Proterozoic Life and Environments

Size: px
Start display at page:

Download "Proterozoic Life and Environments"

Transcription

1 Proterozoic Life and Environments (or: 3 billion years in 70 minutes) Cambrian Explosion Origin of Life Great Oxygenation Event

2 Origin of Life

3 Early Life Localities >2.5 Ga Named localities: >3.2 Ga

4 Isua (Greenland) Earliest Life? Oldest known sedimentary rocks ( Ga) Carbon isotope composition (of graphite) suggestive of life Alternative possibility: Abiotic Fischer-Tropsch synthesis of hydrocarbons

5 Pilbara (Australia) Earliest Fossils? Oldest (3.47 Ga) unmetamorphosed sedimentary rocks Contains putative microfossils of ancient bacteria

6 Fossils are just abiotic features formed as rims around shards of volcanic glass and chert Microfossils may not even occur in sedimentary rocks!

7 Schopf responded that some were just folded or decayed Also used new techniques of 3D confocal microscopy and laser Raman spetrometry Spherical cells of made of carbon (kerogen)

8 More evidence - Stromatolites

9 Stromatolites 3.4 Ga Western Australia Structures composed of alternating layers of sediment, trapped and bound by microbes But are they a sign of life? stromatoloid

10 It is fairly certain that life was present by 3.4 Ga

11 Earliest organisms were prokaryotes (bacteria and archaea)

12 Microbial Metabolism Light Phototrophy Oxygenic photosynthesis (producing oxygen) like in plants and cyanobacteria Anoxygenic photosynthesis, using light to get energy from chemical molecules Chemicals Chemotrophy Based on redox (reduction or oxidation) chemical reactions E.g., oxidizing Fe +2 to Fe +3 Elements used: S, Fe, H, N, P, Mn, As, U, Mo, Hg, and probably many more

13 Metabolism of Archean microbes Methanogenesis present by 3.47 Ga CO H 2 CH 4 + 2H 2 O Evidence from carbon isotopes (assuming fluid inclusions are primary) Sulfate reduction also present by 3.47 Ga SO CH 2 O H 2 S + 2 HCO 3 - Evidence from sulfur isotopes ( 36 S, 34 S, 33 S, 32 S)

14 Metabolism of Archean microbes Anoxygenic photosynthesis likely present by 3.4 Ga (or even 3.8 Ga) Use light to oxidize iron ( photoferrotrophy ) or hydrogen (H 2 ) Iron isotopes of early Archean rocks are enriched, consistent with anoxygenic photosynthesis But isotope signature of abiotic iron oxidation is about the same

15 Great Oxygenation Event Archean atmosphere was oxygen-free (<0.001% PAL, present atmospheric levels) When (and why) did oxygen levels rise?

16 Cyanobacteria Oxygenation of the atmosphere (and ocean) is a story of oxygenic photosynthesis and of the evolution of cyanobacteria

17 Oxygenic Photosynthesis CO 2 + H 2 O + Light = O 2 + Organics Rise of oxygen was a fundamental change to the terrestrial biosphere = 1) Atmospheric oxygen led to development of ozone (O 3 ) layer, blocking damaging ultraviolet radiation 2) Ultimately allowed evolution of large, complex cells When did oxygenic photosynthesis (=cyanobacteria) evolve?

18 Biomarkers Complex organic molecules diagnostic of a particular group Usually lipids that were part of the cell membrane = 2a-methylhopane indicates presence of cyanobacteria

19 Cyanobacteria Evolution Bill Schopf argued for 3.5 Ga cyanobacteria But now that conclusion is criticized and generally thought to be wrong = In 1999, cyanobacterial biomarkers were discovered in late Archean (2.7 Ga) oil But in 2008 some of the original authors did additional analyses showing that the oil was not indigenous (actually formed and seeped into the rock sometime after 2.2 Ga)

20 Cyanobacteria Evolution The oldest confident evidence for cyanobacteria (at this point) is 2.15 Ga fossils from Canada But maybe we can use a more indirect method: looking for the increase in atmospheric oxygen produced by cyanobacteria Evidence: Redox-sensitive elements and minerals can be used as proxies for atmospheric oxygen levels

21 Banded Iron Formations Sediments with alternating layers of: Chert (SiO 2 ) Oxidized iron minerals When there is no oxygen, iron (Fe +2 ) stays dissolved in water Iron (Fe +3 ) precipitates as minerals when oxygen is present

22 Vast majority of BIFs formed between Ga Do Archean BIFs indicate local or temporary oxygenation? End of BIF deposition at 1.8 Ga thought to indicate final oxygenation of oceans Actually indicates depletion of Fe in sulfidic deep ocean

23 Manganese Deposits Like Fe, manganese is soluble in anoxic water but precipitates in oxygenated oceans vast majority formed around 2.4 Ga

24 Detrital Minerals Minerals like pyrite (FeS 2 ) and uraninite (UO 2 ) are not stable and oxidize in an oxygenated atmosphere Detrital pyrite/uraninite (in river sediment) was common >2.4 Ga Detrital pyrite

25 Red Beds Red bed paleosols (ancient soils) first appear after 2.2 Ga Red color indicates oxidized iron (Not Proterozoic)

26 Sulfur Isotopes Archean sulfur isotope signal produced by UV radiation (photolysis) After 2.4 Ga, oxygen increased to form ozone layer, blocking UV radiation Biological effects then were more important

27 Mass-independent fractionation by UV dominates prior to 2.4 Ga, but is absent after (all fractionation is mass-dependent)

28 The Oxygen Revolution Proxy evidence suggests that atmospheric oxygen levels increased rapidly (between Ga) from <0.001% PAL to 1-10% PAL Proxies: -Banded iron formations and manganese deposits -Detrital pyrite and uraninite -Paleosol red beds -Molybdenum concentrations in sediment -Sulfur isotopes

29 The Oxygen Revolution Why did oxygenic photosynthesis evolve so long (>1 Gyr) after life evolved? Oxygen is damaging to living cells, which have had to evolve a number of enzymes to reduce oxidative damage

30 Deep Ocean Anoxia Deep ocean remained anoxic for another 1.7 Gyr, until the Neoproterozoic-Cambrian transition

31 But oxygenation of surface ocean also provided evolutionary opportunities allowed evolution of more complex eukaryotic cells Oldest Eukaryote

32 Eukaryotes the third major domain of life

33

34 Eukaryote Diversification Oxygen Revolution Many crown-group eukaryotes had evolved by mid-neoproterozoic (750 Ma)? First Eukaryote Neoproterozoic Testate Amoeba Modern Testate Amoeba

35 Cambrian Explosion 3. Body fossils Actually lasted Ma 2. Small Shelly Fossils (SSF) 1. Trace Fossils

36 Ediacaran Biota Large, soft-bodied organisms from the late Precambrian

37 Ediacara Biota Three distinct assemblages from 575 to 540 Ma Nama White Sea Avalon

38 Failed Experiments: Rangeomorphs Modular construction Fractal branching

39 Evolutionary Innovation: Mobility First trace fossils indicate mobile bilaterian-grade animals

40 Evolutionary Innovation: Grazing Scratching and other feeding traces of mobile animals

41 Disappearance of the Rangeomorphs Their food source (dissolved organic carbon) disappeared But this increased oxygen levels, allowing motile and skeletonized organisms to evolve Rangeomorphs were the most abundant fossil in early Ediacaran communities, but rare later

42 Trace Fossils Behavioral Complexity Late Proterozoic traces were rare and were exclusively horizontal grazing burrows But in the Cambrian, traces were common, many were vertical, and represented a wider range of behaviors (feeding, dwelling, resting, movement, )

43 Small Shelly Fossils Small shelly fossils (SSF) are the earliest signs of the rapid diversification of Cambrian animals Common in the earliest Cambrian, 10 Myr before the first large crown group body fossils Some are known crown-group taxa, but many are parts of larger, unknown animals

44

45 Body Fossil Diversification Most evidence for the Cambrian explosion comes from body fossils Diversity and disparity increased rapidly from Ma

46 What Caused the Cambrian Explosion? Animal diversity and disparity were low in the Ediacaran and there were very few skeletonized animal taxa What caused the increased diversity and disparity during the Early Cambrian? 1. Changes in ocean water chemistry 2. Increased oxygen concentration 3. Genetic innovations 4. Ecological interactions

47 Ocean Chemistry Changes Most marine animals make shells from calcium carbonate (CaCO 3 ) Increase in Ca concentration during Proterozoic-Cambrian transition Could the Cambrian explosion have been an explosion of skeletonization, not an actual diversification?

48 Increased Oxygen Concentration Large motile organisms have high metabolic needs, and making a skeleton is metabolically costly (metabolism requires oxygen) Could an increase in oxygen levels have triggered Early Cambrian diversification? No, but it was an important threshold in the Ediacaran First motile bilaterians after 555 Ma oxygenation event Post-Snowball oxygen rise allowed evolution of large animals

49 Did the proliferation of body plans result from increased genetic complexity? Hox genes are responsible for large-scale body patterning (segmentation, anterior-posterior and dorso-ventral axes, etc.) Genetic Innovations

50 However, the Hox gene toolkit had evolved by the late Proterozoic with the Bilateria (some Hox genes present in the Eumetazoa)

51 Ecological Interactions Predators first evolved in the Early Cambrian

52 Ecological Interactions Motility was a much more common trait among Cambrian organisms (although was present in Ediacaran) Some organisms evolved to actively move through the sediment

53 Ecological Interactions Vertical burrowing (bioturbation) changed the nature of the seafloor in the Early Cambrian

54 When organisms only have to adapt to one constraint (e.g., maximizing food gathering), there are only a few optimal morphologies to satisfy that constraint But as more constraints are added (avoiding predation, maximizing reproduction, adapting to soft substrates), there is no single optimal strategy Ecological feedback cycle

55 Take-Home Messages 1. Carbon isotopes, microfossils and stromatolites suggest that life evolved sometime during the first billion years of Earth history, at least by Ga, but perhaps earlier. 2. Early life used chemicals (sulfur or hydrogen) for energy or used sunlight to oxidize iron (or H 2 ). Oxygen-producing photosynthesis evolved (much) later. 3. The release of oxygen by cyanobacteria led to a rise in atmospheric oxygen around 2.4 Ga, to 1-10% of present levels. 4. 1) Detrital minerals, 2) red beds, 3) banded iron formations, 4) molybdenum levels, and 5) sulfur isotopes are proxies for atmospheric oxygen concentrations.

56 Take-Home Messages 5. Cambrian Explosion was stepwise appearance of major animal groups and complex behaviors over 40 million years, indicated by trace fossils, small shelly fossils, and body fossils. 6. Necessary precursors included increased oxygen levels and genetic complexity, but ecological interactions (such as predation) were important causes of diversification.

Effect of Life on the Atmosphere: The Rise of Oxygen and Ozone

Effect of Life on the Atmosphere: The Rise of Oxygen and Ozone Some preliminary chemistry Chapter 11 Effect of Life on the Atmosphere: The Rise of Oxygen and Ozone Chemical reactions involve the giving and taking of electrons between atoms. the nucleus is not affected

More information

PTYS 214 Spring Announcements Midterm #4: two weeks from today!

PTYS 214 Spring Announcements Midterm #4: two weeks from today! PTYS 214 Spring 2018 Announcements Midterm #4: two weeks from today! 1 Previously Radiometric Dating Compare parent / daughter to determine # of half lives 14C, 40K, 238U, 232Th, 87Ru Evidence for Early

More information

History of Life on Earth

History of Life on Earth History of Life on Earth Deep Time 4550 mya to present era eon era era Precambrian Eon Hadean Era Geology Birth of solar system - 4.55 bya Escaping gasses create early atmosphere Earth s core forms - 4.4

More information

Life Beyond Earth. Ediacaran Fossil, one of the first multicellular organisms

Life Beyond Earth. Ediacaran Fossil, one of the first multicellular organisms Life Beyond Earth Ediacaran Fossil, one of the first multicellular organisms Life As We Know It 2 How do we define life? When did life arise on Earth and how do we know? What factors are required for life?

More information

Outline 11: Fossil Record of Early Life Life in the Precambrian

Outline 11: Fossil Record of Early Life Life in the Precambrian Outline 11: Fossil Record of Early Life Life in the Precambrian Time Line 0.545 BY animals with hard parts, start of the Phanerozoic Eon 0.600 BY first animals, no hard parts 2.0 BY first definite eukaryotes

More information

First, an supershort History of the Earth by Eon

First, an supershort History of the Earth by Eon HISTORY OF LIFE WRITTEN IN THE ROCKS (geological record): notice how at first no life, very simple if for billions of years, complex life only recently 600 mya In these chapters, two primary themes: History

More information

The Proterozoic Eon (2500 ma to 540 ma)

The Proterozoic Eon (2500 ma to 540 ma) The Proterozoic Eon (2500 ma to 540 ma) December November October September August July June May April March February January 0 Ma Phanerozoic C M P 540 Ma oldest shelly fossils Proterozoic 2500 Ma first

More information

3. Evolutionary change is random because gene mutations are random. A. True B. False

3. Evolutionary change is random because gene mutations are random. A. True B. False Clicker Questions, Test 2 February 9, 2015, Outline 7 1. Darwin coined the term Natural Selection to contrast with what other term? A. Evolutionary Selection B. Competition C. Artificial Selection D. Survival

More information

The Hadean Earth Gya Impacts melt the surface. Volatiles escape to space

The Hadean Earth Gya Impacts melt the surface. Volatiles escape to space Life on Earth. II 4.5-3.9 Gya Impacts melt the surface. Volatiles escape to space The Hadean Earth Source of atmosphere, oceans: outgassing and impacts Early atmosphere: CO 2, H 2 O, N 2, H 2 S, SO 2,

More information

Calculating extra credit from clicker points. Total points through last week: Participation: 6 x 2 = 12 Performance: = 26

Calculating extra credit from clicker points. Total points through last week: Participation: 6 x 2 = 12 Performance: = 26 Clicker Questions, Test 2 February 10, 2016, Outline 7 1. Darwin coined the term Natural Selection to contrast with what other term? A. Evolutionary Selection B. Competition C. Artificial Selection D.

More information

b. By Proterozoic, - protected from solar radiation if about 10 M below surface of water - dominated by

b. By Proterozoic, - protected from solar radiation if about 10 M below surface of water - dominated by I. Diversification of Life A. Review 1. Hadean Eon a. b. 2. Archaean Eon a. Earliest fossils of b. Establishment of three major domains B. Proterozoic Eon (2.5 bya - 543 mya) 1. Emergence of the a. Rock

More information

Ch. 12 Proterozoic Eon

Ch. 12 Proterozoic Eon Ch. 12 Proterozoic Eon Proterozoic Eon is ~ 1.95 billion years in duration, from 2.5 Ga to 0.543 Ga 2.5 Ga 1.6 Ga 1.0 Ga 0.54 Ga Paleoproterozoic Era Mesoproterozoic Era Neoproterozoic Era PROTEROZOIC

More information

Chapter 11. The Archean Era of Precambrian Time

Chapter 11. The Archean Era of Precambrian Time Chapter 11 The Archean Era of Precambrian Time 1 Guiding Questions When and how did Earth and its moon come into being? How did the core, mantle, crust form? Where did Archean rocks form, and what is their

More information

WERE FE(II) OXIDIZING PHOTOAUTOTROPHS INVOLVED IN THE DEPOSITION OF PRECAMBRIAN BANDED IRON

WERE FE(II) OXIDIZING PHOTOAUTOTROPHS INVOLVED IN THE DEPOSITION OF PRECAMBRIAN BANDED IRON 19 1. Introduction WERE FE(II) OXIDIZING PHOTOAUTOTROPHS INVOLVED IN THE DEPOSITION OF PRECAMBRIAN BANDED IRON FORMATIONS? Banded Iron Formations (BIFs) are ancient sedimentary rocks characterized by laminations

More information

EVOLUTION OF COMPLEX LIFE FORMS

EVOLUTION OF COMPLEX LIFE FORMS 0.002 0.6 1.0 1.9 2.8 Ancestral humans Diversification of mammals Invasion of the land Diversification of animals Origin of the major eukaryotic groups Eukaryotic cells abundant Atmospheric oxygen plentiful

More information

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time...

Text Readings. Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # Geologic Time... Text Readings Chapter # 17 in Audesirk, Audesirk and Byers: The History of Life Pg. # 332-145. Geologic Time........ Geological Sources - 4.5 Billion Years Atmospheric Gases: Nitrogen (N 2 ) Water Vapor

More information

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another

Origin of Life. What is Life? The evolutionary tree of life can be documented with evidence. The Origin of Life on Earth is another sparked by just the right combination of physical events & chemical processes Origin of Life 500 Paleozoic 1500 2000 2500 3000 3500 ARCHEAN Millions of years ago 1000 PROTEROZOIC Cenozoic Mesozoic 4000

More information

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20)

sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) sparked by just the right combination of physical events & chemical processes Life s Origin & Early Evolution (Ch. 20) 2007-2008 ARCHEAN Millions of years ago PRECAMBRIAN PROTEROZOIC 0 500 1000 Cenozoic

More information

S= 95.02% S= 4.21% 35. S=radioactive 36 S=0.02% S= 0.75% 34 VI V IV III II I 0 -I -II SO 4 S 2 O 6 H 2 SO 3 HS 2 O 4- S 2 O 3

S= 95.02% S= 4.21% 35. S=radioactive 36 S=0.02% S= 0.75% 34 VI V IV III II I 0 -I -II SO 4 S 2 O 6 H 2 SO 3 HS 2 O 4- S 2 O 3 SULFUR ISOTOPES 32 S= 95.02% 33 S= 0.75% 34 S= 4.21% 35 S=radioactive 36 S=0.02% S-H S-C S=C S-O S=O S-F S-Cl S-S VI V IV III II I 0 -I -II SO 4 2- S 2 O 6 2- H 2 SO 3 HS 2 O 4- S 2 O 3 2- S 2 F 2 S H

More information

Global Carbon Cycle - I

Global Carbon Cycle - I Global Carbon Cycle - I Reservoirs and Fluxes OCN 401 - Biogeochemical Systems 13 November 2012 Reading: Schlesinger, Chapter 11 Outline 1. Overview of global C cycle 2. Global C reservoirs 3. The contemporary

More information

Outline. Origin and History of Life

Outline. Origin and History of Life Origin and History of Life Chapter 19 Primitive Earth Origin of First Cells Fossils The Precambrian The Paleozoic The Mesozoic The Cenozoic Continental Drift Mass Extinctions Outline 1 2 The Primitive

More information

X The evolution of life on Earth.

X The evolution of life on Earth. X The evolution of life on Earth http://sgoodwin.staff.shef.ac.uk/phy229.html 10.0 Introduction A combination of the fossil record, biology and genetics allows us to examine the evolution of life on Earth.

More information

ORIGIN OF METABOLISM What was the earliest life and where did it get its energy?

ORIGIN OF METABOLISM What was the earliest life and where did it get its energy? ORIGIN OF METABOLISM What was the earliest life and where did it get its energy? Geological stratigraphy, together with radioactive dating, show the sequence of events in the history of the Earth. Note

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Global Carbon Cycle - I

Global Carbon Cycle - I Global Carbon Cycle - I OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 11 1. Overview of global C cycle 2. Global C reservoirs Outline 3. The contemporary global C cycle 4. Fluxes and residence

More information

Electrons, life and the evolution of Earth s chemical cycles*

Electrons, life and the evolution of Earth s chemical cycles* Electrons, life and the evolution of Earth s chemical cycles* 4H2O > 4e - + 4H + + O2 CO2 + 4e - + 4H + > (CH2O) + H2O OCN 623 Chemical Oceanography 25 April 2017 *largely based on Falkowski and Godfrey

More information

sparked by just the right combination of physical events & chemical processes Origin of Life

sparked by just the right combination of physical events & chemical processes Origin of Life sparked by just the right combination of physical events & chemical processes Origin of Life 2010-2011 ARCHEAN Millions of years ago PRECAMBRIAN PROTEROZOIC 0 500 1000 Cenozoic Mesozoic Paleozoic Colonization

More information

Chapter 19. History of Life on Earth

Chapter 19. History of Life on Earth Chapter 19 History of Life on Earth Adapted from Holt Biology 2008 Chapter 19 Section 3: Evolution of Life Key Vocabulary Terms Adapted from Holt Biology 2008 Cyanobacteria Photosynthetic prokaryotes Adapted

More information

Chapter 25: The Origin and Evolutionary History of Life on Earth

Chapter 25: The Origin and Evolutionary History of Life on Earth Chapter 25: The Origin and Evolutionary History of Life on Earth Chemical conditions of the early Earth A model for the first cells First life Life changes the planet: oxygenating Earth s oceans and atmosphere

More information

Bio 100 Study Guide 14.

Bio 100 Study Guide 14. Bio 100 Study Guide 14 http://www.swarthmore.edu/natsci/cpurrin1/evolk12/slm/origindayimages/06soup.jpg The Origin of Life 1. Conditions on early earth 2. Abiogenic synthesis organic molecules 3. Hot rocks

More information

CHAPTER 19 THE HISTORY OF LIFE. Dr. Bertolotti

CHAPTER 19 THE HISTORY OF LIFE. Dr. Bertolotti CHAPTER 19 THE HISTORY OF LIFE Dr. Bertolotti Essential Question: HOW DO FOSSILS HELP BIOLOGISTS UNDERSTAND THE HISTORY OF LIFE ON EARTH? WHAT DO FOSSILS REVEAL ABOUT ANCIENT LIFE? FOSSILS AND ANCIENT

More information

Earth History & Geobiology. O. Jagoutz

Earth History & Geobiology. O. Jagoutz Earth History & Geobiology O. Jagoutz 12.001 Intro: Earth differs from other rocky planets by the presence of the hydrosphere, free oxygen and the presence of complex life. It is a major scientific challenge

More information

Development of Life. Stephen Eikenberry 06 September 2012 AST 2037

Development of Life. Stephen Eikenberry 06 September 2012 AST 2037 Development of Life Stephen Eikenberry 06 September 2012 AST 2037 1 Evolution This time with a capital E Reproduction occurs via DNA Any change in the DNA from one generation to the next creates mutation

More information

SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 2

SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 2 SAMPLE QUESTIONS FOR GEOLOGY 103, TEST 2 The correct answers are listed at the bottom (no peeking!). These questions are to give you an idea of the type of questions that will be asked. They are not a

More information

SCOPE 35 Scales and Global Change (1988)

SCOPE 35 Scales and Global Change (1988) 1. Types and origins of marine sediments 2. Distribution of sediments: controls and patterns 3. Sedimentary diagenesis: (a) Sedimentary and organic matter burial (b) Aerobic and anaerobic decomposition

More information

Chemolithoautotrophs: Archaea

Chemolithoautotrophs: Archaea Chemolithoautotrophs: Archaea These critters figured out how to do something incredible. they began taking CO 2 out of the air, and using it to make sugars. The byproduct was OXYGEN. Stage 7: Paleoproterozoic

More information

EVOLUTION OF PLANTS THROUGH AGES

EVOLUTION OF PLANTS THROUGH AGES EVOLUTION OF PLANTS THROUGH AGES B. Sc. III Botany Dr. (Miss) Kalpana R. Datar Assistant Professor DEPARTMENTOF BOTANY WILLINGDON COLLEGE, SANGLI. kalpana_datar@yahoo.com The origin of Earth 1.Ultra dense,

More information

Origins of Life & the Cambrian Explosion

Origins of Life & the Cambrian Explosion Origins of Life & the Cambrian Explosion Impact Frustration period forces origins of life into a narrow time period to have gotten started! Hydrothermal vents may have served as zones of refuge. Origin

More information

Origins of Life & the Cambrian Explosion

Origins of Life & the Cambrian Explosion Origins of Life & the Cambrian Explosion Impact Frustration period forces origins of life into a narrow time period to have gotten started! Hydrothermal vents may have served as zones of refuge. 1 Origin

More information

Cycles in the Phanerozoic

Cycles in the Phanerozoic Cycles in the Phanerozoic Evolutionary trends: extinctions, adaptive radiations, diversity over time Glaciations Sea level change Ocean chemistry Atmospheric CO 2 biosphere Mass extinctions in the..you

More information

HISTORY OF LIFE ON EARTH

HISTORY OF LIFE ON EARTH HISTORY OF LIFE ON EARTH EARTH S HISTORY Earth s age: - about 4.6 billion years old (big bang) First life forms appeared ~3.5 billion years ago How did life arise? 1. Small organic molecules were synthesized

More information

Classification & History of Life

Classification & History of Life Classification & History of Life Today & next time Taxonomy Modes of Life Origin of Life Traditional new History of life Taxonomy: Organize life into related groups Traditional Taxonomy Grouped by shared

More information

The Environmental Importance of Microbial Sulfate Reduction and Disproportionation: Insights from SIMS-based δ34s Measurements

The Environmental Importance of Microbial Sulfate Reduction and Disproportionation: Insights from SIMS-based δ34s Measurements The Environmental Importance of Microbial Sulfate Reduction and Disproportionation: Insights from SIMS-based δ34s Measurements David A. Fike Washington University, St. Louis, MO 63130, USA Metabolism Environment

More information

IX Life on Earth.

IX Life on Earth. IX Life on Earth http://sgoodwin.staff.shef.ac.uk/phy229.html 9.0 Introduction Life exists on the surface layers of the Earth. We cannot consider life and the planet separately: they interact with one

More information

IV. Major events in biological development on Earth

IV. Major events in biological development on Earth IV. Major events in biological development on Earth Cambrian explosion We are trying to fill in some of the biological details in the timelines shown here. Meiosis UV shield Snowball Earth XX Horizontal

More information

Chapter 11 (Geologic Time)

Chapter 11 (Geologic Time) Chapter 11 (Geologic Time) Knowing the chronology of events is crucial for interpreting geologic history. One of the early figures in geology, James Hutton, observed of geologic time that there is "No

More information

The Proterozoic: Ga. Archean-early Proterozoic Continents:

The Proterozoic: Ga. Archean-early Proterozoic Continents: The Proterozoic: 2.5-0.542 Ga Early Proterozoic Orogenesis ~ modern Growth of continents and Supercontinents Life and Environments of Proterozoic Archean-early Proterozoic Continents: First large continent

More information

Origin & History of Life

Origin & History of Life Origin & History of Life SIX Kingdoms! New one = Archea Thanks C. Woese Prokaryotes = no discrete nucleus containing genetic material This bush of life accurately shows Archea, Eubacteria and Eukaryotes

More information

Chapter Study Guide Section 17-1 The Fossil Record (pages )

Chapter Study Guide Section 17-1 The Fossil Record (pages ) Name Class Date Chapter Study Guide Section 17-1 The Fossil Record (pages 417-422) Key Concepts What is the fossil record? What information do relative dating and radioactive dating provide about fossils?

More information

Bio 100 Study Guide 14.

Bio 100 Study Guide 14. Bio 100 Study Guide 14 http://www.swarthmore.edu/natsci/cpurrin1/evolk12/slm/origindayimages/06soup.jpg The Origin of Life - Issues i. Conditions on early earth ii. iii. iv. Abiogenic synthesis organic

More information

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields

The Tree of Life. Metabolic Pathways. Calculation Of Energy Yields The Tree of Life Metabolic Pathways Calculation Of Energy Yields OCN 401 - Biogeochemical Systems 8/27/09 Earth s History (continental crust) 170 Oldest oceanic crust Ga = billions of years ago The Traditional

More information

Origins of Life and Extinction

Origins of Life and Extinction Origins of Life and Extinction What is evolution? What is evolution? The change in the genetic makeup of a population over time Evolution accounts for the diversity of life on Earth Natural selection is

More information

Chapter 26. Origin of Life

Chapter 26. Origin of Life Chapter 26. Origin of Life 1 The history tree of life can be documented with evidence as already discussed. The Origin of Life on Earth is another story 2 Origin of Life hypothesis Abiotic synthesis of

More information

Visualizing Earth Science. Chapter Overview. The Ever-Changing Earth. Early Life. Evolution and the Fossil Record. Life in the Phanerozoic Eon

Visualizing Earth Science. Chapter Overview. The Ever-Changing Earth. Early Life. Evolution and the Fossil Record. Life in the Phanerozoic Eon Visualizing Earth Science By Z. Merali and B. F. Skinner Chapter 11 A Brief History of Life on Earth Chapter Overview The Ever-Changing Earth Early Life Evolution and the Fossil Record Life in the Phanerozoic

More information

Laboratory 7 Geologic Time

Laboratory 7 Geologic Time (Name) Laboratory 7 Geologic Time We will be exploring ideas behind the development of the geological column. The geological column is a general term that is used to describe the template behind which

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

Chapter 14 The History of Life

Chapter 14 The History of Life Section 1: Fossil Evidence of Change Section 2: The Origin of Life Click on a lesson name to select. 14.1 Fossil Evidence of Change Land Environments Earth formed about 4.6 billion years ago. Gravity pulled

More information

Phylogeny & Systematics

Phylogeny & Systematics Phylogeny & Systematics Phylogeny & Systematics An unexpected family tree. What are the evolutionary relationships among a human, a mushroom, and a tulip? Molecular systematics has revealed that despite

More information

Microbes and Origins of Life. Evolution has occurred almost elusively in a microbial world!!!

Microbes and Origins of Life. Evolution has occurred almost elusively in a microbial world!!! Microbes and Origins of Life Evolution has occurred almost elusively in a microbial world!!! Impact Frustration period forces origins of life into a narrow time period to have gotten started! Hydrothermal

More information

ORIGIN OF METABOLISM Where did early life get its energy? How did cell structures become complex?

ORIGIN OF METABOLISM Where did early life get its energy? How did cell structures become complex? ORIGIN OF METABOLISM Where did early life get its energy? How did cell structures become complex? Geological stratigraphy, together with radioactive dating, show the sequence of events in the history of

More information

Geologic Time and Life in the Oceans. Oceans and Life. How Old is Earth? The Solar System? Oceans are the birthplace of life.

Geologic Time and Life in the Oceans. Oceans and Life. How Old is Earth? The Solar System? Oceans are the birthplace of life. Geologic Time and Life in the Oceans Oceans and Life Oceans are the birthplace of life. Life metabolism, growth, reproduction, response to stimuli Metabolism use of energy stored in ambient chemicals Reproduction

More information

Outline 10: Origin of Life. Better Living Through Chemistry

Outline 10: Origin of Life. Better Living Through Chemistry Outline 10: Origin of Life Better Living Through Chemistry What is Life? Internal chemical activity providing growth, repair, and generation of energy. The ability to reproduce. The capacity to respond

More information

The Pennsylvania State University. The Graduate School. Department of Geosciences THE EFFECT OF ARCHEAN OCEANS ON CYANOBACTERIA, GREEN

The Pennsylvania State University. The Graduate School. Department of Geosciences THE EFFECT OF ARCHEAN OCEANS ON CYANOBACTERIA, GREEN The Pennsylvania State University The Graduate School Department of Geosciences THE EFFECT OF ARCHEAN OCEANS ON CYANOBACTERIA, GREEN SULFUR BACTERIA AND THE RISE OF OXYGEN A Thesis in Geosciences by Beth

More information

History of Life on Earth

History of Life on Earth Macroevolution Broad pattern of evolution at and above the species level (in contrast to microevolution) History of Life on Earth Chapter 25 Early earth Miller and Urey Experiments ~4.5 billion years old

More information

Chapter 12 - Long term climate regulation. Chapter 10-11* -Brief History of the Atmosphere. What is p really about? New and improved!

Chapter 12 - Long term climate regulation. Chapter 10-11* -Brief History of the Atmosphere. What is p really about? New and improved! What is p16164 really about? New and improved! 1) When CO 2 dissolves in water, some reacts with water to produce acid and ions, making gas exchange NOT just CO 2 (g in atm) CO 2 (aq in ocn) 2) If

More information

Evolution of Earth Environments Bio-Geo-Chemical Cycling

Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of Earth Environments Bio-Geo-Chemical Cycling Evolution of the Earliest Atmospheres of Mars and Earth Volcanic Outgassing Evolving to Equilibrium Atmosphere To Atmosphere Lost to space (Abundant)

More information

Fossils provide evidence of the change in organisms over time.

Fossils provide evidence of the change in organisms over time. Section 1: Fossils provide evidence of the change in organisms over time. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the similarities and differences between

More information

TOPIC 1: RELATIVE DATING ESSENTIAL QUESTION: HOW DO WE DETERMINE A ROCK S AGE BY THE SURROUNDING ROCKS?

TOPIC 1: RELATIVE DATING ESSENTIAL QUESTION: HOW DO WE DETERMINE A ROCK S AGE BY THE SURROUNDING ROCKS? TOPIC 1: RELATIVE DATING ESSENTIAL QUESTION: HOW DO WE DETERMINE A ROCK S AGE BY THE SURROUNDING ROCKS? TOPIC 1: RELATIVE DATING UNIFORMITARIANISM: THE IDEA THAT THE SAME FORCES HAVE BEEN AND CONTINUE

More information

Geobiology 2013 Lecture 11 Oxygenation of Earth s Atmosphere

Geobiology 2013 Lecture 11 Oxygenation of Earth s Atmosphere Geobiology 2013 Lecture 11 Oxygenation of Earth s Atmosphere 1 Need to know How C and S- isotopic data in rocks are informative about the advent and antiquity of biogeochemical cycles Geologic indicators

More information

The History of the Earth

The History of the Earth The History of the Earth Origin of the Universe The universe began about 13.9 billion years ago According to Big Bang theory almost all matter was in the form of energy E = MC 2 E = energy, M = mass and

More information

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks

Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks Pleistocene Glaciation (Ch.14) Geologic evidence Milankovitch cycles Glacial climate feedbacks End of last ice-age rise of human civilization Modern ice-ages begin Asteroid impact end of dinosaurs Cambrian

More information

Summary The Fossil Record Earth s Early History. Name Class Date

Summary The Fossil Record Earth s Early History. Name Class Date Name Class Date Chapter 17 Summary The History of Life 17 1 The Fossil Record Fossils are preserved traces and remains of ancient life. Scientists who study fossils are called paleontologists. They use

More information

Revision Based on Chapter 19 Grade 11

Revision Based on Chapter 19 Grade 11 Revision Based on Chapter 19 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most fossils are found in rusty water. volcanic rock. sedimentary

More information

UNIT 4: EVOLUTION Chapter 12: The History of Life

UNIT 4: EVOLUTION Chapter 12: The History of Life CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes OCN 401-10 Nov. 16, 2010 KCR Global Carbon Cycle - I Systematics: Reservoirs and Fluxes The Global carbon cycle Reservoirs: biomass on land in the oceans, atmosphere, soil and rocks, waters Processes:

More information

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold.

Long-term Climate Change. We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change We are in a period of relative warmth right now but on the time scale of the Earth s history, the planet is cold. Long-term Climate Change The Archean is thought to have been warmer,

More information

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes. Earth s History Date: Been There, Done That What is the principle of uniformitarianism? The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

More information

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments

Anaerobic processes. Annual production of cells a -1 Mean generation time in sediments Anaerobic processes Motivation Where are they? Number of prokaryotes on earth 4-6 * 10 30 Cells in open ocean 1.2 * 10 29 in marine sediments 3.5 * 10 30 in soil 2.6 * 10 29 sub-terrestrial 0.5 2.5 * 10

More information

Earth Science. Name Block. Unit 3 Review Worksheet. Circle the letter that corresponds to the correct answer

Earth Science. Name Block. Unit 3 Review Worksheet. Circle the letter that corresponds to the correct answer Earth Science Unit 3 Review Worksheet Name Block Circle the letter that corresponds to the correct answer 1. Which geologic principle is used when a geologist observes an outcrop or rocks and determines

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 21. Origin and evolution of life. Part I March

More information

Origins of Life: Teacher Packet

Origins of Life: Teacher Packet Origins of Life: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 5 How Big is

More information

UNIT 4: History Of Biological Diversity

UNIT 4: History Of Biological Diversity UNIT 4: History Of Biological Diversity CHAPTER 14: The History of Life PAST NOW FUTURE? What is this? Earth s Early history Approximately 4.6 billion years ago, the Earth was formed when many pieces of

More information

Life on Earth Topic Test

Life on Earth Topic Test Life on Earth Topic Test Multiple Choice Questions Select the best alternative and indicate your response on the answer sheet. (1 mark each) 1. The list below contains common substances that exist in Earth

More information

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways

UNIT 4: EVOLUTION Chapter 12: The History of Life. I. The Fossil Record (12.1) A. Fossils can form in several ways UNIT IV Chapter 12 The History Of Life UNIT 4: EVOLUTION Chapter 12: The History of Life I. The Fossil Record (12.1) A. Fossils can form in several ways 1. Permineralization- minerals carried by water

More information

Section 17 1 The Fossil Record (pages )

Section 17 1 The Fossil Record (pages ) Name Class Date Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time

More information

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle.

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle. Chapter 17 The History of Life Chapter Vocabulary Review Crossword Puzzle Use the clues below to complete the puzzle. 1 2 3 4 5 6 7 8 9 10 11 Across 2. time span shorter than an era, such as Quaternary

More information

GY 112 Lecture Notes Proterozoic Life forms

GY 112 Lecture Notes Proterozoic Life forms GY 112 Lecture Notes D. Haywick (2006) 1 Lecture Goals: A) Eukaryote Life forms (Acritarchs) B) Metazoans (Ediacaran Fauna) GY 112 Lecture Notes Proterozoic Life forms Textbook reference: Levin 7 th edition

More information

BIFs. BIFs. Last time we covered. Oxygen. Oxygen

BIFs. BIFs. Last time we covered. Oxygen. Oxygen UNIVERSITY OF SOUTH ALABAMA Last time we covered Archean Oceans Discussion (Robbie) MAS 603: Geological Oceanography Banded Iron Formations (Evolution of the Earth s atmosphere and hydrosphere) Lecture

More information

The Supercontinent, Rodinia

The Supercontinent, Rodinia The Supercontinent, Rodinia The supercontinent, Rodinia, as it appeared about 1.1 b.y. ago. The reddish band down the center of the globe is the location of continental collisions and orogeny, including

More information

Requirements for Life. What is Life? Definition of Life. One of the biggest questions in astronomy is whether life exists elsewhere in the universe

Requirements for Life. What is Life? Definition of Life. One of the biggest questions in astronomy is whether life exists elsewhere in the universe Requirements for Life One of the biggest questions in astronomy is whether life exists elsewhere in the universe Before we discuss the possibility of life elsewhere, we must have a better understanding

More information

Phanerozoic Diversity and Mass Extinctions

Phanerozoic Diversity and Mass Extinctions Phanerozoic Diversity and Mass Extinctions Measuring Diversity John Phillips produced the first estimates of Phanerozoic diversity in 1860, based on the British fossil record Intuitively it seems simple

More information

Chapters 25 and 26. Searching for Homology. Phylogeny

Chapters 25 and 26. Searching for Homology. Phylogeny Chapters 25 and 26 The Origin of Life as we know it. Phylogeny traces evolutionary history of taxa Systematics- analyzes relationships (modern and past) of organisms Figure 25.1 A gallery of fossils The

More information

Sand. Sand is any eroded material (igneous, metamorphic or sedimentary) that has a grain size from 1/16 th to 2 millimeters in size.

Sand. Sand is any eroded material (igneous, metamorphic or sedimentary) that has a grain size from 1/16 th to 2 millimeters in size. Sedimentology 001 What is sedimentology? Sedimentology...encompasses the study of modern sediments such as sand [1], mud (silt) [2] andclay [3] and understanding the processes that deposit them.[4] It

More information

4) Outline the major developments that allowed life to exist on Earth.

4) Outline the major developments that allowed life to exist on Earth. Objectives 4) Outline the major developments that allowed life to exist on Earth. 5) Describe the types of organisms that arose during the four major divisions of the geologic time scale. Each layer of

More information

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17

The History of Life. Fossils and Ancient Life (page 417) How Fossils Form (page 418) Interpreting Fossil Evidence (pages ) Chapter 17 Chapter 17 The History of Life Section 17 1 The Fossil Record (pages 417 422) This section explains how fossils form and how they can be interpreted. It also describes the geologic time scale that is used

More information

ASTR 390 Astrobiology

ASTR 390 Astrobiology ASTR 390 Astrobiology Origins of Complex Life on Earth The origin of life on Earth most likely occurred A before 4.5 billion years ago B between about 4.5 billion years ago and 3.5 billion years ago C

More information

Evolution and diversity of organisms

Evolution and diversity of organisms Evolution and diversity of organisms Competency Levels - 7 3.1.1 Uses the theories of origin of life and natural selection to analyze the process of evolution of life 3.2.1 Constructs hierarchy of taxa

More information

ET Life #17. Today: Reminders: Energy of Life. Paper Proposal Due Friday First Mid-term Next Monday

ET Life #17. Today: Reminders: Energy of Life. Paper Proposal Due Friday First Mid-term Next Monday ET Life #17 Today: Energy of Life Reminders: Paper Proposal Due Friday First Mid-term Next Monday Origin of Life: Summary 1. Early Organic Molecules 2. Complex organics developed (mineral templates?).

More information

BIOLOGY 432 Midterm I - 30 April PART I. Multiple choice questions (3 points each, 42 points total). Single best answer.

BIOLOGY 432 Midterm I - 30 April PART I. Multiple choice questions (3 points each, 42 points total). Single best answer. BIOLOGY 432 Midterm I - 30 April 2012 Name PART I. Multiple choice questions (3 points each, 42 points total). Single best answer. 1. Over time even the most highly conserved gene sequence will fix mutations.

More information

Geologic Time. Early Earth History

Geologic Time. Early Earth History chapter 10 3 Geologic Time section 2 Early Earth History Before You Read Think of a picture of a volcano you have seen. Describe what Earth would be like if the land were almost completely covered with

More information