TORONTO at SCARBOROUGH January, 2010 Department of Physical & Environmental Sciences THE UNIVERSITY of TORONTO at SCARBOROUGH January, 2010 Department of Physical & Environmental Sciences Environmental Science EES B02H3 PRINCIPLES OF GEOMORPHOLOGY The earth s surface form and its dynamic

More information

Breakout Session III Evolving landscapes and global environmental change

Breakout Session III Evolving landscapes and global environmental change Breakout Session III Evolving landscapes and global environmental change 1. Hydrology and critical zone imaging 2. Glaciology: Instrumenting glaciers and ice sheets 3. Polar networks and glacial isostatic

More information

Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal

Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal Martina Böhme Institute of Geology, University of Mining and Technology, Freiberg, Germany Abstract.

More information

Landscape Development

Landscape Development CHAPTER 22 Landscape Development Chapter Summary Landscapes are described in terms of their topography: elevation, the altitude of the surface of the Earth above sea level; relief, the difference between

More information

GEOL151 Fall 2016: Lab for Week #7 Drainage Basins: Following a River from Source to Sink

GEOL151 Fall 2016: Lab for Week #7 Drainage Basins: Following a River from Source to Sink GEOL151 Fall 2016: Lab for Week #7 Drainage Basins: Following a River from Source to Sink Overview As we enter the middle of the course, we move into more synthetic topics and strive to gain an understanding

More information

ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS

ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS The Association of Professional Engineers and Geoscientists of the Province of British Columbia Note: 1. This Syllabus May Be Subject To Change 2. These Courses

More information

Drainage Basin Geomorphology. Nick Odoni s Slope Profile Model

Drainage Basin Geomorphology. Nick Odoni s Slope Profile Model Drainage Basin Geomorphology Nick Odoni s Slope Profile Model Odoni s Slope Profile Model This model is based on solving the mass balance (sediment budget) equation for a hillslope profile This is achieved

More information

Geomorphology LAB FAULT-SCARP DEGRADATION

Geomorphology LAB FAULT-SCARP DEGRADATION Geomorphology LAB FAULT-SCARP DEGRADATION Nicholas Pinter (University of California, Davis) Supplies Needed calculator straight-edge ruler PURPOSE The evolution of the Earth s surface over time is governed

More information

ENVIRONMENT AND NATURAL RESOURCES 3700 Introduction to Spatial Information for Environment and Natural Resources. (2 Credit Hours) Semester Syllabus

ENVIRONMENT AND NATURAL RESOURCES 3700 Introduction to Spatial Information for Environment and Natural Resources. (2 Credit Hours) Semester Syllabus ENVIRONMENT AND NATURAL RESOURCES 3700 Introduction to Spatial Information for Environment and Natural Resources COURSE INSTRUCTOR: Dr. Kris Jaeger Assistant Professor 359 Kottman Hall (Mondays and Tuesdays)

More information

Effects of transient topography and drainage basin evolution on detrital thermochronometer data

Effects of transient topography and drainage basin evolution on detrital thermochronometer data UNIVERSITY OF MICHIGAN Effects of transient topography and drainage basin evolution on detrital thermochronometer data Contents Acknowledgments...3 Abstract...4 1. Introduction...5 2. Model setup...6 2.1

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer GEOMORPHOLOGY Rivers split as mountains grow Citation for published version: Attal, M 2009, 'GEOMORPHOLOGY Rivers split as mountains grow' Nature Geoscience, vol. 2, no. 11,

More information

1 Project Summary. 2 Background

1 Project Summary. 2 Background Student: Lindsay Olinde Course: CE 394K..3 GIS in Water Resources UT Austin Professor: Dr. David Maidment Submitted: December 3, 2010 Investigation into whether differences in channel slope characteristicss

More information

GSA DATA REPOSITORY Sternai et al. 1. Algorithm Flow Chart

GSA DATA REPOSITORY Sternai et al. 1. Algorithm Flow Chart GSA DATA REPOSITORY 2012311 Sternai et al. 1. Algorithm Flow Chart Figure DR1: Flow chart of the algorithm to further clarify the calculation scheme. 2. Reconstruction of the Pre-Glacial Alpine Topography

More information

PHYSICAL GEOLOGY Geology 110 Spring Semester, 2018 Syllabus

PHYSICAL GEOLOGY Geology 110 Spring Semester, 2018 Syllabus James Madison University Dept of Geology & Environmental Science PHYSICAL GEOLOGY Geology 110 Spring Semester, 2018 Syllabus Instructor: Dr. L. Scott Eaton Office: Memorial Hall 7305E E-mail: eatonls@jmu.edu

More information

GEOL151 Fall 2016: Lab for Week #9 Glacial Erosion, Sediment Transport, and Deposition in the Champlain Valley

GEOL151 Fall 2016: Lab for Week #9 Glacial Erosion, Sediment Transport, and Deposition in the Champlain Valley GEOL151 Fall 2016: Lab for Week #9 Glacial Erosion, Sediment Transport, and Deposition in the Champlain Valley Overview This week, we will delve into glacial processes and landforms. Glaciers are generally

More information

The syllabus was approved by Study programmes board, Faculty of Science on to be valid from , autumn semester 2016.

The syllabus was approved by Study programmes board, Faculty of Science on to be valid from , autumn semester 2016. Faculty of Science GEON05, Quaternary Geology: Glacial Sedimentology - Processes, Sediments and Landform Systems, 15 credits Kvartärgeologi: Glacial sedimentologi - processer, sediment och landformssystem,

More information

topography half is commonly represented in maps, and how it interacts with

topography half is commonly represented in maps, and how it interacts with Topography T. Perron 12.001 We ll spend a large fraction of the second half of the course discussing Earth s surface. Today we ll do two things: First, we ll discuss the ways topography is commonly represented

More information

Mountain Environments

Mountain Environments Freshman Seminar Mountain Environments Geography 050, Section 001 Spring 2008 Stephen J. Walsh, Professor Department of Geography Mondays: 3:00-5:30 pm; Murphy Hall Room 202 (919) 962-3867 (voice), (919)

More information

GEOLOGY (GEOL) Geology (GEOL) 1. GEOL 118 Societal Issues in Earth Science (4 crs)

GEOLOGY (GEOL) Geology (GEOL) 1. GEOL 118 Societal Issues in Earth Science (4 crs) Geology (GEOL) 1 GEOLOGY (GEOL) GEOL 102 Oceanography (3 crs) Survey of the world oceans with emphasis on geologic processes. Also includes chemical, physical, and biological aspects of the sea. Investigates

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Sensitivity of channel profiles to precipitation properties in mountain ranges

Sensitivity of channel profiles to precipitation properties in mountain ranges JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2004jf000164, 2006 Sensitivity of channel profiles to precipitation properties in mountain ranges Shiliang Wu, 1 Rafael L. Bras, 2 and Ana P. Barros

More information

Section 11.1 pp Where Mountains Form

Section 11.1 pp Where Mountains Form Section 11.1 pp. 236 237 Where Mountains Form Chapter 11 Set a Purpose: TE, p. 236 Reading Study Guide, p. 36 Discussion: TE, p. 236 Differentiating ion Reading Support: TE, p. 236 Visual Teaching Interpret

More information

Supplementary material

Supplementary material GSA DATA REPOSITORY2014088 Supplementary material Dominance of tectonics over climate in Himalayan denudation Vincent Godard, Didier L. Bourlès, Françoise Spinabella, Douglas W. Burbank, Bodo Bookhagen,

More information

School Program Name: Name of Sanctuary: Grade Level: Grades 6 8 Location Options: Time:

School Program Name: Name of Sanctuary: Grade Level: Grades 6 8 Location Options: Time: School Program Name: Name of Sanctuary: Grade Level: Grades 6 8 Location Options: Time: For more info: Landforms of New England Moose Hill Wildlife Sanctuary At the sanctuary 2 hours or combine with another

More information

ESCI 110: 2 s.h. Introduction to Earth Sciences Programs ESCI 322: 3 s.h. Environmental Hydrology ESCI 241: 4 s.h. Meteorology (G2, L)

ESCI 110: 2 s.h. Introduction to Earth Sciences Programs ESCI 322: 3 s.h. Environmental Hydrology ESCI 241: 4 s.h. Meteorology (G2, L) ESCI 110: 2 s.h. Introduction to Earth Sciences Programs General introduction to each of the earth sciences disciplines and to college life. 2 hrs. lec. Offered in fall. Restricted to earth sciences majors.

More information

Geography 3334a - Geomorphology of River Channels

Geography 3334a - Geomorphology of River Channels THE UNIVERSITY OF WESTERN ONTARIO DEPARTMENT OF GEOGRAPHY Fall 2009 Geography 3334a - Geomorphology of River Channels Class Times Lecture: Tues. 8:30 a.m.- 10:30 a.m. SSC 3102 Lab: Thurs 8:30 a.m.- 10:30

More information

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT STREAM CLASSIFICATION & RIVER ASSESSMENT Greg Babbit Graduate Research Assistant Dept. Forestry, Wildlife & Fisheries Seneca Creek, Monongahela National Forest, West Virginia OBJECTIVES Introduce basic

More information

Week 3 (Feb 12): Erosion and Sediment Transport Discussion Leader: Ariel Deutsch

Week 3 (Feb 12): Erosion and Sediment Transport Discussion Leader: Ariel Deutsch Week 3 (Feb 12): Erosion and Sediment Transport Discussion Leader: Ariel Deutsch The papers this week explore the topics of erosion and sediment transport, with a major theme revolving around climate-tectonic

More information

Dougherty County School System 6 th Grade Earth Science Curriculum Matrix

Dougherty County School System 6 th Grade Earth Science Curriculum Matrix First Nine Weeks S6E5. Students will investigate the scientific view of how the earth s surface is formed. Week Number Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Standard(s) Scientific Method, Science

More information

UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy. Photo by: Josh Roering

UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy. Photo by: Josh Roering UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy Photo by: Josh Roering Photo: Eric Bilderback Photo by: Josh Roering Goal 1. Reconstruct the paleo-landscape

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

Goals of Today s Lecture. Types of landscapes

Goals of Today s Lecture. Types of landscapes Goals of Today s Lecture 1. Breifly discuss mass continuity as applied to the landscape. 2. Establish the mechanisms that drive U (uplift rate) 3. Examine the linkages between the uplift of mountains,

More information

Course Description. Course Objectives and Standards

Course Description. Course Objectives and Standards Earth and Space Science Curriculum Course Description Earth and Space Science 1 State # 3044 Grades offered: 10-12 Credits: A two credit course Prerequisite: none Counts as a Science Course for the General,

More information

Fresh Water: Streams, Lakes Groundwater & Wetlands

Fresh Water: Streams, Lakes Groundwater & Wetlands Fresh Water:, Lakes Groundwater & Wetlands Oct 27 Glaciers and Ice Ages Chp 13 Nov 3 Deserts and Wind and EXAM #3 Slope hydrologic cycle P = precip I = precip intercepted by veg ET = evapotranspiration

More information

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece Floodplain modeling Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece Scientific Staff: Dr Carmen Maftei, Professor, Civil Engineering Dept. Dr Konstantinos

More information

Earth Science. Explain how Earth's biogeochemical cycles create a balance of materials. Examine the importance of biogeochemical cycles.

Earth Science. Explain how Earth's biogeochemical cycles create a balance of materials. Examine the importance of biogeochemical cycles. Unit 1: DYNAMIC STRUCTURE OF EARTH Introduction to Understand that earth science is based upon the four sciences of astronomy, geology, meteorology, and oceanography. Identify topics studied within the

More information

GIS and Forest Engineering Applications FE 257 Lecture and laboratory, 3 credits

GIS and Forest Engineering Applications FE 257 Lecture and laboratory, 3 credits GIS and Forest Engineering Applications FE 257 Lecture and laboratory, 3 credits Instructor: Michael Wing Associate Professor Forest Engineering, Resources, and Management Oregon State University Crop

More information

SYLLABUS. 1. Course description. Environmental Sciences. Physical, Chemical and Natural Systems Year: ECTS credits: 4.5.

SYLLABUS. 1. Course description. Environmental Sciences. Physical, Chemical and Natural Systems Year: ECTS credits: 4.5. 1. Course description Degree: Environmental Sciences Course: Natural Hazards Department: Physical, Chemical and Natural Systems Year: 2017-18 Term: Fall ECTS credits: 4.5 Course: 3 rd year Type: Basic

More information

Using Earthscope and B4 LiDAR data to analyze Southern California s active faults

Using Earthscope and B4 LiDAR data to analyze Southern California s active faults Using Earthscope and B4 LiDAR data to analyze Southern California s active faults Exercise 8: Simple landscape morphometry and stream network delineation Introduction This exercise covers sample activities

More information

GLG101: What-To-Know List

GLG101: What-To-Know List Exam 3, Page 1 GLG101: What-To-Know List (Derived from Before You Leave This Page Lists) This list is intended to guide your reading and to help you prepare for the online multiple-choice quizzes. Each

More information

FOREST RESEARCH INSTITUTE, DEHRADUN

FOREST RESEARCH INSTITUTE, DEHRADUN PROJECT REPORT DRAINAGE AND REPLENISHMENT STUDY OF MINED AREA OF GANGA SHYAMPUR RIVER HARIDWAR Submitted to UTTARAKHAND FOREST DEVELOPMENT CORPORATION (UFDC) 73, Nehru Road, Deharadun Prepared&Submitted

More information

correlated to the California Science Content Standards Grade 6

correlated to the California Science Content Standards Grade 6 correlated to the California Science Content s Grade 6 Publisher: McDougal Littell Program Title: McDougal Littell California Middle School Science Series Print Components Pupil Edition, Teacher s Edition,

More information

Sensitivity of orographic precipitation to evolving topography

Sensitivity of orographic precipitation to evolving topography 1 2 3 4 5 6 Sensitivity of orographic precipitation to evolving topography Joseph Galewsky Department of Earth and Planetary Sciences University of New Mexico Albuquerque, NM, 87131 galewsky@unm.edu 7

More information

A Temporal Hydrologic Database for Rapidly Changing Landscapes

A Temporal Hydrologic Database for Rapidly Changing Landscapes A Temporal Hydrologic Database for Rapidly Changing Landscapes Using Mt. St. Helens in Washington as a Pilot Site Adam Mosbrucker Geog 575 BACKGROUND: Client / User U.S. Geological Survey Cascades Volcano

More information

GIS feature extraction tools in diverse landscapes

GIS feature extraction tools in diverse landscapes CE 394K.3 GIS in Water Resources GIS feature extraction tools in diverse landscapes Final Project Anna G. Kladzyk M.S. Candidate, Expected 2015 Department of Environmental and Water Resources Engineering

More information

Application of GIS Technology in Reach- Scale Channel Migration Zone Mapping: Yellowstone River, Montana

Application of GIS Technology in Reach- Scale Channel Migration Zone Mapping: Yellowstone River, Montana Application of GIS Technology in Reach- Scale Channel Migration Zone Mapping: Yellowstone River, Montana Karin Boyd Applied Geomorphology, Inc. Bozeman, MT Tony Thatcher DTM Consulting, Inc Bozeman, MT

More information

GEOLOGY 10 De Anza College

GEOLOGY 10 De Anza College GEOLOGY 10 De Anza College Marek Cichanski Office: S-1a Sections 01,02,03 Office hours: M thru Th :30-10:20am; other times by appt. Office phone: (40) 4-4 CLASS WEBSITE: TEXTBOOKS & MATERIALS Lectures:

More information

Did Fluvial Landforms Form Under A Warmer Early Mars?

Did Fluvial Landforms Form Under A Warmer Early Mars? Did Fluvial Landforms Form Under A Warmer Early Mars? N. Mangold, LPG Nantes/CNRS, France Acknowledgments: I warmly thank all colleagues and students having worked with me in the last 15 years. Textbook

More information

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY

CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY CAUSES FOR CHANGE IN STREAM-CHANNEL MORPHOLOGY Chad A. Whaley, Department of Earth Sciences, University of South Alabama, MobileAL, 36688. E-MAIL: caw408@jaguar1.usouthal.edu The ultimate goal of this

More information

GLG362/GLG598 Geomorphology K. Whipple October, 2009 I. Characteristics of Alluvial Channels

GLG362/GLG598 Geomorphology K. Whipple October, 2009 I. Characteristics of Alluvial Channels I. Characteristics of Alluvial Channels Self-formed morphology set by entrainment, transport, and deposition They move unconsolidated sedimentary materials present in the valley fill flood plain/bank flow

More information

Watershed concepts for community environmental planning

Watershed concepts for community environmental planning Purpose and Objectives Watershed concepts for community environmental planning Dale Bruns, Wilkes University USDA Rural GIS Consortium May 2007 Provide background on basic concepts in watershed, stream,

More information

B13 SSS2.5/GM6.10/HS8.3.7/SSP3.1.20

B13 SSS2.5/GM6.10/HS8.3.7/SSP3.1.20 SSP Stratigraphy, Sedimentology & Palaeontology Orals Monday, 28 April MO1, 08:30 10:00 MO2, 10:30 12:00 MO3, 13:30 15:00 MO4, 15:30 17:00 TU1, 08:30 10:00 TU2, 10:30 12:00 GM1.7, Non-continuous palaeoenvironmental

More information

GLY 4734/6932: Coastal Morphology and Processes

GLY 4734/6932: Coastal Morphology and Processes GLY 4734/6932: Coastal Morphology and Processes Narrow, but (perhaps the most) dynamic environment on Earth Influenced by both terrestrial and oceanic processes Course is organized into two parts: (1)

More information

Prentice Hall: Science Explorer, 16 Book Series 2005 Correlated to: Alabama Science Standards for Earth and Space Science Core (Grade 6)

Prentice Hall: Science Explorer, 16 Book Series 2005 Correlated to: Alabama Science Standards for Earth and Space Science Core (Grade 6) Alabama Science Standards for Earth and Space Science Core (Grade 6) 1. Identify global patterns of atmospheric movement, including El Niño, the Gulf Stream, the jet stream, the Coriolis effect, and global

More information

Pat Dryer Half Moon Lake: A True Oxbow Lake? Geography 364 April 1 st, 2007

Pat Dryer Half Moon Lake: A True Oxbow Lake? Geography 364 April 1 st, 2007 Pat Dryer Half Moon Lake: A True Oxbow Lake? Geography 364 April 1 st, 2007 Appendix Abstract 2 Introduction 3 Methods 3 Results 3 Discussion 5 Conclusion 11 1 Abstract Half Moon Lake appears to be an

More information

DEPARTMENT OF GEOGRAPHY University of Toronto COURSE OUTLINE

DEPARTMENT OF GEOGRAPHY University of Toronto COURSE OUTLINE Detailed Course Outline GGR201S 2015-2016 COURSE: GGR 201S - Geomorphology INSTRUCTOR: DEPARTMENT OF GEOGRAPHY University of Toronto COURSE OUTLINE 2015-2016 Roger Phillips Office: Earth Sciences 2124

More information

SYLLABUS, GEO 432/532 APPLIED GEOMORPHOLOGY

SYLLABUS, GEO 432/532 APPLIED GEOMORPHOLOGY SYLLABUS, GEO 432/532 APPLIED GEOMORPHOLOGY Spring 2013 College of Earth, Ocean, and Atmospheric Sciences Oregon State University 3 credits T Th 8:00 9:20 am, Wlkn 210 Stephen Lancaster Wlkn 142, 7-9258,

More information

GEOLOGY CURRICULUM. Unit 1: Introduction to Geology

GEOLOGY CURRICULUM. Unit 1: Introduction to Geology Chariho Regional School District - Science Curriculum September, 2016 GEOLOGY CURRICULUM Unit 1: Introduction to Geology OVERVIEW Summary In this unit students will be introduced to the field of geology.

More information

ENVS S102 Earth and Environment (Cross-listed as GEOG 102) ENVS S110 Introduction to ArcGIS (Cross-listed as GEOG 110)

ENVS S102 Earth and Environment (Cross-listed as GEOG 102) ENVS S110 Introduction to ArcGIS (Cross-listed as GEOG 110) ENVS S102 Earth and Environment (Cross-listed as GEOG 102) 1. Describe the fundamental workings of the atmospheric, hydrospheric, lithospheric, and oceanic systems of Earth 2. Explain the interactions

More information

GD3.3/GM3.3/GMPV16/TS4.7

GD3.3/GM3.3/GMPV16/TS4.7 GM Geomorphology Orals and PICOs MO1, 08:30 10:00 MO2, 10:30 12:00 MO3, 13:30 15:00 MO4, 15:30 17:00 MO5, 17:30 19:00 TU1, 08:30 10:00 TU2, 10:30 12:00 TUL, 12:15 13:15 TU3, 13:30 15:00 Monday, 08 April

More information

Map Mysteries Activities

Map Mysteries Activities Page 1 of 8 Map Mysteries Activities 74,796 Ready-To-Go Lesson Plans Teaching Earth Science and Geography with USGS Topographic and Thematic Maps Author: Dr. Joseph J. Kerski Geographer Box 25046 - MS

More information

Elevations are in meters above mean sea level. Scale 1:2000

Elevations are in meters above mean sea level. Scale 1:2000 12.001 LAB 7: TOPOGRAPHIC MAPS Due: Monday, April 11 PART I: CONTOURING AND PROFILES (20 PTS) 1. Contour this area map using a 5 meter contour interval. Remember some fundamental rules of contour lines,

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

Neogene Uplift of The Barents Sea

Neogene Uplift of The Barents Sea Neogene Uplift of The Barents Sea W. Fjeldskaar A. Amantov Tectonor/UiS, Stavanger, Norway FORCE seminar April 4, 2013 The project (2010-2012) Funding companies Flat Objective The objective of the work

More information

Slide #2. What is the drainage pattern that you can see on this hillslope? What hillslope hydrologic phenomenon is well exemplified on this hillslope?

Slide #2. What is the drainage pattern that you can see on this hillslope? What hillslope hydrologic phenomenon is well exemplified on this hillslope? Geology 22 Process Geomorphology Final Exam Fall, 1999 Name This exam is closed book and closed notes. Take some time to read the questions carefully before you begin writing. Answer the questions concisely

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

Sediment production in Tuni lake catchment due to climate change

Sediment production in Tuni lake catchment due to climate change Sediment production in Tuni lake catchment due to climate change (Proyecto Grande/Erosión y Sedimentación) Ramiro Pillco Zolá &, Seiki Kawagoe, Vanesa Vera San Andres Major University, Bolivia Fukushima

More information

GEOGRAPHY OF LANDFORMS COURSE DESCRIPTION GEOG 574. Fall Maingi Solomon

GEOGRAPHY OF LANDFORMS COURSE DESCRIPTION GEOG 574. Fall Maingi Solomon GEOG 574 GEOGRAPHY OF LANDFORMS Fall 2015 Maingi Solomon COURSE DESCRIPTION This course will explore the geography of earth s major landforms and the geographical factors that influence their development,

More information

Table 6.1 Progress in the identification of equilibrium states in geomorphology

Table 6.1 Progress in the identification of equilibrium states in geomorphology 6 The concept of equilibrium emerged in geomorphology once ideas of catastrophism had been succeeded by the understanding that gradual land-forming processes were responsible for the shape of the Earth

More information

GEOLOGY 10 De Anza College

GEOLOGY 10 De Anza College GEOLOGY 0 De Anza College Marek Cichanski Office: S-a CLASS WEBSITE: TEXTBOOKS & MATERIALS Sections 0,0,0 Lectures: M - Th, 0:0-:0am Labs: T, W, Th, :0-:0pm Office hours: M thru Th :0am-:0pm; Friday 9:0am-0:0am

More information

Lab Final Review 4/16/18

Lab Final Review 4/16/18 Lab Final Review 4/16/18 Overall goals from lab Think about geology on recent timescales, predict the direction change Be able to identify how different landforms or patterns (e.g. drainage patterns, dune

More information

GEOLOGY 10 De Anza College

GEOLOGY 10 De Anza College GEOLOGY 0 De Anza College Marek Cichanski Office: S-5a CLASS WEBSITE: TEXTBOOKS & MATERIALS Sections 0,02,0 Lectures: M - Th, 0:0-:20am Labs: T, W, Th, :0-4:20pm Office hours: M thru Th :0am-2:20pm; other

More information

Susquehanna River Basin A Research Community Hydrologic Observatory. NSF-Funded Infrastructure Proposal in Support of River Basin Hydrologic Sciences

Susquehanna River Basin A Research Community Hydrologic Observatory. NSF-Funded Infrastructure Proposal in Support of River Basin Hydrologic Sciences Susquehanna River Basin A Research Community Hydrologic Observatory NSF-Funded Infrastructure Proposal in Support of River Basin Hydrologic Sciences Fundamental Problem: How Do Humans and Climate Impact

More information

Critical form and feedbacks in mountain-belt dynamics: the role of. rheology as a tectonic governor.

Critical form and feedbacks in mountain-belt dynamics: the role of. rheology as a tectonic governor. Critical form and feedbacks in mountain-belt dynamics: the role of rheology as a tectonic governor. Gerard H. Roe Department of Earth and Space Sciences, University of Washington, Seattle, WA. Mark T.

More information

Natural hazards in Glenorchy Summary Report May 2010

Natural hazards in Glenorchy Summary Report May 2010 Natural hazards in Glenorchy Summary Report May 2010 Contents Glenorchy s hazardscape Environment setting Flood hazard Earthquakes and seismic hazards Hazards Mass movement Summary Glossary Introduction

More information

Hydrologic Engineering Applications of Geographic Information Systems

Hydrologic Engineering Applications of Geographic Information Systems Hydrologic Engineering Applications of Geographic Information Systems Davis, California Objectives: The participant will acquire practical knowledge and skills in the application of GIS technologies for

More information

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT

Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT Hydrologic Modelling of the Upper Malaprabha Catchment using ArcView SWAT Technical briefs are short summaries of the models used in the project aimed at nontechnical readers. The aim of the PES India

More information

SLOPE DISTRIBUTIONS, THRESHOLD HILLSLOPES, AND STEADY-STATE TOPOGRAPHY

SLOPE DISTRIBUTIONS, THRESHOLD HILLSLOPES, AND STEADY-STATE TOPOGRAPHY [American Journal of Science, Vol. 301, April/May, 2001, P.432 454] SLOPE DISTRIBUTIONS, THRESHOLD HILLSLOPES, AND STEADY-STATE TOPOGRAPHY DAVID R. MONTGOMERY Department of Geological Sciences, University

More information

Graduate Courses Meteorology / Atmospheric Science UNC Charlotte

Graduate Courses Meteorology / Atmospheric Science UNC Charlotte Graduate Courses Meteorology / Atmospheric Science UNC Charlotte In order to inform prospective M.S. Earth Science students as to what graduate-level courses are offered across the broad disciplines of

More information

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER

FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER FUTURE MEANDER BEND MIGRATION AND FLOODPLAIN DEVELOPMENT PATTERNS NEAR RIVER MILES 241 TO 235, SACRAMENTO RIVER Eric W. Larsen University of California, Davis With the assistance of Evan Girvetz REPORT

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido

The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido Symposium Proceedings of the INTERPRAENENT 2018 in the Pacific Rim The Effects of Hydraulic Structures on Streams Prone to Bank Erosion in an Intense Flood Event: A Case Study from Eastern Hokkaido Daisuke

More information

Earth Science. Lessons: 15% Quizzes: 25% Projects: 30% Tests: 30% Assignment Weighting per Unit Without Projects. Lessons: 21% Quizzes: 36% Tests: 43%

Earth Science. Lessons: 15% Quizzes: 25% Projects: 30% Tests: 30% Assignment Weighting per Unit Without Projects. Lessons: 21% Quizzes: 36% Tests: 43% Earth Science Earth Science explores Earth s structure, interacting systems, and place in the universe. The course covers concepts and processes found in: Astronomy Earth s place in and interaction with

More information

Bedrock channel geometry along an orographic rainfall gradient in the upper Marsyandi River valley in central Nepal

Bedrock channel geometry along an orographic rainfall gradient in the upper Marsyandi River valley in central Nepal San Jose State University From the SelectedWorks of Emmanuel J. Gabet July 25, 2007 Bedrock channel geometry along an orographic rainfall gradient in the upper Marsyandi River valley in central Nepal William

More information

GEOLOGY 100 Planet Earth Spring Semester, 2007

GEOLOGY 100 Planet Earth Spring Semester, 2007 GEOLOGY 100 Planet Earth Spring Semester, 2007 Instructor: Michael A. Stewart, 250 Natural History Building Phone: 244-5025 Email: stewart1@uiuc.edu Office hours: Friday 1:00-2:30 pm by appointment Discussion

More information

Sediments and bedrock erosion

Sediments and bedrock erosion Eroding landscapes: fluvial processes Sediments and bedrock erosion Mikaël ATTAL Marsyandi valley, Himalayas, Nepal Acknowledgements: Jérôme Lavé, Peter van der Beek and other scientists from LGCA (Grenoble)

More information

GLY 4734/6932: Coastal Morphology and Processes

GLY 4734/6932: Coastal Morphology and Processes GLY 4734/6932: Coastal Morphology and Processes In-Class Exercise think about these questions to answer at the end of class Name and where are you from? What coast are you most familiar with or are you

More information

Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work?

Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work? Glaciology (as opposed to Glacial Geology) Why important? What are glaciers? How do they work? Glaciers are important because of their role in creating glacial landscapes (erosional and depositional features).

More information

Talk Overview. Concepts. Climatology. Monitoring. Applications

Talk Overview. Concepts. Climatology. Monitoring. Applications Atmospheric Rivers Talk Overview Concepts Climatology Monitoring Applications Satellite View Where is the storm? Where is the impact? Atmospheric Rivers Plume or fire hose of tropical moisture Heavy precipitation

More information

GEOL 23100: Principles of Geomorphology

GEOL 23100: Principles of Geomorphology GEOL 23100: Principles of Geomorphology 1 Geomorphology The word geomorphology" comes from the Greek roots "geo, morph, and logos, meaning earth, form, and study, respectively. Therefore, geomorphology

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

David Tenenbaum GEOG 070 UNC-CH Spring 2005

David Tenenbaum GEOG 070 UNC-CH Spring 2005 GEOG 070 Introduction to Geographic Information GEOG 070 Introduction to Geographic Information Course Description: There is a spatial component to all that occurs on our planet. Everything happens somewhere

More information

High resolution spatiotemporal distribution of rainfall seasonality and extreme events based on a 12-year TRMM time series

High resolution spatiotemporal distribution of rainfall seasonality and extreme events based on a 12-year TRMM time series 1 2 3 4 High resolution spatiotemporal distribution of rainfall seasonality and extreme events based on a 12-year TRMM time series Bodo Bookhagen, Geography Department, UC Santa Barbara, Santa Barbara,

More information

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Surface changes caused by erosion and sedimentation were treated by solving: (2) GSA DATA REPOSITORY 214279 GUY SIMPSON Model with dynamic faulting and surface processes The model used for the simulations reported in Figures 1-3 of the main text is based on two dimensional (plane strain)

More information

CAPE Unit 1 Module 2 & 3. Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments

CAPE Unit 1 Module 2 & 3. Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments # Week(s) Wks 1-3 CAPE Unit 1 Module 2 & 3 Topic Specific Objectives Content Explain the main concepts, flows and processes associated with coastal environments Wave formation, structure, types Textbook

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS PURPOSE OF TODAY S LECTURE: Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS WEEK ONE Lecture 1 Introduction to Course & Review of Maps Joe Wheaton Introduction to Course & Review of Maps

More information