Section 13.2 DID YOU KNOW? methanogens species of archaebacteria that produce methane as a waste product

Size: px
Start display at page:

Download "Section 13.2 DID YOU KNOW? methanogens species of archaebacteria that produce methane as a waste product"

Transcription

1 Multicellular Organisms and the Cambrian Explosion For the first 3 billion years of life on Earth, all organisms were unicellular. Eubacteria gave rise to aerobic and photosynthetic lineages, while archaebacteria evolved into three main groups: methanogens, extreme halophiles,and extreme thermophiles.once eukaryotic organisms evolved complex structures and processes, including mitosis and sexual reproduction, they would have had the benefit of much more extensive genetic recombination than would have been possible among prokaryotic cells. Photosynthesis continued to increase the oxygen concentration in the atmosphere to the benefit of aerobic organisms. Multicellular organisms, including plants, fungi, and animals, are thought to have evolved less than 750 million years ago. The oldest fossils of multicellular animals date from about 640 million years ago. However, during a 40-million-year period beginning about 565 million years ago, a massive increase in animal diversity occurred, referred to as the Cambrian explosion. Fossil evidence dating from this period shows the appearance of early arthropods, such as trilobites, as well as echinoderms and molluscs; primitive chordates which were precursors to the vertebrates also appeared. Animals representing all present-day major phyla, as well as many that are now extinct, first appeared during this period, a time span that represents less than 1% of Earth s history. Figure 7 Creatures from Burgess Shale in Yoho National Park, B.C. methanogens species of archaebacteria that produce methane as a waste product extreme halophiles species of archaebacteria that live in such extremely saline environments as landlocked saline lakes extreme thermophiles species of archaebacteria that live in very hot aquatic environments, such as hot springs and hydrothermal vents on the ocean floor Cambrian explosion a period, beginning about 565 million years ago and lasting about 40 million years, during which the animal kingdom underwent rapid speciation and diversification; the origin of almost all major groups of animals can be traced to this period DID YOU KNOW? B.C. s Burgess Shales Fossil beds in the Burgess Shale in British Columbia likely formed through a series of mudslides, which buried living organisms in moving sediment. The resulting fossils of early Cambrian animals are superbly preserved (Figure 7). Many of the animals had unusual body forms not found in presentday animals. Discovered in 1909 by Charles D. Walcott of the Smithsonian Institute, it was immediately declared the most important geological find in the world. The Burgess Shale is now a World Heritage Site. Diversification and Mass Extinctions Figure 8 (page 596) provides a geological time scale and summarizes some of the most significant events in the evolutionary history of Earth since the Cambrian explosion. Geologists have established a geological time scale divided into five eras, each of which is further subdivided into periods and, in some cases, epochs. These time intervals are based on their distinctive fossil records, and dramatic changes in the fossil records mark the boundaries between these intervals. The eras of the Paleozoic (ancient life), Mesozoic (middle life), and Cenozoic (recent life) are remarkable for rapid diversification of life forms, as well as widespread extinctions. The Paleozoic era, for instance, begins with the Cambrian explosion and ends with the Permian extinction, believed to be the most massive extinction in Earth s history. The Evolutionary History of Life 595

2 Moving Continents Era Period Epoch Age millions of years ago (mya) 10 mya 65 mya Cenozoic Mesozoic Quaternary Tertiary Cretaceous Jurassic Recent Pleistocene Pliocene Miocene Oligocene Eocene Paleocene Late Early mya Triassic Permian Carboniferous mya Paleozoic Devonian Silurian Ordovician 505 Cambrian 420 mya 570 Proterozoic Oxygen(O ) abundant mya Oldest fossils known 3500 Archean Oldest dated rocks 3800 Approximate origin of the earth 4600 Figure 8 Major events of life on Earth. Mass extinction events have occurred along with a general trend of increasing biological diversity. 596 Chapter 13

3 Range of Global Diversity (Marine and Terrestrial) Mass Extinction 65 mya extinction of large reptiles mammal radiation begins angiosperm plants dominate 65 mya 208 mya 245 mya mya birds appear reptiles rule land, air, and sea mammals appear angiosperm plants appear mya cycad-like and conifer trees dominate mammal-like reptiles appear early dinosaurs appear mya reptiles radiate coniferous trees radiate and modernize 360 mya mya reptiles appear amphibians and insects radiate coniferous trees appear 438 mya mya amphibians appear trees and forests appear insects appear first bony fish appear land plants radiate mya land plants appear arthropods invade land jawed fish appear armoured fish dominate mya vertebrates appear armored jawless fish appear shell-bearing marine invertebrates dominate mya shell-bearing animals appear marine invertebrates radiate Note also the dramatic changes that have occurred in the arrangements of the Earth s land surface. The Evolutionary History of Life 597

4 Figure 9 A computer-generated image of the 200-km-wide Chicxulub Crater located in the ocean floor at the edge of the Yucatan peninsula. It is thought to be the impact site of an asteroid that caused a mass extinction 65 million years ago, ending the Cretaceous period and the domination of the dinosaurs. Fossil evidence of diversification of marine invertebrates early in the Paleozoic era is very extensive. The first vertebrates are thought to have evolved later, followed by bony fish and amphibians. By the mid-paleozoic era, plants had invaded land surfaces and the first reptiles and insects had evolved. Around 245 million years ago, a series of cataclysmic events eradicated more than 90% of known marine species, as indicated by their disappearance from the fossil record after this period. Although uncertainty remains about causes of this Permian extinction, many scientists suspect that tectonic movements were a primary cause. The formation of the supercontinent Pangea, which occurred during the Permian period, would have produced major changes in terrestrial and coastal environments as well as in global climate (Figure 8, page 596).Ongoing research by Kunio Kaiho of Tohoku University, Japan, and his colleagues has uncovered evidence in southern China of a 60-km-wide asteroid that may have collided with Earth in this period. These researchers believe that the impact may have vaporized enough sulfur to consume a third of the atmospheric oxygen and generate enough acid rain to make the ocean surface water as acidic as lemon juice. If such a catastrophic impact did occur, it would have been the primary cause of the biggest extinction event in history. Despite the harsh conditions responsible for mass extinctions, life on earth continued. The Mesozoic era is well known for dinosaurs, a diverse group of often very large animals that dominated earth from about the mid Triassic to the late Cretaceous period. Oceans were home to many bony fish, hard-shelled molluscs, and crabs. On land, at first dominated by gymnosperms, early mammals evolved alongside dinosaurs and insects. Placental mammals, birds, and flowering plants also evolved within the Mesozoic era. After this time, the remaining dinosaurs and many other species suddenly disappear from the fossil record. Considerable evidence supports the hypothesis that an asteroid impact caused this best-known mass extinction. The Chicxulub Crater, almost 10 km deep and 200 km in diameter at the edge of the Yucatan peninsula, is thought to be the impact zone for such an asteroid (Figure 9). Some theorize that the asteroid would have been moving at about km/h and would have blasted km 3 of vaporized debris and dust into Earth s atmosphere. The debris and energy released in the resulting fireball equivalent to 100 million nuclear bombs would have killed most of the plants and animals in the continental Americas within minutes. Tidal waves 120 m high would have devastated coastlines around the world and atmospheric debris would have blocked out much of the sunlight for months. Among the strong evidence for the impact hypothesis is the presence of unusually high concentrations of iridium in sedimentary rock dated at 65 million years old, the boundary between the Mesozoic and Cenozoic eras. Rock samples from 95 locations worldwide show these same elevated levels. Iridium, a rare metal in the Earth s crust, is abundant in meteorite samples. These findings suggest that a large asteroid may have been the source of a great quantity of iridium-bearing dust, deposited on a global scale. Although the mass extinctions that ended the Permian and the Mesozoic eras are dramatic in scope, it is important to keep in mind that most species extinctions result from ongoing evolutionary forces of competition and environmental change. Amazingly, even the five major mass extinction events since the Cambrian explosion account for about only 4% of all extinctions that took place during this time. Scientists have also noted that periods of widespread extinction are followed by periods of very rapid diversification. In the present Cenozoic era, life forms have attained the greatest diversity in Earth s history. Flowering plants have out-competed gymnosperms in many habitats and now number more than species. Millions of species of insects now dominate the animal kingdom. Are natural extinctions as much a part of evolution as diversification? It is probable that, had the dinosaurs not become extinct, the ancestors of humans may not have met with later successes which means that humans might have never existed. 598 Chapter 13

5 EXPLORE an issue Take a Stand: The Human Meteorite? Evaluate Many people are concerned about species now at risk for extinction. Since the 17th century, scientists have documented the extinction of more than 1000 plants and animals. The current list of endangered species worldwide is greater than The dodo, great auk, passenger pigeon, Stellar s sea cow, and Banff long-nose dace are examples of species that have become extinct in recent time as a result of human activity. The causes of such human-driven extinctions are numerous, including habitat destruction, introduction of exotic species, overhunting, and commercial harvesting. Statement Because extinction is a natural process of evolution, and because the extinction of one species can benefit others, people should not be concerned about the loss of species even as a result of human activity. In your group, define the issue within the scope of humancaused extinctions. Decision-Making Skills Define the Issue Analyze the Issue Research Defend the Position Identify Alternatives Evaluate Research the issue, searching for information in print and electronic resources. GO You might consider how the current pace of human-caused extinction compares with extinction rates in nature. Find out what tropical and conservation biologists, such as E.O. Wilson, think about this issue. What impact might the preservation of the genomes of endangered species have? What are possible effects of extinctions on ecosystems and on human health and welfare? What species are likely to benefit? How long might it take new species to fill the ecological gap left by species that become extinct? Write a position paper outlining your stand and be prepared to present your ideas to the class. The Rate of Evolution Biologists are keenly interested in the pace at which evolution may be occurring. Until recently, most supported the idea that changes to species were slow and steadily paced over time. The theory of gradualism contends that when new species first evolve, they appear very similar to the originator species and only gradually become more distinctive, as natural selection and genetic drift act independently on both species. One would expect to find, according to this theory, as a result of slow incremental changes, numerous fossil species representing transitional forms (also called intermediate forms). Many very distinct species, however, seem to appear suddenly in the fossil record with little evidence of gradual transitions from one species to another. Their sudden appearance is often followed by little change over very long periods of time. The most accepted explanation for these deviations from a gradualism model was that the fossil record is incomplete, and intermediate forms may not have been preserved. Niles Eldredge of the American Museum of Natural History and Stephen Jay Gould of Harvard University rejected this explanation and, in 1972, proposed an alternative theory called the theory of punctuated equilibrium.it consists ofthree main assertions: Species evolve very rapidly in evolutionary time. Speciation usually occurs in small isolated populations and thus intermediate fossils are very rare. After the initial burst of evolution, species do not change significantly over long periods of time. These contrasting theories about the rate of evolution are represented in Figure 10 (page 600). To some extent, the differences between them are a matter of perspective. To many population biologists, the word rapid in relation to species evolution suggests changes that can be measured in a few generations or, perhaps, decades. To paleontologists, rapid might represent the appearance of a new species in the fossil record within a thousand generations or years. In fact, both theories are needed to understand the fossil record while remaining compatible with many other forms of evidence. Consider, for instance, how both theories apply to the evolution of species before and after a major extinction event. theory of gradualism a theory that attributes large evolutionary changes in species to the accumulation of many small and ongoing changes and processes transitional forms a fossil or species intermediate in form between two other species in a direct line of descent theory of punctuated equilibrium a theory that attributes large evolutionary changes to relatively rapid spurts of change followed by long periods of little or no change The Evolutionary History of Life 599

6 Before the event, an environment might be host to many well-adapted species that have evolved to occupy specific ecological niches. They are largely exposed to the pressures of stabilizing selection and evolutionary change would be very slow. An environmental crisis results in the extinction of most species, leaving many niches empty. Surviving species have many new opportunities and experience strong disruptive selection. These survivors can evolve rapidly into many new species, filling these empty niches. Once the new species become well adapted to their new niches in a relatively stable environment, they again experience stabilizing selection pressures. Thereafter, they show little, or more gradual, change until another crisis opens opportunities for diversification. It is now widely accepted that both gradual and rapid evolutionary processes are at work. Although many species have evolved rapidly at times, the fossil record of some organisms show very gradual change over extended periods of time. Time Figure 10 Two theories of the rate of evolution (a) punctuated equilibrium (b) gradualism TRY THIS activity Gradual? Or Rapid and Punctuated? Analyze and outline the evidence in sections 13.1 and 13.2 that supports and refutes the roles that both gradualism and punctuated equilibrium may have played in each of these instances: (i) the earliest evolution of single-celled organisms (from 3.5 to 1.0 billion years ago) (ii) the Cambrian explosion (iii) the evolution of photosynthetic eukaryotic cells (iv) the general evolutionary pattern from 350 to 250 million years ago (Figure 8, page 596) (v) the general evolutionary pattern from 55 to 38 million years ago (Figure 8) (vi) the early evolution of terrestrial plants and animals (vii) changes in species diversity before, during, and after a period of glaciation Be prepared to defend in a class discussion your conclusions about the roles gradualism and punctuated equilibrium have played in the evolution of life on earth. 600 Chapter 13

7 SUMMARY Earliest Evolutionary Patterns of Life Evidence suggests that, under the conditions present on Earth more than 4 billion years ago, organic molecules formed spontaneously, some able to form celllike structures, while others had enzymatic properties. Endosymbiosis is likely responsible for the evolution of both aerobic and photosynthetic eukaryotic cells. All life was unicellular for at least 2 billion years until about 600 million years ago, when life diversified dramatically. The history of multicellular life is a record of the ongoing evolution of millions of new species and the extinction of many others. Both gradualism and punctuated equilibrium account for the patterns seen in the evolution of life on Earth. Section 13.2 Questions Understanding Concepts 1. Draw to scale a time line to show key evolutionary processes and events as presented in this chapter, beginning with biochemical reactions 4 billion years ago and ending with the events of 65 million years ago. 2. Below are listed two time periods during which significant evolutionary events occurred. Describe at least two different kinds of evidence scientists used to develop hypotheses about these evolutionary events: (a) between 3 and 1 billion years ago (b) between 650 and 50 million years ago Applying Inquiry Skills 3. The Barringer Meteorite Crater, also called the Meteor Crater, in Arizona (Figure 11) is thought to have been created about years ago by an asteroid about 45 m in diameter. Brainstorm some local and global evolutionary impacts that might have resulted from this asteroid s collision with Earth. Note scientific evidence that might support your reasoning. 4. The ability of ribozymes to recognize and cut specific RNA molecules makes them exciting candidates for human therapy. For example, one target for ribozymes might be the mrna that encodes vascular endothelial growth factor (VEGF). VEGF stimulates the production of blood vessels necessary for the rapid growth of cancer tumours. A ribozyme that destroys this mrna might prove valuable in the treatment of many cancers. Find out what other exciting research is underway regarding potential applications of ribozymes. Report your findings to the class. GO 5. Draw a fully labelled set of diagrams to illustrate and describe the evolution of an aerobic eukaryote by the process of endosymbiosis. Draw and clearly label all membrane and chromosomes. Figure 11 The Evolutionary History of Life 601

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes.

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes. Unit 1B Lesson 4 History of Life on Earth How do we learn about ancient life? Paleontologists scientists that studies fossils Fossil- a trace or imprint of a living thing that is preserved by geological

More information

Chapter 19. History of Life on Earth

Chapter 19. History of Life on Earth Chapter 19 History of Life on Earth Adapted from Holt Biology 2008 Chapter 19 Section 3: Evolution of Life Key Vocabulary Terms Adapted from Holt Biology 2008 Cyanobacteria Photosynthetic prokaryotes Adapted

More information

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes The geologic time scale holds secrets to the life that has existed on Earth since the beginning of time. It is time for you to take a journey through the history of Earth. 1 Click on each of the segments

More information

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17 Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time scale that is used

More information

Section 17 1 The Fossil Record (pages )

Section 17 1 The Fossil Record (pages ) Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) Key Concepts What is the fossil record? What information do relative dating and radioactive dating provide about fossils? What

More information

Earth History. What is the Earth s time scale? Geological time Scale. Pre-Cambrian. FOUR Eras

Earth History. What is the Earth s time scale? Geological time Scale. Pre-Cambrian. FOUR Eras The Earth is 4.6 billion years old! Earth History Mrs. Burkey ESS Cy Creek HS 17-18 If the Earth formed at midnight 6:00 am First life appears 10:00 pm First animals/plants on land 11:59 pm First humans

More information

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle.

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle. Chapter 17 The History of Life Chapter Vocabulary Review Crossword Puzzle Use the clues below to complete the puzzle. 1 2 3 4 5 6 7 8 9 10 11 Across 2. time span shorter than an era, such as Quaternary

More information

Chapter Study Guide Section 17-1 The Fossil Record (pages )

Chapter Study Guide Section 17-1 The Fossil Record (pages ) Name Class Date Chapter Study Guide Section 17-1 The Fossil Record (pages 417-422) Key Concepts What is the fossil record? What information do relative dating and radioactive dating provide about fossils?

More information

17-1 The Fossil Record Slide 2 of 40

17-1 The Fossil Record Slide 2 of 40 2 of 40 Fossils and Ancient Life What is the fossil record? 3 of 40 Fossils and Ancient Life Fossils and Ancient Life Paleontologists are scientists who collect and study fossils. All information about

More information

17-1 The Fossil Record Slide 1 of 40

17-1 The Fossil Record Slide 1 of 40 1 of 40 Fossils and Ancient Life Fossils and Ancient Life Paleontologists are scientists who collect and study fossils. All information about past life is called the fossil record. The fossil record includes

More information

Bio 2 Plant and Animal Biology

Bio 2 Plant and Animal Biology Bio 2 Plant and Animal Biology Evolution Evolution as the explanation for life s unity and diversity Darwinian Revolution Two main Points Descent with Modification Natural Selection Biological Species

More information

History of Life on Earth The Geological Time- Scale

History of Life on Earth The Geological Time- Scale History of Life on Earth The Geological Time- Scale Agenda or Summary Layout The Geological Time-Scale 1 2 3 The Geological Time-Scale The Beginning of Life Cambrian Explosion The Geological Time-Scale

More information

Chapter 25: The Origin and Evolutionary History of Life on Earth

Chapter 25: The Origin and Evolutionary History of Life on Earth Chapter 25: The Origin and Evolutionary History of Life on Earth Chemical conditions of the early Earth A model for the first cells First life Life changes the planet: oxygenating Earth s oceans and atmosphere

More information

Origins of Life. Fundamental Properties of Life. The Tree of Life. Chapter 26

Origins of Life. Fundamental Properties of Life. The Tree of Life. Chapter 26 Origins of Life The Tree of Life Cell is the basic unit of life Today all cells come from pre-existing cells Earth formed ~4.5 billion years ago (BYA) Chapter 26 As it cooled, chemically-rich oceans were

More information

Section 17 1 The Fossil Record (pages )

Section 17 1 The Fossil Record (pages ) Name Class Date Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time

More information

The Phanerozoic Eon. 542 mya Present. Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras

The Phanerozoic Eon. 542 mya Present. Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras 542 mya Present The Phanerozoic Eon Divided into 3 Eras The Paleozoic, Mesozoic, and Cenozoic Eras The ends of the Paleozoic and Mesozoic Eras were marked by mass extinctions The Cenozoic Era is still

More information

Outline. Origin and History of Life

Outline. Origin and History of Life Origin and History of Life Chapter 19 Primitive Earth Origin of First Cells Fossils The Precambrian The Paleozoic The Mesozoic The Cenozoic Continental Drift Mass Extinctions Outline 1 2 The Primitive

More information

Evolution and diversity of organisms

Evolution and diversity of organisms Evolution and diversity of organisms Competency Levels - 7 3.1.1 Uses the theories of origin of life and natural selection to analyze the process of evolution of life 3.2.1 Constructs hierarchy of taxa

More information

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20)

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) 2007-2008 ARCHEAN Millions of years ago PRECAMBRIAN PROTEROZOIC 0 500 1000 Cenozoic

More information

5 Time Marches On. TAKE A LOOK 1. Identify What kinds of organisms formed the fossils in the picture?

5 Time Marches On. TAKE A LOOK 1. Identify What kinds of organisms formed the fossils in the picture? CHAPTER 6 5 Time Marches On SECTION The Rock and Fossil Record BEFORE YOU READ After you read this section, you should be able to answer these questions: How do geologists measure time? How has life changed

More information

Biology. Slide 1 of 40. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 40. End Show. Copyright Pearson Prentice Hall Biology 1 of 40 2 of 40 Fossils and Ancient Life What is the fossil record? 3 of 40 Fossils and Ancient Life The fossil record provides evidence about the history of life on Earth. It also shows how different

More information

Eras of Earth's History Lesson 6

Eras of Earth's History Lesson 6 Eras of Earth's History Lesson 6 May 24 8:42 PM What happened in the Paleozoic Era? What happened in the Mesozoic Era? What happened in the Cenozoic Era? May 24 8:55 PM 1 I. What happened in the Paleozoic

More information

Summary The Fossil Record Earth s Early History. Name Class Date

Summary The Fossil Record Earth s Early History. Name Class Date Name Class Date Chapter 17 Summary The History of Life 17 1 The Fossil Record Fossils are preserved traces and remains of ancient life. Scientists who study fossils are called paleontologists. They use

More information

The History of Life, the Universe and Everything or What do you get when you multiply six by nine. Chapters 17 (skim) and 18

The History of Life, the Universe and Everything or What do you get when you multiply six by nine. Chapters 17 (skim) and 18 The History of Life, the Universe and Everything or What do you get when you multiply six by nine Chapters 17 (skim) and 18 The Origin of Life The problem: Life begets life. There must be a beginning,

More information

Spring th Grade

Spring th Grade Spring 2015 8 th Grade The geologic time scale is a record of the major events and diversity of life forms present in Earth s history. The geologic time scale began when Earth was formed and goes on until

More information

Directed Reading. Section: Precambrian Time and the Paleozoic Era EVOLUTION. beginning of life is called. to. PRECAMBRIAN TIME.

Directed Reading. Section: Precambrian Time and the Paleozoic Era EVOLUTION. beginning of life is called. to. PRECAMBRIAN TIME. Skills Worksheet Directed Reading Section: Precambrian Time and the Paleozoic Era 1. Where is the geologic history of Earth recorded? 2. What kind of information can scientists get from the types of rock

More information

Fossils. Name Date Class. A Trip Through Geologic Time Section Summary

Fossils. Name Date Class. A Trip Through Geologic Time Section Summary Name Date Class A Trip Through Geologic Time Section Summary Fossils Guide for Reading How do fossils form? What are the different kinds of fossils? What does the fossil record tell about organisms and

More information

Earth s s Geologic History

Earth s s Geologic History The Earth s s Geologic History and The Earth s s Interior Earth s s Geologic History Geologic timescale Divides Earth s s history into relative time periods Relative dating based on: (apply for entire

More information

Fossils & The Geologic Time Scale

Fossils & The Geologic Time Scale Fossils & The Geologic Time Scale Fossils Preserved remains or traces of an organism that lived in the past. Fossils are formed when organisms die and are buried in sediment. Eventually the sediment builds

More information

What is the Earth s time scale?

What is the Earth s time scale? Earth History What is the Earth s time scale? The Geological time scale is a record of the life forms and geological events in Earth s history. Scientists developed the time scale by fossils world wide.

More information

Revision Based on Chapter 19 Grade 11

Revision Based on Chapter 19 Grade 11 Revision Based on Chapter 19 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most fossils are found in rusty water. volcanic rock. sedimentary

More information

Page 143: Geologic Time

Page 143: Geologic Time Page 143: Geologic Time Divide pages 144-147 in 6 One for each box: Hadeon Eon Archeon Eon Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Mississipian Period Pennsylvanian

More information

EARTH S HISTORY. What is Geology? logy: science. Geology is the scientific study of the Earth, including its:

EARTH S HISTORY. What is Geology? logy: science. Geology is the scientific study of the Earth, including its: EARTH S HISTORY 1 What is Geology? Geo: earth logy: science Geology is the scientific study of the Earth, including its: composition, structure, and physical properties. 2 1 Geologists study: the origin

More information

2 Eras of the Geologic Time Scale

2 Eras of the Geologic Time Scale CHAPTER 8 2 Eras of the Geologic Time Scale SECTION The History of Life on Earth BEFORE YOU READ After you read this section, you should be able to answer these questions: What kinds of organisms evolved

More information

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era Earth s History Video Clip Earth s History Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era Scientists have put together a timeline of Earth s history

More information

Chapter 14. The History of the Earth and the Beginning of Life

Chapter 14. The History of the Earth and the Beginning of Life Chapter 14 The History of the Earth and the Beginning of Life Hypothesis of early Earth Very hot surface from colliding meteorites Very hot planet core from radioactive materials Volcanoes spewing lava

More information

Causes of Extinction

Causes of Extinction Causes of Extinction Extinction the process through which a species disappears from Earth, when the birth rate is less than the death rate. When a species becomes extinct, it no longer exists, which can

More information

Geological Time Scale UG Hons.1 st Year) DR. CHANDAN SURABHI DAS ASST. PROF. IN GEOGRAPHY BARASAT GOVT. COLLEGE

Geological Time Scale UG Hons.1 st Year) DR. CHANDAN SURABHI DAS ASST. PROF. IN GEOGRAPHY BARASAT GOVT. COLLEGE Geological Time Scale UG Hons.1 st Year) 1 DR. CHANDAN SURABHI DAS ASST. PROF. IN GEOGRAPHY BARASAT GOVT. COLLEGE 2 Imagine putting everything that has happened on Earth into a one hour time frame! 3 12:00am

More information

(continued) Stephen Eikenberry 11 September 2012 AST 2037

(continued) Stephen Eikenberry 11 September 2012 AST 2037 Development of Life (continued) Stephen Eikenberry 11 September 2012 AST 2037 1 Evolutionary Timeline 530 MYa first footprint fossil found on land 505 Mya first true fish in the sea 475 MYa first land

More information

The History of Life. Before You Read. Read to Learn

The History of Life. Before You Read. Read to Learn 14 The History of Life section 1 Fossil Evidence of Change Before You Read Throughout Earth s history, many species have become extinct. On the lines below, name some organisms that have become extinct.

More information

CHAPTER 19 THE HISTORY OF LIFE. Dr. Bertolotti

CHAPTER 19 THE HISTORY OF LIFE. Dr. Bertolotti CHAPTER 19 THE HISTORY OF LIFE Dr. Bertolotti Essential Question: HOW DO FOSSILS HELP BIOLOGISTS UNDERSTAND THE HISTORY OF LIFE ON EARTH? WHAT DO FOSSILS REVEAL ABOUT ANCIENT LIFE? FOSSILS AND ANCIENT

More information

Use Target Reading Skills

Use Target Reading Skills The Geologic Time Scale (pp. 286 297) This section tells why the geologic time scale is used to show Earth s history, and what the organisms were like and the major events that happened in the different

More information

Lecture Outlines PowerPoint. Chapter 12 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 12 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 12 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Origins of Life and Extinction

Origins of Life and Extinction Origins of Life and Extinction What is evolution? What is evolution? The change in the genetic makeup of a population over time Evolution accounts for the diversity of life on Earth Natural selection is

More information

Evolution Problem Drill 09: The Tree of Life

Evolution Problem Drill 09: The Tree of Life Evolution Problem Drill 09: The Tree of Life Question No. 1 of 10 Question 1. The age of the Earth is estimated to be about 4.0 to 4.5 billion years old. All of the following methods may be used to estimate

More information

The Evolutionary History of the Animal Kingdom

The Evolutionary History of the Animal Kingdom The Evolutionary History of the Animal Kingdom Bởi: OpenStaxCollege Many questions regarding the origins and evolutionary history of the animal kingdom continue to be researched and debated, as new fossil

More information

~22.5 MYA ~2500 MYA ~3000MYA ~3500 MYA ~1000 MYA ~2100 MYA. Early apes are found. Savannas expand

~22.5 MYA ~2500 MYA ~3000MYA ~3500 MYA ~1000 MYA ~2100 MYA. Early apes are found. Savannas expand Early apes are found. Savannas expand ~22.5 MYA Photosynthesis by blue-green bacteria. Oxygen forms in the atmosphere but immediately reacts with molecules in the ocean and crust of the Earth. The actual

More information

History of Life on Earth

History of Life on Earth Lesson 4 The History of Life on Earth ESSENTIAL QUESTION How has life on Earth changed over time? By the end of this lesson, you should be able to describe the evolution of life on Earth over time, using

More information

Visualizing Earth Science. Chapter Overview. The Ever-Changing Earth. Early Life. Evolution and the Fossil Record. Life in the Phanerozoic Eon

Visualizing Earth Science. Chapter Overview. The Ever-Changing Earth. Early Life. Evolution and the Fossil Record. Life in the Phanerozoic Eon Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 11 A Brief History of Life on Earth Chapter Overview The Ever-Changing Earth Early Life Evolution and the Fossil Record Life in the Phanerozoic

More information

The Geological Time Scale. Geological time scaled to a cross-country tour of Canada.

The Geological Time Scale. Geological time scaled to a cross-country tour of Canada. Dryden The Geological Time Scale Geological time scaled to a cross-country tour of anada. The universe came into existence about 14 billion years ago, through an explosion known as the "big bang". ur galaxy

More information

Fossils provide evidence of the change in organisms over time.

Fossils provide evidence of the change in organisms over time. Section 1: Fossils provide evidence of the change in organisms over time. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the similarities and differences between

More information

Chapter 14 The History of Life

Chapter 14 The History of Life Section 1: Fossil Evidence of Change Section 2: The Origin of Life Click on a lesson name to select. 14.1 Fossil Evidence of Change Land Environments Earth formed about 4.6 billion years ago. Gravity pulled

More information

I. History of Life on Earth

I. History of Life on Earth Evolution I. History of Life on Earth I. History of Life A. Early History of Earth I. Early earth was inhospitable hot, with many volcanoes little free oxygen and lots of carbon dioxide other gases present:

More information

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another sparked by just the right combination of physical events & chemical processes Origin of Life 500 Paleozoic 1500 2000 2500 3000 3500 ARCHEAN Millions of years ago 1000 PROTEROZOIC Cenozoic Mesozoic 4000

More information

Fossils Biology 2 Thursday, January 31, 2013

Fossils Biology 2 Thursday, January 31, 2013 Fossils Biology 2 Evolution Change in the genetic composition of a group of organisms over time. Causes: Natural Selection Artificial Selection Genetic Engineering Genetic Drift Hybridization Mutation

More information

A brief history of the Earth!

A brief history of the Earth! A brief history of the Earth! The Geologic Time Scale Age of the Earth Hadean Eon Hadean Eon (4.57-3.85 Gyrs) Hell on Earth: 4.527 Gyrs formation of Moon 4.5 Gyrs - magma ocean, differentiation of core,

More information

History of life on Earth Mass Extinctions.

History of life on Earth Mass Extinctions. History of life on Earth Mass Extinctions. Agenda or Summary Layout A summary of the topics discussed 1 2 3 4 Explanation of Mass extinctions The five major mass extinctions Two particular extinctions

More information

Warm Up Name the 5 different types of fossils

Warm Up Name the 5 different types of fossils Warm Up Name the 5 different types of fossils Timeline that organizes the events in Earths history. Earth is about 4.7 billion years old. More complex organism such as land plants and fish evolved only

More information

The Significance of the Fossil Record ( Susan Matthews and Graeme Lindbeck)

The Significance of the Fossil Record ( Susan Matthews and Graeme Lindbeck) The Significance of the Fossil Record ( Susan Matthews and Graeme Lindbeck) The fossil record indicates the evolutionary history of life. Many events together, including: continental drift, changes in

More information

The history of Life Section 19.1: The fossil record

The history of Life Section 19.1: The fossil record The history of Life Section 19.1: The fossil record Fossils and Ancient Life Fossils provide information about extinct species Fossils can vary greatly Different sizes, types and degrees of preservation

More information

Links to help understand the immensity of the Geologic Time Scale

Links to help understand the immensity of the Geologic Time Scale Links to help understand the immensity of the Geologic Time Scale http://www.bonnechere.ca/naturalhistory.htm http://comp.uark.edu/~sboss/geotime.htm http://www.britannica.com/ebchecked/media/1650/the-geologic-time-scale-from-650-million-years-ago-to

More information

Chapter 12. Life of the Paleozoic

Chapter 12. Life of the Paleozoic Chapter 12 Life of the Paleozoic Paleozoic Invertebrates Representatives of most major invertebrate phyla were present during Paleozoic, including sponges, corals, bryozoans, brachiopods, mollusks, arthropods,

More information

Geologic Time on a Strip of Paper

Geologic Time on a Strip of Paper Geologic Time on a Strip of Paper Introduction The Earth is 4,600,000,000 years old. That s 4.6 billion years! But what does this mean? This activity is designed to help you get a feel for the age of the

More information

4) Outline the major developments that allowed life to exist on Earth.

4) Outline the major developments that allowed life to exist on Earth. Objectives 4) Outline the major developments that allowed life to exist on Earth. 5) Describe the types of organisms that arose during the four major divisions of the geologic time scale. Each layer of

More information

Clues to the Past. Grades 6-8 Educational Program Guide

Clues to the Past. Grades 6-8 Educational Program Guide Clues to the Past Grades 6-8 Educational Program Guide OAS Science Practices: 1, 2, 3, 4, 6, 7, 8 Program Overview The Clues to the Past program will introduce students to several 300 million years old

More information

.Biology Chapter 14 Test: The History of Life

.Biology Chapter 14 Test: The History of Life Class: Date:.Biology Chapter 14 Test: The History of Life True/False Indicate whether the statement is true or false. 1. On the geologic time scale, an eon is longer than an era. 2. The oblong shape of

More information

UNIT 4: History Of Biological Diversity

UNIT 4: History Of Biological Diversity UNIT 4: History Of Biological Diversity CHAPTER 14: The History of Life PAST NOW FUTURE? What is this? Earth s Early history Approximately 4.6 billion years ago, the Earth was formed when many pieces of

More information

Chapter 26. Origin of Life

Chapter 26. Origin of Life Chapter 26. Origin of Life 1 The history tree of life can be documented with evidence as already discussed. The Origin of Life on Earth is another story 2 Origin of Life hypothesis Abiotic synthesis of

More information

Unit 6: Interpreting Earth s History

Unit 6: Interpreting Earth s History Unit 6: Interpreting Earth s History How do we know that the Earth has changed over time? Regent s Earth Science Name: Topics Relative Dating Uniformitarianism Superposition Original Horizontality Igneous

More information

MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale

MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale evolutionary changes such as speciation events, origin of

More information

PTYS 214 Spring Announcements Midterm #4: two weeks from today!

PTYS 214 Spring Announcements Midterm #4: two weeks from today! PTYS 214 Spring 2018 Announcements Midterm #4: two weeks from today! 1 Previously Radiometric Dating Compare parent / daughter to determine # of half lives 14C, 40K, 238U, 232Th, 87Ru Evidence for Early

More information

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes. Earth s History Date: Been There, Done That What is the principle of uniformitarianism? The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

More information

Study Guide. Section 1: Fossil Evidence of Change CHAPTER 14

Study Guide. Section 1: Fossil Evidence of Change CHAPTER 14 Name Date Class Study Guide CHAPTER 14 Section 1: Fossil Evidence of Change In your textbook, read about Earth s early history. For each statement below, write true or false. 1. Solid Earth formed about

More information

The Environment and Change Over Time

The Environment and Change Over Time The Environment and Change Over Time Fossil Evidence of Evolution What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if

More information

UNDERSTANDING GEOLOGIC TIME

UNDERSTANDING GEOLOGIC TIME Name: Date: Period: UNDERSTANDING GEOLOGIC TIME The earth is 4.6 billion years old. That s a long time! The scale of geologic time is so different from what human beings experience that it s often quite

More information

Cycles in the Phanerozoic

Cycles in the Phanerozoic Cycles in the Phanerozoic Evolutionary trends: extinctions, adaptive radiations, diversity over time Glaciations Sea level change Ocean chemistry Atmospheric CO 2 biosphere Mass extinctions in the..you

More information

12.1. KEY CONCEPT Fossils are a record of life that existed in the past. 68 Reinforcement Unit 4 Resource Book

12.1. KEY CONCEPT Fossils are a record of life that existed in the past. 68 Reinforcement Unit 4 Resource Book 12.1 THE FOSSIL RECORD KEY CONCEPT Fossils are a record of life that existed in the past. Fossils can form in several different ways: Permineralization occurs when water surrounds a hard structure such

More information

Bio94 Discussion Activity week 3: Chapter 27 Phylogenies and the History of Life

Bio94 Discussion Activity week 3: Chapter 27 Phylogenies and the History of Life Bio94 Discussion Activity week 3: Chapter 27 Phylogenies and the History of Life 1. Constructing a phylogenetic tree using a cladistic approach Construct a phylogenetic tree using the following table:

More information

Chapter Introduction. Chapter Wrap-Up. Explosion

Chapter Introduction. Chapter Wrap-Up. Explosion Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Chapter Wrap-Up Geologic Time Ancient Earth The Cambrian Explosion How have natural events changed Earth over time? What do you think? Before you begin,

More information

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 3 Minerals, Rocks, and Structures Section 7 Reading the Geologic History of Your Community What Do You See? Learning Outcomes In this section, you will Goals Text Learning Outcomes In this section,

More information

Earth s Evolution Through Time

Earth s Evolution Through Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Earth s Evolution Through Time Earth 9 th edition Chapter 22 Earth s evolution: summary in haiku form Super-continents have come and gone many times: giant bumper cars.

More information

Mesozoic Era 251 m.y.a 65.5 m.y.a

Mesozoic Era 251 m.y.a 65.5 m.y.a Mesozoic Cenozoic notes.notebook Mesozoic & Cenozoic 251 m.y.a Present at the end of the Permian, 90% of marine organisms and more than 70% of land organisms died. because resources and space were readily

More information

Geologic Time. Mr. Skirbst

Geologic Time. Mr. Skirbst Geologic Time Mr. Skirbst Geologic Time Geologic Time Scale Describing and dividing major events of Earth s history Like a timeline of your life! Birth Like a timeline of your life! Like a timeline of

More information

Tracing Evolutionary History (Outline)

Tracing Evolutionary History (Outline) Tracing Evolutionary History (Outline) Four stages leading to emergence of living cells Geophysical conditions impact on biodiversity: - continental drift and volcanism, earthquakes and meteorites Living

More information

EVOLUTION OF COMPLEX LIFE FORMS

EVOLUTION OF COMPLEX LIFE FORMS 0.002 0.6 1.0 1.9 2.8 Ancestral humans Diversification of mammals Invasion of the land Diversification of animals Origin of the major eukaryotic groups Eukaryotic cells abundant Atmospheric oxygen plentiful

More information

3. The diagram below shows how scientists think some of Earth's continents were joined together in the geologic past.

3. The diagram below shows how scientists think some of Earth's continents were joined together in the geologic past. 1. The map below shows the present-day locations of South America and Africa. Remains of Mesosaurus, an extinct freshwater reptile, have been found in similarly aged bedrock formed from lake sediments

More information

Mass Extinctions &Their Consequences

Mass Extinctions &Their Consequences Mass Extinctions &Their Consequences Taxonomic diversity of skeletonized marine animal families during the Phanerozoic Spindle diagram of family diversification/extinction PNAS 1994. 91:6758-6763. Background

More information

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways UNIT IV Chapter 12 The History Of Life UNIT 4: EVOLUTION Chapter 12: The History of Life I. The Fossil Record (12.1) A. Fossils can form in several ways 1. Permineralization- minerals carried by water

More information

Chapter 1: Life on Earth R E V I E W Q U E S T I O N S

Chapter 1: Life on Earth R E V I E W Q U E S T I O N S Chapter 1: Life on Earth R E V I E W Q U E S T I O N S Chapter 1: Review Name three characteristics that define something as Alive. Chapter 1: Review Name three characteristics that define something as

More information

The Origin of Life. Lab Exercise 18. Contents. Introduction. Objectives

The Origin of Life. Lab Exercise 18. Contents. Introduction. Objectives Lab Exercise The Origin of Life Contents Objectives 1 Introduction 1 Activity.1 Geologic Time 2 Activity.2 Time Periods 2 Resutls Section 6 Introduction The history of the earth is recorded in the rocks

More information

Biological Evolution. Darwinian Evolution and Natural Selection

Biological Evolution. Darwinian Evolution and Natural Selection Biological Evolution Darwinian Evolution and Natural Selection 1. Linnaean Classification Major Concepts 2. Fossils 3. Radioactive Dating 4. Fossil Record and Genetic Analysis 5. Theory of Evolution Random,

More information

The History of Life on Earth

The History of Life on Earth 8 The History of Life on Earth lesson 1 Geologic Time and Mass Extinctions Grade Seven Science Content Standard. 4.b. Students know the history of life on Earth has been disrupted by major catastrophic

More information

Geologic Time. What have scientists learned about Earth s past by studying rocks and fossils?

Geologic Time. What have scientists learned about Earth s past by studying rocks and fossils? Name Geologic Time What have scientists learned about Earth s past by studying rocks and fossils? Before You Read Before you read the chapter, think about what you know about geologic time Record your

More information

LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts...

LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts... GEOL 0820 Ramsey Natural Disasters Spring, 2018 LECTURE #25: Mega Disasters - Mass Extinctions, Meteorite Impacts... Date: 19 April 2018 I. Time & Life on Earth geologic time scale o divided into named

More information

Geologic Time and Life in the Oceans. Oceans and Life. How Old is Earth? The Solar System? Oceans are the birthplace of life.

Geologic Time and Life in the Oceans. Oceans and Life. How Old is Earth? The Solar System? Oceans are the birthplace of life. Geologic Time and Life in the Oceans Oceans and Life Oceans are the birthplace of life. Life metabolism, growth, reproduction, response to stimuli Metabolism use of energy stored in ambient chemicals Reproduction

More information

Name Class Date. 2. What first appeared on Earth during Precambrian time? a. dinosaurs b. mammals c. life d. humans

Name Class Date. 2. What first appeared on Earth during Precambrian time? a. dinosaurs b. mammals c. life d. humans Skills Worksheet Directed Reading B Section: Eras of the Geologic Time Scale 1. What are the four biggest eras in geologic history? a. Precambrian, Paleozoic, Mesozoic, and Cenozoic b. Precambrian, Prehistoric,

More information

Phylogeny & Systematics

Phylogeny & Systematics Phylogeny & Systematics Phylogeny & Systematics An unexpected family tree. What are the evolutionary relationships among a human, a mushroom, and a tulip? Molecular systematics has revealed that despite

More information

Please take out your fill-in notes again, and we will continue learning about extinct creatures.

Please take out your fill-in notes again, and we will continue learning about extinct creatures. Today s Topic Evolution: Extinction Learning Goal: SWBAT explain why creatures go extinct from Earth, and why some recently-extinct creatures have gone extinct. Please take out your fill-in notes again,

More information

A Trip Through Geologic Time

A Trip Through Geologic Time Date Class _ A Trip Through Geologic Time Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. Late in the Paleozoic Era, the supercontinent Pangaea formed.

More information

THE ORDOVICIAN EXTINCTION. 444 million years ago

THE ORDOVICIAN EXTINCTION. 444 million years ago THE ORDOVICIAN EXTINCTION 444 million years ago TOTAL GENERA THROUGH THE PHANEROZOIC ERA The Cambrian to the Present PERMIAN TRIASSIC CRETACEOUS Holocene The Present Miocene DEVONIAN ORDOVICIAN Mississippian

More information