Report. The First Stalk-Eyed Phosphatocopine Crustacean from the Lower Cambrian of China

Size: px
Start display at page:

Download "Report. The First Stalk-Eyed Phosphatocopine Crustacean from the Lower Cambrian of China"

Transcription

1 Current Biology 22, , November 20, 2012 ª2012 Elsevier Ltd All rights reserved The First Stalk-Eyed Phosphatocopine Crustacean from the Lower Cambrian of China Report Xi-guang Zhang 1, * and Brian R. Pratt 2 1 Key Laboratory for Paleobiology, Yunnan University, Kunming , China 2 Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada Summary Exhibiting Orsten-type preservation, specimens of the phosphatocopine Dabashanella sp. from the Lower Cambrian Stage 3 (about 520 million years ago) of southern China possess a single-fold shield and a set of appendages of crustacean design. More significantly, a pair of stalked eyes the earliest known visual structure in this group is attached to an ocular segment analogous to the anterior sclerite of various stem-group arthropods [1, 2]. Accordingly, a unique visual system must have been present among some, if not all, early phosphatocopines. In comparison with the ground pattern of later members of this group [3], the new phosphatocopine, which with its unique head segmentation and limb design is unlikely to be embraced within the previously proposed Labrophora [4, 5], demonstrates a remarkable modification and innovation in the appendages and visual system with time. Thus, this finding provides new data for the evaluation of the early evolutionary development and phylogenetics of the Crustacea and other related euarthropods. Results Phosphatocopina are a group of tiny uni- or bivalved crustaceans that inhabited seas of Cambrian age. In the fossil record, they are usually preserved as empty shields [6, 7], although rare specimens recovered from several successions containing Orsten concretions have soft parts so finely replicated by microcrystalline apatite [8] that they can be compared directly to living crustaceans. Such evidence has been used effectively to infer appendage differentiation and body segmentation associated with the evolution of early arthropods [3, 4, 9 11], but this has mostly relied on exquisite Orsten-type material from the Upper Cambrian Furongian Series (about 500 million years ago) of southern Sweden. Phosphatocopines are the most common component of this faunal assemblage with exceptionally preserved tissues and consequently have enormously advanced the understanding of the morphology, ontogeny, and early evolution of the Crustacea [2, 10, 11]. Even older, early Cambrian Stage 3 Orsten-type limestone nodules in the Heilinpu (formerly Yu anshan) Formation of southern China also contain phosphatized crustaceans [5, 12], and from these rocks we have obtained four phosphatocopine specimens that also display preservation of great fidelity of their ventral soft parts and appendages, especially evidence for their visual system. *Correspondence: xgzhang@ynu.edu.cn Material An almost complete specimen (YKLP 11955; Key Laboratory for Paleobiology, Yunnan University, Kunming, China) (Figures 1A 1F), a fragmentary one with soft parts (YKLP 11993) that may be a fecal pellet (Figure 1G), and another two with either labrum or appendages partially preserved (YKLP and 11957). Locality Xiaotan section, Yongshan, Yunnan, China (see Figure S1 available online); Heilinpu Formation, Eoredlichia-Wutingaspis Biozone (Chiungchussuan Stage [regional]), Cambrian Stage 3 (Figure S2). All phosphatocopines dealt with here co-occur with the eucrustacean Wujicaris muelleri [12], numerous specimens of the bradoriid Kunmingella douvillei, lingulid brachiopods, and various small shelly fossils in a thin-bedded nodular limestone about 5 m above the beds that have yielded material of Yicaris dianensis [5]. Description The bivalved shield is semicircular in lateral view, about 400 mm long, with outer surface either smooth or ornamented with a network of fine ridges. It has a straight dorsal rim and a single-fold articulation (not a true hinge) terminating in short anterocardinal and retrocardinal spikes (Figures 1B and 1E 1G). A wide duplicature is present along the inner free margin of each valve (Figures 1A and 1H 1J), which bears a very narrow marginal rim (Figures 1B, 1C, and 1H 1J). The body enveloped by the shield comprises at least ten segments, including those bearing the eye stalk, antennula, antenna, and mandible, followed by five postmandibular segments bearing limbs and an undifferentiated hind body. The paired eye stalks, w60 mm long, are located on the triangular anteriormost head segment, are ventrally directed, and taper gradually toward the visual surface at their distal tips. The outer surfaces of the eye stalk and the anterior (ocular) segment bear faint, fine annuli or annular zones, and the junction with the anterior segment is marked by a shallow ring-shaped furrow. The hypostome-labrum complex posterior to the anterior segment has a smooth surface (Figures 1A 1C and 1G). The rod-shaped antennula is w130 mm long, consisting of at least seven faintly defined annuli with a few long setae inserted on the terminal and on some of the distal annuli (Figures 1A and 1D). The paired antennae are positioned lateral to the hypostomelabrum complex (Figures 1A, 1D, and 1E), each consisting of (1) a coxa with a set of spine-like setae located near the posterior end of the labrum, (2) a subtriangular basipod bearing a median enditic elongation with setae, (3) a five-segmented endopod arising mediodistally from the basipod, (4) a multiannulated exopod consisting of at least 15 annuli each with a long seta inserted on its terminal, and some setae-free basal annuli. The mandible has a large coxa with a few short spinelike setae on its surface, a subtriangular basipod bearing a median enditic elongation with setae, a four-segmented endopod, and an annulated exopod with long, distally inserted setae and a setae-free basal part. The first postmandibular limb consists of a broad basipod with a set of spine-like setae, a seven-segmented endopod (Figures 1A and 1D),

2 Current Biology Vol 22 No Figure 1. Phosphatocopine Crustaceans (A J) Dabashanella sp. from Lower Cambrian Stage 3 Heilinpu Formation in Yongshan, Yunnan, China. (A F) YKLP 11955, open shield with all appendages nearly completely preserved: oblique lateroventral view (A); oblique laterodorsal view (B); anteroventral view displaying the stalked eyes (C). (D) (F) show enlargements of some appendage details. (G) YKLP 11993, fragment showing a well-preserved exopod (indicated by arrow) of a postmandibular limb and deformed labrum. (H and I) YKLP 11956, lateroventral and posteroventral views, open shield with hypostome-labrum complex, sternum, and limb setae (but no preserved combination of stalked eyes and ocular segment). (J) YKLP 11957, closed shield with broken left valve exhibiting two partially preserved appendages (indicated by arrows).

3 Cambrian Phosphatocopines with Stalked Eyes 2151 Figure 2. Reconstruction of Dabashanella sp. in Life Attitude (A) Anterior view. (B) Left-side view. Left valve is removed to show the soft body (light gray) behind, hypostome-labrum complex (dark gray), and all left appendages. Abbreviations are as in Figure 1, except as follows: pl1 pl5, 1 st 5 th postmandibular limbs; vs, visual surface. and a narrow paddle-like distally annulated exopod with fringing setae (Figures 1A, 1F, and 1G). The second, third, fourth, and fifth postmandibular limbs have the same general shape, consisting of an endopod and an exopod with progressively fewer segments and setae; only some basipods belonging to anterior limbs are visible. Because of incomplete preservation, it is not clear whether the hind body of the trunk bears paired furcal rami. Remarks The four specimens are assigned to Dabashanella sp. based on the particular features of the shield only (i.e., the singlefold articulation, narrow marginal rim, and wide duplicature), because species of Dabashanella were originally described from empty shields [7]. They are apparently distinguished from the type species, D. hemicyclica Huo, Shu, and Fu 1983, by having much more pointed cardinal spines and a slightly arched dorsal margin and thus may be a new species. Based on its limb number, the nearly complete specimen (YKLP 11955) represents a later growth stage. On this basis, it furnishes new data about the fundamental soft-body anatomy and reconstruction of this species (Figure 2), which on the whole is distinguishable from all other soft-bodied phosphatocopines reported hitherto. Discussion Like typical Orsten-type fossils, the apatite replacement in the figured specimens of Dabashanella sp. the oldest phosphatocopine with soft parts so far known displays high fidelity of preservation of the outer surface of its body but only incomplete relics of its internal structure, as revealed by a series of synchrotron-produced serial sections. For instance, the eye stalk is a hollow tube, and so the anterior (ocular) segment (Figures 3A and 3B), the body wall, and the inner lamellae, which are invisible under the scanning electron microscope, become traceable structures (Figures 3C 3F). The visual organ has been widely interpreted as belonging to the first head segment [9], and stalked eyes have been regarded as a key feature to characterize the node of Arthropoda sensu stricto, the sclerotized arthropods [13]. However, interpreting the anterior portion of the phosphatocopine body as a hypostome-labrum complex with median eyes anteroventrally inserted [3, 14] is difficult to reconcile with the eyebearing anteriormost body segment identified in other early arthropods, including Fuxianhuia and Anomalocaris [1, 2, 15]. Instead, with the stalked eyes on an isolated anterior segment with annulated outer surface, separate from and anteroventral to the hypostome-labrum complex, the head segmentation of Dabashanella sp. now appears to be the same as that of some stem arthropods [1, 2, 16]. Similar visual structure observed in a maxillopod crustacean (see Plate 2, Figure 2 and Plate 3, Figure 3 in [17]) may also imply the same style of head segmentation. Therefore, the ocular system seems to have been considerably modified in later phosphatocopines such as Hesslandona and Falites [3, 11, 14]. The shallow ring-shaped furrow at the base of each eye stalk of Dabashanella sp. was likely a flexible joint. On the visual surface, there is no sign of polygonal facets left by the ommatidia, because such tiny eyes, like those of juveniles of the univalved crustacean Henningsmoenicaris scutala from the Middle Cambrian (Series 3) [18], are probably too small to show details of the optical design. Because the blister-like eyes of some early instars of H. scutula became stalked (K) YKLP 11994, Hesslandona sp. from Cambrian Stage 3 Shuijingtuo Formation in Zhenba, Shaanxi, China, with interdorsum defined by a pair of folds (indicated by arrows). (L) YKLP 11995, Phosphatocopina gen. et sp. indet. from Lower Cambrian Stage 3 Shuijingtuo Formation in Pengshui, Chongqing, China with ventral spines (indicated by arrows). Scale bars represent 100 mm. The following abbreviations are used: a1, antennula; a2b, basipod of antenna; a2c, coxa of antenna; a2en, endopod of antenna; a2ex, exopod of antenna; acs, anterocardinal spike; as, anterior (ocular) segment; dp, duplicature; es, eye stalk; fsb, folded soft body; hb, hind body; hs, hypostome; id, interdorsum; la, labrum; ls, limb setae; lv, left valve; mdb, basipod of mandible; mdc, coxa of mandible; mden, endopod of mandible; mdex, exopod of mandible; mr, marginal rim; od, adhering organic debris; pl1b pl3b, basipod of 1 st 3 rd postmandibular limb; pl1en pl5en,, endopod of 1 st 5 th postmandibular limb; pl1ex pl5ex, exopod of 1 st 5 th postmandibular limb; rcs, retrocardinal spike; rf, ring-shaped furrow; rv, right valve; st, sternum.

4 Current Biology Vol 22 No Figure 3. Digital SRXTM Internal Sections of Dabashanella sp. YKLP (A F) Series of vertical transverse slices (from anterior to posterior) displaying hollow anterior sclerite and bifurcating stalked eyes (A and B), thin inner lamellae that connect the body and shield, well-defined digestive tract, and unevenly phosphatized outer layer of appendages that are hollow or filled with other material (C F). (G I) Horizontal slices (from dorsal to ventral) displaying hollow appendages and thin inner lamellae. (J L) Vertical longitudinal slices (from left to right) displaying the digestive tract and various appendages. Abbreviations are as in Figures 1 and 2, except as follows: bw, body wall; dt, digestive tract; il, inner lamella. compound eyes in later developmental stages (see Figures 5F and 5G in [18]), it is possible that Dabashanella sp. may have developed compound eyes with further growth as well. The presence of stalked eyes in both early phosphatocopines and other arthropods identifies this feature as a symplesiomorphy with limited value in the reconstruction of crown euarthropod phylogeny. Nonetheless, the stalked eyes of Dabashanella sp. are in contrast to the dome-like median eyes as present in some younger phosphatocopines, which are always closely associated with the hypostome. The absence of a separate ocular segment among later phosphatocopines, and possibly some other stem crustaceans [19, 20], appears to indicate the merging of the ocular segment to the immediately succeeding segment, a step that has also been inferred for other lineages among Euarthropoda [15]. On this basis, our finding implies a dramatic evolutionary development of the visual system, as well as head segmentation among the Cambrian phosphatocopines, but it is unclear how and why they evolved two seemingly disparate visual patterns. Unfortunately, the Orsten-type material can display mostly just external morphology, so little has been revealed to date about the internal anatomy of such tiny fossil eyes [18]. The shield of Dabashanella sp., like that of many other phosphatocopines [10, 21], has a single-fold articulation. Furthermore, some contemporaneous phosphatocopines display either an interdorsum (third valve), defined by a pair of folds (Figure 1K), or distinct marginal valve spines (Figure 1L). All these types of shields, along with a well-developed duplicature, marginal rim, and the likely inner lamellae that connect the soft body and shield (Figure 3), appear to exhibit stasis (relative stability) with time, being present in various younger lineages [3, 11]. Therefore, these persisting features characterize this arthropod clade. On the other hand, the varied or modified visual structure and detailed appendage components (e.g., proximal endite) can be regarded as autapomorphies and thus inapplicable character states [22] serving only for grouping some subsequently diversified phosphatocopine lineages, instead of the whole clade of Phosphatocopina. Appendages of some early crustaceans have been demonstrated to be sophisticated in design [23] and considerably more diverse [12] than had previously been expected. Such an appendage acquisition or diversification seems to have also occurred among phosphatocopines during their early evolution. Like Klausmuelleria salopensis a phosphatocopine recovered from the Lower Comley Limestone [4] the antenna and mandible of Dabashanella sp. also display distinct coxae and basipods. However, the endopods of the antenna and mandible of K. salopensis both bear three podomeres, whereas in Dabashanella sp. they bear five and seven podomeres, respectively. The difference is probably because the specimen of K. salopensis belongs to a younger growth stage. Notably, Dabashanella sp. is characterized by having a pair of rather large antennulae, in contrast to some late phosphatocopines that have tiny antennulae and fused coxa and basipod present either in the antenna or mandible [3, 11]. Moreover, although the postmandibular limbs in both taxa bear a distally annulated, paddle-like exopod, the corresponding endopod varies in number of podomeres. In particular, the proximal endite present in the first postmandibular limb of other previously described phosphatocopines [4, 11] is absent in that limb in Dabashanella sp., where the rather large basipod differs strikingly from all other endites. Such an appendage arrangement for Dabashanella sp. is clearly not in accordance with the autapomorphies previously envisaged for Phosphatocopina, which are based on younger taxa [3, 4, 21].

5 Cambrian Phosphatocopines with Stalked Eyes 2153 The Cambrian phosphatocopines have been regarded as stem-group crustaceans comprising the sister group of Eucrustacea, and both were also considered separate phyla of Labrophora [3 5]. The appendages of Dabashanella sp. share some major morphological attributes with the Eucrustacea, such as the medially setose exopods of the antenna and mandible. As the currently earliest known phosphatocopine, however, Dabashanella sp. not only demonstrates some apomorphies (e.g., the proximal endites on the postmandibular limbs) as well as dramatic modifications (e.g., the tiny antennula) in appendages that are shared by later representatives of the group but also retains some plesiomorphic characters mostly from the proposed ground pattern of the Labrophora. Thus, our discovery provides an important link for assessing the evolutionary morphological gap among these crustaceans. Nonetheless, as demonstrated here, Dabashanella sp. also possesses some unique features, especially the anterior segment with stalked eyes and the seven endopodal podomeres in postmandibular limbs, which are beyond the systematic criteria that characterize Labrophora [3, 4] but are clear evidence for a deep origin within the Euarthropoda. These features in turn substantially improve the understanding of the body plan of Phosphatocopina and provide fresh insight into the phylogenetic relationship between the Phosphatocopina and Labrophora, as well as other Euarthropoda. The inevitable modification of appendages over time makes it more difficult to trace their origins or likely homology; appendage-based analysis alone may fail to exactly mirror the evolutionary novelties that have led to the branching of an arthropod group of high taxonomic rank [24]. As an example, it remains unsettled whether the great-appendage arthropods, a hypothesized clade named from the sharing of a pair of highly modified anterior appendages, are genuinely monophyletic or merely paraphyletic [2]. In addition, agnostoids with crustacean-like appendages have been tentatively assumed to have arisen from the stem lineage of crustaceans [25, 26], but this appendage-based proposal has never been widely accepted simply because no other examples of detailed appendage preservation are known [27]. Thus, appendages should not be seen as the only features with fundamental taxonomic importance for determining the deep relationships within Arthropoda [24], even though this highly successful group is in fact characterized essentially by segmented body and appendages. Nevertheless, despite the uncertainties about their high-level affinity, the phosphatocopines are likely a monophyletic yet quite diverse clade [3]. As demonstrated by our discovery, they might be redefined by a set of synapomorphies, including the specialized visual structure associated with the first head segment, a set of modified appendages of crustacean design, and the seemingly simple shield with a unique type of articulation. Experimental Procedures The coarse outer surface of the shield, trunk, and hypostome-labrum complex in a specimen of Wujicaris muelleri (see Figures 1F and 1G in [12]) may be the result of overetching. To avoid such damage, for this study, 196 kg of limestone nodules collected from the same horizon were digested in acetic acid of even lower concentration (4%), and the insoluble residue was taken out of the acid solution more frequently (every day rather than every couple of days). The phosphatocopine specimens studied here, along with many phosphatized sclerites, were picked from the residue under a stereo microscope, and images were then acquired via scanning electron microscopy and synchrotron radiation X-ray tomographic microscopy (SRXTM). Supplemental Information Supplemental Information includes two figures and can be found with this article online at Acknowledgments We thank N.J. Butterfield for critical comments on an earlier manuscript version; the manuscript referees for constructive suggestions and remarks; T.-Q. Xiao, Y. He, and J.-B. Hou for assistance in sample examination at the Shanghai Synchrotron Radiation Facility; and H.-L. Zhang for sample preparation. This study was supported by the National Natural Science Foundation of China ( ) and the Natural Science Foundation of Yunnan Province (2008CC005). Received: June 21, 2012 Revised: August 9, 2012 Accepted: September 12, 2012 Published online: October 18, 2012 References 1. Budd, G.E. (2008). Head structure in upper stem-group euarthropods. Palaeontology 51, Budd, G.E., and Telford, M.J. (2009). The origin and evolution of arthropods. Nature 457, Maas, A., Waloszek, D., and Müller, K.J. (2003). Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian Orsten of Sweden. Fossils Strata 49, Siveter, D.J., Waloszek, D., and Williams, M. (2003). An early Cambrian phosphatocopid crustacean with three-dimensionally preserved soft parts from Shropshire, England. Spec. Pap. Palaeontol. 70, Zhang, X.G., Siveter, D.J., Waloszek, D., and Maas, A. (2007). An epipodite-bearing crown-group crustacean from the Lower Cambrian. Nature 449, Müller, K.J. (1964). Ostracoda (Bradorina) mit phosphatischen Gehäusen aus dem Oberkambrium von Schweden. Neues Jahrb. Geol. Palaontol. Abh. 121, Huo, S.C., Shu, D.G., Zhang, X.G., Cui, Z.L., and Tong, H.W. (1983). Notes on Cambrian bradoriids from Shaanxi, Yunnan, Sichuan, Guizhou, Hubei, and Guangdong. J. Northwest Univ. (Xi an) 13, Müller, K.J. (1979). Phosphatocopine ostracodes with preserved appendages from the Cambrian of Sweden. Lethaia 12, Waloszek, D., Maas, A., Chen, J.Y., and Stein, M. (2007). Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeogr. Palaeoclimatol. Palaeoecol. 354, Siveter, D.J. (2008). Ostracods in the Palaeozoic? Senckenb. Lethaea 88, Zhang, H.Q., Dong, X.P., and Xiao, S.H. (2011). Two species Hesslandona (Phosphatocopida, Crustacea) from the Upper Cambrian of western Hunan, South China and the phylogeny of Phosphatocopida. J. Paleontol. 85, Zhang, X.G., Maas, A., Haug, J.T., Siveter, D.J., and Waloszek, D. (2010). A eucrustacean metanauplius from the Lower Cambrian. Curr. Biol. 20, Kühl, G., Briggs, D.E.G., and Rust, J. (2009). A great-appendage arthropod with a radial mouth from the Lower Devonian Hunsruck Slate, Germany. Science 323, Müller, K.J. (1982). Hesslandona unisulcata sp. nov. with phosphatized appendages from Upper Cambrian Orsten of Sweden. In Fossil and Recent Ostracoda, R.H. Bate, E. Robinson, and L.M. Sheppard, eds. (Chichester, UK: Ellis Horwood), pp Chen, J.Y., Zhou, G.Q., Edgecombe, G.D., and Ramsköld, L. (1995). Head segmentation in early cambrian fuxianhuia: implications for arthropod evolution. Science 268, Waloszek, D., Chen, J.Y., Maas, A., and Wang, X.Q. (2005). Early Cambrian arthropods New insights into arthropod head and structural evolution. Arthropod Struct. Dev. 34, Müller, K.J., and Walossek, D. (1988). External morphology and larval development of the Upper Cambrian maxillopod Bredocaris admirabilis. Fossils Strata 23, Castellani, C., Haug, J.T., Haug, C., Maas, A., Schoenemann, B., and Waloszek, D. (2012). Exceptionally well-preserved isolated eyes from

6 Current Biology Vol 22 No Cambrian Orsten fossil assemblages of Sweden. Palaeontology 55, Haug, J.T., Waloszek, D., Haug, C., and Maas, A. (2010). High-level phylogenetic analysis using developmental sequences: the Cambrian ymartinssonia elongata, ymusacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Struct. Dev. 39, Stein, M., Waloszek, D., Maas, A., Haug, J.T., and Müller, K.J. (2008). The stem crustacean Oelandocaris oelandica revisited. Acta Palaeontol. Pol. 53, Maas, A., and Waloszek, D. (2005). Phosphatocopina ostracode-like sister group of Eucrustacea. Hydrobiologia 538, Beutel, R.G., Friedrich, F., Hörnschemeyer, T., Pohl, H., Hünefeld, F., Beckmann, F., Meier, R., Misof, B., Whiting, M.F., and Vilhelmsen, L. (2011). Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics 27, Harvey, T.H.P., and Butterfield, N.J. (2008). Sophisticated particlefeeding in a large Early Cambrian crustacean. Nature 452, Zhang, X.G. (2007). Phosphatized bradoriids (Arthropoda) from the Cambrian of China. Palaeontographica 281, Walossek, D., and Müller, K.J. (1990). Upper Cambrian stem-lineage crustaceans and their bearing upon the monophyly of Crustacea and the position of Agnostus. Lethaia 23, Stein, M., Waloszek, D., and Maas, A. (2005). Oelandocaris oelandica and the stem lineage of Crustacea. In Crustacea and Arthropod Relationships, S. Koenemann and R.A. Jenner, eds. (Boca Raton, FL: Taylor & Francis), pp Cotton, T.J., and Fortey, R.A. (2005). Comparative morphology and relationships of the Agnostida. In Crustacea and Arthropod Relationships, S. Koenemann and R.A. Jenner, eds. (Boca Raton, FL: Taylor & Francis), pp

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11874 1. Supplementary Figures Supplementary Figure 1. Stratigraphic column of the Cambrian Stage 3 (regional Canglangpuan Stage) Xiaoshiba section in the suburb

More information

Phylogeny of Phosphatocopa

Phylogeny of Phosphatocopa Phylogeny of Phosphatocopa INGELORE HINZ-SCHALLREUTER & ROGER SCHALLREUTER HINZ-SCHALLREUTER, I. & SCHALLREUTER, R., 2009:12:24. Phylogeny of Phosphatocopa. Memoirs of the Association of Australasian Palaeontologists

More information

Lab 4 Identifying metazoan phyla and plant groups

Lab 4 Identifying metazoan phyla and plant groups Geol G308 Paleontology and Geology of Indiana Name: Lab 4 Identifying metazoan phyla and plant groups The objective of this lab is to classify all of the fossils from your site to phylum (or to plant group)

More information

ArestudyoftheBurgessShale(Cambrian)arthropodEmeraldella brocki and reassessment of its affinities

ArestudyoftheBurgessShale(Cambrian)arthropodEmeraldella brocki and reassessment of its affinities Journal of Systematic Palaeontology, ifirst 2011, 1 23 ArestudyoftheBurgessShale(Cambrian)arthropodEmeraldella brocki and reassessment of its affinities Martin Stein and Paul A. Selden University of Kansas,

More information

New insights into the appendage morphology of the Cambrian trilobite-like arthropod Naraoia compacta

New insights into the appendage morphology of the Cambrian trilobite-like arthropod Naraoia compacta For understanding the life habits of extinct organisms, functional morphology is of crucial importance. In arthropods, the morphology of the appendages in particular gives insights into the mode of life.

More information

HEAD STRUCTURE IN UPPER STEM-GROUP EUARTHROPODS

HEAD STRUCTURE IN UPPER STEM-GROUP EUARTHROPODS [Palaeontology, Vol. 51, Part 3, 2008, pp. 561 573] HEAD STRUCTURE IN UPPER STEM-GROUP EUARTHROPODS by GRAHAM E. BUDD Department of Earth Sciences, Palaeobiology, Uppsala University, Norbyvägen 22, Uppsala,

More information

The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata

The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata Cong et al. BMC Evolutionary Biology (2017) 17:208 DOI 10.1186/s12862-017-1049-1 RESEARCH ARTICLE The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata Peiyun

More information

ESS 345 Ichthyology. Systematic Ichthyology Part II Not in Book

ESS 345 Ichthyology. Systematic Ichthyology Part II Not in Book ESS 345 Ichthyology Systematic Ichthyology Part II Not in Book Thought for today: Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else,

More information

Jùrgen Olesen. Acta Zoologica (Stockholm) 80: 163±184 (April 1999)

Jùrgen Olesen. Acta Zoologica (Stockholm) 80: 163±184 (April 1999) Acta Zoologica (Stockholm) 80: 163±184 (April 1999) Larval and post-larval development of the branchiopod clam shrimp Cyclestheria hislopi (Baird, 1859) (Crustacea, Branchiopoda, Conchostraca, Spinicaudata)

More information

8/23/2014. Introduction to Animal Diversity

8/23/2014. Introduction to Animal Diversity Introduction to Animal Diversity Chapter 32 Objectives List the characteristics that combine to define animals Summarize key events of the Paleozoic, Mesozoic, and Cenozoic eras Distinguish between the

More information

Radiation and Evolution of Metazoans: The Cambrian Explosion and the Burgess Shale Fossils. Geology 331, Paleontology

Radiation and Evolution of Metazoans: The Cambrian Explosion and the Burgess Shale Fossils. Geology 331, Paleontology Radiation and Evolution of Metazoans: The Cambrian Explosion and the Burgess Shale Fossils Geology 331, Paleontology Marshall, 2006 Halkierids, which produced some of the small, shelly fossils of the Early

More information

Chapter 12. Life of the Paleozoic

Chapter 12. Life of the Paleozoic Chapter 12 Life of the Paleozoic Paleozoic Invertebrates Representatives of most major invertebrate phyla were present during Paleozoic, including sponges, corals, bryozoans, brachiopods, mollusks, arthropods,

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

GSA DATA REPOSITORY Sup. Mat. 1. Figure DR1. Detailed locality information. 02

GSA DATA REPOSITORY Sup. Mat. 1. Figure DR1. Detailed locality information. 02 GSA DATA REPOSITORY 008 Caron et al. Stanley Glacier - List of supplementary materials: Sup. Mat.. Figure DR. Detailed locality information. 0 Sup. Mat.. Figure DR. Claystone lithofacies. 0 Sup. Mat..

More information

Classification, Phylogeny yand Evolutionary History

Classification, Phylogeny yand Evolutionary History Classification, Phylogeny yand Evolutionary History The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize

More information

Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2012 University of California, Berkeley

Integrative Biology 200A PRINCIPLES OF PHYLOGENETICS Spring 2012 University of California, Berkeley Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2012 University of California, Berkeley B.D. Mishler Feb. 7, 2012. Morphological data IV -- ontogeny & structure of plants The last frontier

More information

EVOLUTION OF COMPLEX LIFE FORMS

EVOLUTION OF COMPLEX LIFE FORMS 0.002 0.6 1.0 1.9 2.8 Ancestral humans Diversification of mammals Invasion of the land Diversification of animals Origin of the major eukaryotic groups Eukaryotic cells abundant Atmospheric oxygen plentiful

More information

Carolin Haug 1*, Wafaa S Sallam 2, Andreas Maas 3, Dieter Waloszek 3, Verena Kutschera 3 and Joachim T Haug 1

Carolin Haug 1*, Wafaa S Sallam 2, Andreas Maas 3, Dieter Waloszek 3, Verena Kutschera 3 and Joachim T Haug 1 Haug et al. Frontiers in Zoology 2012, 9:31 RESEARCH Open Access Tagmatization in Stomatopoda reconsidering functional units of modern-day mantis shrimps (Verunipeltata, Hoplocarida) and implications for

More information

Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley

Integrative Biology 200 PRINCIPLES OF PHYLOGENETICS Spring 2018 University of California, Berkeley Integrative Biology 200 "PRINCIPLES OF PHYLOGENETICS" Spring 2018 University of California, Berkeley B.D. Mishler Feb. 14, 2018. Phylogenetic trees VI: Dating in the 21st century: clocks, & calibrations;

More information

Integrating Fossils into Phylogenies. Throughout the 20th century, the relationship between paleontology and evolutionary biology has been strained.

Integrating Fossils into Phylogenies. Throughout the 20th century, the relationship between paleontology and evolutionary biology has been strained. IB 200B Principals of Phylogenetic Systematics Spring 2011 Integrating Fossils into Phylogenies Throughout the 20th century, the relationship between paleontology and evolutionary biology has been strained.

More information

Non-independence in Statistical Tests for Discrete Cross-species Data

Non-independence in Statistical Tests for Discrete Cross-species Data J. theor. Biol. (1997) 188, 507514 Non-independence in Statistical Tests for Discrete Cross-species Data ALAN GRAFEN* AND MARK RIDLEY * St. John s College, Oxford OX1 3JP, and the Department of Zoology,

More information

24. JURASSIC OSTRACODES OF DEEP SEA DRILLING PROJECT LEG 76, HOLE 534A, BLAKE-BAHAMA BASIN 1

24. JURASSIC OSTRACODES OF DEEP SEA DRILLING PROJECT LEG 76, HOLE 534A, BLAKE-BAHAMA BASIN 1 . JURASSIC OSTRACODES OF DEEP SEA DRILLING PROJECT LEG 76, HOLE A, BLAKE-BAHAMA BASIN Henri J. Oertli, Elf Aquitaine, Centre Micoulau, Pau, France ABSTRACT The ostracode assemblage found in Upper Jurassic

More information

Functional morphology of giant mole crab larvae: a possible case of defensive enrollment

Functional morphology of giant mole crab larvae: a possible case of defensive enrollment Rudolf et al. Zoological Letters (2016) 2:17 DOI 10.1186/s40851-016-0052-5 RESEARCH ARTICLE Open Access Functional morphology of giant mole crab larvae: a possible case of defensive enrollment Nicole R.

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

B. Phylogeny and Systematics:

B. Phylogeny and Systematics: Tracing Phylogeny A. Fossils: Some fossils form as is weathered and eroded from the land and carried by rivers to seas and where the particles settle to the bottom. Deposits pile up and the older sediments

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

Revision Based on Chapter 25 Grade 11

Revision Based on Chapter 25 Grade 11 Revision Based on Chapter 25 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A cell that contains a nucleus and membrane-bound organelles

More information

A Morphological Study of the Evolution of Eight Organisms Through a Morphological Phylogeny

A Morphological Study of the Evolution of Eight Organisms Through a Morphological Phylogeny Int. J. of Life Sciences, 2017, Vol. 5 (3): 306-310 ISSN: 2320-7817 eissn: 2320-964X RESEARCH ARTICLE A Morphological Study of the Evolution of Eight Organisms Through a Morphological Phylogeny Sammer

More information

Shield was above sea-level during the Cambrian and provided the sediment for the basins.

Shield was above sea-level during the Cambrian and provided the sediment for the basins. Name: Answers Geology 1023 Lab #8, Winter 2014 Platforms and Paleozoic life-forms Lab day: Tu W Th 1. Schematic geologic cross-sections A-B and C-D (shown below) cross the edge of the continental platform

More information

8/23/2014. Phylogeny and the Tree of Life

8/23/2014. Phylogeny and the Tree of Life Phylogeny and the Tree of Life Chapter 26 Objectives Explain the following characteristics of the Linnaean system of classification: a. binomial nomenclature b. hierarchical classification List the major

More information

Fig. 16. Majority rule consensus tree depicting phylogenetic relationships inferred among 74 species of heterokont algae. Note that A.

Fig. 16. Majority rule consensus tree depicting phylogenetic relationships inferred among 74 species of heterokont algae. Note that A. Plate 1 Figs. 1-8. Light microscopic images of Anthophysa vegetans colonies and individual motile cells. Figs 1-5. Stalked (arrow; Figs 1,2) or unstalked (Figs 3-5) colonies consisting of ca. 10-20 spherical

More information

Bulletin Zoölogisch Museum

Bulletin Zoölogisch Museum Bulletin Zoölogisch Museum UNIVERSITEIT VAN AMSTERDAM Vol.11 No. 15 1988 Redescription of johanna Monod, 1926 Virgin Isls (Isopoda) from St. John, Hans Georg Müller Summary Based on the type material,

More information

Patterns of Evolution

Patterns of Evolution Patterns of Evolution A tree that represents an estimate (hypothesis) of evolutionary relatedness is a phylogeny Classifications can be based on groupings within a phylogeny Groupings can be categorized

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Welcome to Your Kingdom The animal kingdom

More information

OF THE LEMNA FROND MORPHOLOGY

OF THE LEMNA FROND MORPHOLOGY MORPHOLOGY OF THE LEMNA FROND FREDERICK H. BLODGETT (WITH PLATE XIV AND ONE FIGURE) In the case of structure simplified by reduction, it is sometimes necessary to trace the development of the parts through

More information

Reconstructing the history of lineages

Reconstructing the history of lineages Reconstructing the history of lineages Class outline Systematics Phylogenetic systematics Phylogenetic trees and maps Class outline Definitions Systematics Phylogenetic systematics/cladistics Systematics

More information

Biology 2. Lecture Material. For. Macroevolution. Systematics

Biology 2. Lecture Material. For. Macroevolution. Systematics Biology 2 Macroevolution & Systematics 1 Biology 2 Lecture Material For Macroevolution & Systematics Biology 2 Macroevolution & Systematics 2 Microevolution: Biological Species: Two Patterns of Evolutionary

More information

TIME LINE OF LIFE. Strip for Clock of Eras representing the circumference. 1. Review the eras represented on the Clock of Eras:

TIME LINE OF LIFE. Strip for Clock of Eras representing the circumference. 1. Review the eras represented on the Clock of Eras: TIME LINE OF LIFE Material Time Line of Life Working Time Line of Life Clock of Eras Strip for Clock of Eras representing the circumference Elastic strip for Clock of Eras Presentation 1: Overview 1. Review

More information

Classifications can be based on groupings g within a phylogeny

Classifications can be based on groupings g within a phylogeny Patterns of Evolution A tree that represents an estimate (hypothesis) of evolutionary relatedness is a phylogeny Classifications can be based on groupings g within a phylogeny y Groupings can be categorized

More information

CLASSIFICATION AND EVOLUTION OF CAMINALCULES:

CLASSIFICATION AND EVOLUTION OF CAMINALCULES: CLASSIFICATION AND EVOLUTION OF CAMINALCULES: One of the main goals of the lab is to illustrate the intimate connection between the classification of living species and their evolutionary relationships.

More information

Exercise 10 Fossil Lab Part 5: Crinoids, Blastoids, Fusulinids, Plants

Exercise 10 Fossil Lab Part 5: Crinoids, Blastoids, Fusulinids, Plants Exercise 10 Fossil Lab Part 5: Crinoids, Blastoids, Fusulinids, Plants ECHINODERMS (CRINOIDS AND BLASTOIDS): Echinoderms are an extremely diverse group of advanced invertebrates including such familiar

More information

Modern Evolutionary Classification. Section 18-2 pgs

Modern Evolutionary Classification. Section 18-2 pgs Modern Evolutionary Classification Section 18-2 pgs 451-455 Modern Evolutionary Classification In a sense, organisms determine who belongs to their species by choosing with whom they will mate. Taxonomic

More information

6 characteristics blastula

6 characteristics blastula Animals Characteristics The animal kingdom is divided into approximately 35 phyla with diverse species. However, all organisms in the animal kingdom share these 6 characteristics Eukaryotic Lack cell walls

More information

1 Conducting Units: Tracheids and Vessels 1.1 Evolutionary Specialization

1 Conducting Units: Tracheids and Vessels 1.1 Evolutionary Specialization 1 Conducting Units: Tracheids and Vessels 1.1 Evolutionary Specialization The development of upright land plants depended on the development of a waterconducting system. Many of the earliest land plants,

More information

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other?

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Phylogeny: the evolutionary history of a species

More information

--Therefore, congruence among all postulated homologies provides a test of any single character in question [the central epistemological advance].

--Therefore, congruence among all postulated homologies provides a test of any single character in question [the central epistemological advance]. Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2008 University of California, Berkeley B.D. Mishler Jan. 29, 2008. The Hennig Principle: Homology, Synapomorphy, Rooting issues The fundamental

More information

Lecture V Phylogeny and Systematics Dr. Kopeny

Lecture V Phylogeny and Systematics Dr. Kopeny Delivered 1/30 and 2/1 Lecture V Phylogeny and Systematics Dr. Kopeny Lecture V How to Determine Evolutionary Relationships: Concepts in Phylogeny and Systematics Textbook Reading: pp 425-433, 435-437

More information

Biologists have used many approaches to estimating the evolutionary history of organisms and using that history to construct classifications.

Biologists have used many approaches to estimating the evolutionary history of organisms and using that history to construct classifications. Phylogenetic Inference Biologists have used many approaches to estimating the evolutionary history of organisms and using that history to construct classifications. Willi Hennig developed d the techniques

More information

(Stevens 1991) 1. morphological characters should be assumed to be quantitative unless demonstrated otherwise

(Stevens 1991) 1. morphological characters should be assumed to be quantitative unless demonstrated otherwise Bot 421/521 PHYLOGENETIC ANALYSIS I. Origins A. Hennig 1950 (German edition) Phylogenetic Systematics 1966 B. Zimmerman (Germany, 1930 s) C. Wagner (Michigan, 1920-2000) II. Characters and character states

More information

Systematics Lecture 3 Characters: Homology, Morphology

Systematics Lecture 3 Characters: Homology, Morphology Systematics Lecture 3 Characters: Homology, Morphology I. Introduction Nearly all methods of phylogenetic analysis rely on characters as the source of data. A. Character variation is coded into a character-by-taxon

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

The puzzle presented by the famous stumps of Gilboa, New York, finds a solution in the

The puzzle presented by the famous stumps of Gilboa, New York, finds a solution in the PALAEOBOTANY A tree without leaves Brigitte Meyer-Berthaud and Anne-Laure Decombeix The puzzle presented by the famous stumps of Gilboa, New York, finds a solution in the discovery of two fossil specimens

More information

A new asellote isopod of the genus Microjanira Schiecke & Fresi, 1970 (Crustacea: Isopoda: Asellota: Janiridae) from Japan

A new asellote isopod of the genus Microjanira Schiecke & Fresi, 1970 (Crustacea: Isopoda: Asellota: Janiridae) from Japan Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist., Ser. A, 6: 13-18, March 31, 2008 A new asellote isopod of the genus Microjanira Schiecke & Fresi, 1970 (Crustacea: Isopoda: Asellota: Janiridae) from Japan

More information

Team members (First and Last Names): Fossil lab

Team members (First and Last Names): Fossil lab Team members (First and Last Names): Period: Group #: Fossil lab Background: Fossils are traces of organisms that lived in the past. When fossils are found, they are carefully excavated and then analyzed.

More information

REDESCRIPTION OF DORYPHORIBIUS VIETNAMENSIS (IHAROS, 1969) (TARDIGRADA) COMB. NOV. ON THE BASIS OF THE HOLOTYPE AND ADDITIONAL MATERIAL FROM CHINA

REDESCRIPTION OF DORYPHORIBIUS VIETNAMENSIS (IHAROS, 1969) (TARDIGRADA) COMB. NOV. ON THE BASIS OF THE HOLOTYPE AND ADDITIONAL MATERIAL FROM CHINA Acta Zoologica Academiae Scientiarum Hungaricae 52 (4), pp. 367 372, 2006 REDESCRIPTION OF DORYPHORIBIUS VIETNAMENSIS (IHAROS, 1969) (TARDIGRADA) COMB. NOV. ON THE BASIS OF THE HOLOTYPE AND ADDITIONAL

More information

UNIVERSITY OF MICHIGAN. A NEW AND UNUSUAL SPECIES OF THE OSTRACOD GENUS HERRMAlVNIlVA FROM THE MIDDLE SILURIAN HENDRICKS DOLOMITE OF MICHIGAN

UNIVERSITY OF MICHIGAN. A NEW AND UNUSUAL SPECIES OF THE OSTRACOD GENUS HERRMAlVNIlVA FROM THE MIDDLE SILURIAN HENDRICKS DOLOMITE OF MICHIGAN CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY UNIVERSITY OF MICHIGAN VOL. SIV, Xo. 9, pp. 143-148 (1 pl.) FEBRUARY 28, 1958 A NEW AND UNUSUAL SPECIES OF THE OSTRACOD GENUS HERRMAlVNIlVA FROM THE MIDDLE

More information

Classification and Phylogeny

Classification and Phylogeny Classification and Phylogeny The diversity it of life is great. To communicate about it, there must be a scheme for organization. There are many species that would be difficult to organize without a scheme

More information

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9 Lecture 5 Alignment I. Introduction. For sequence data, the process of generating an alignment establishes positional homologies; that is, alignment provides the identification of homologous phylogenetic

More information

Amphigomphus somnuki n. sp. from North Thailand (Odonata: Gomphidae) MATTI HAMALAINEN

Amphigomphus somnuki n. sp. from North Thailand (Odonata: Gomphidae) MATTI HAMALAINEN Entomol. Z., 106(5), 1996 177 Amphigomphus somnuki n. sp. from North Thailand (Odonata: Gomphidae) MATTI HAMALAINEN With 8 figures Abstract: A new dragonfly species, Amphigomphus somnuki n. sp. (holotype

More information

Phylogenetic Analysis

Phylogenetic Analysis Phylogenetic Analysis Aristotle Through classification, one might discover the essence and purpose of species. Nelson & Platnick (1981) Systematics and Biogeography Carl Linnaeus Swedish botanist (1700s)

More information

Phylogenetic Analysis

Phylogenetic Analysis Phylogenetic Analysis Aristotle Through classification, one might discover the essence and purpose of species. Nelson & Platnick (1981) Systematics and Biogeography Carl Linnaeus Swedish botanist (1700s)

More information

Phylogenetic Analysis

Phylogenetic Analysis Phylogenetic Analysis Aristotle Through classification, one might discover the essence and purpose of species. Nelson & Platnick (1981) Systematics and Biogeography Carl Linnaeus Swedish botanist (1700s)

More information

Comparative Mouthpart Morphology and Evolution of the Carnivorous Heptageniidae (Ephemeroptera) 1

Comparative Mouthpart Morphology and Evolution of the Carnivorous Heptageniidae (Ephemeroptera) 1 l Aquatic Insects, Vol. 8 (1986). No. 2, pp. 83-89 0165-0424/86/0802-0083 $3.00 Swets & Zeitlinger Comparative Mouthpart Morphology and Evolution of the Carnivorous Heptageniidae (Ephemeroptera) 1 by W.

More information

Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida. Overview of Pre-Metazoan. and Protostome Development (Insects)

Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida. Overview of Pre-Metazoan. and Protostome Development (Insects) Biology 340 Comparative Embryology Lecture 4 Dr. Stuart Sumida Overview of Pre-Metazoan and Protostome Development (Insects) Plants Fungi Animals In1998 fossilized animal embryos were reported from the

More information

Supplementary Figures. Supplementary Figure S1. Cladogram showing distribution of sternal features in Archosauria.

Supplementary Figures. Supplementary Figure S1. Cladogram showing distribution of sternal features in Archosauria. Supplementary Information Insight into the Early Evolution of the Avian Sternum from Juvenile Enantiornithines Xiaoting Zheng, Xiaoli Wang, Jingmai O Connor, Zhonghe Zhou. Supplementary Figures Supplementary

More information

Biology 211 (2) Week 1 KEY!

Biology 211 (2) Week 1 KEY! Biology 211 (2) Week 1 KEY Chapter 1 KEY FIGURES: 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 VOCABULARY: Adaptation: a trait that increases the fitness Cells: a developed, system bound with a thin outer layer made of

More information

Parasitology Research

Parasitology Research Parasitology Research Electronic Supplementary Material for: Sarcophaga (Liosarcophaga) tibialis Macquart 1851 (Diptera: Sarcophagidae): micromorphology of preimaginal stages of a fly of medical and veterinary

More information

Complex hierarchical microstructures of Cambrian mollusk Pelagiella: insight. into early biomineralization and evolution

Complex hierarchical microstructures of Cambrian mollusk Pelagiella: insight. into early biomineralization and evolution Complex hierarchical microstructures of Cambrian mollusk Pelagiella: insight into early biomineralization and evolution Luoyang Li 1, Xingliang Zhang 1 *, Hao Yun 1, Guoxiang Li 2 1 Shaanxi Key Laboratory

More information

Evolution of Life and the Atmosphere

Evolution of Life and the Atmosphere Evolution of Life and the Atmosphere White board used for Evolution of the Atmosphere and Early Evolution of Life The Pitfalls of Preservation It is obvious that a major change occurred in the Earth s

More information

A FOSSIL CRAB FROM THE LAKES ENTRANCE OIL SHAFT, GIPPSLAND, VICTORIA

A FOSSIL CRAB FROM THE LAKES ENTRANCE OIL SHAFT, GIPPSLAND, VICTORIA gtopt JtoAtty 0f WitUxm. -..., ' -: / '.. v - - ^.. ' ' * A FOSSIL CRAB FROM THE LAKES ENTRANCE OIL SHAFT, GIPPSLAND, VICTORIA BY.'. " ; IRENE CRESPIN, R. A. Read 6** June, 1946 ' Reprinted from Proo.

More information

Københavns Universitet

Københavns Universitet university of copenhagen Københavns Universitet The unique dorsal brood pouch of Thermosbaenacea (Crustacea, Malacostraca) and description of an advanced developmental stage of Tulumella unidens from the

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

Phylogeny is the evolutionary history of a group of organisms. Based on the idea that organisms are related by evolution

Phylogeny is the evolutionary history of a group of organisms. Based on the idea that organisms are related by evolution Bio 1M: Phylogeny and the history of life 1 Phylogeny S25.1; Bioskill 11 (2ndEd S27.1; Bioskills 3) Bioskills are in the back of your book Phylogeny is the evolutionary history of a group of organisms

More information

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics)

UoN, CAS, DBSC BIOL102 lecture notes by: Dr. Mustafa A. Mansi. The Phylogenetic Systematics (Phylogeny and Systematics) - Phylogeny? - Systematics? The Phylogenetic Systematics (Phylogeny and Systematics) - Phylogenetic systematics? Connection between phylogeny and classification. - Phylogenetic systematics informs the

More information

Post-embryonic development of remipede crustaceans

Post-embryonic development of remipede crustaceans EVOLUTION & DEVELOPMENT 9:2, 117 121 (2007) Post-embryonic development of remipede crustaceans Stefan Koenemann, a, Frederick R. Schram, b Armin Bloechl, a Thomas M. Iliffe, c Mario Hoenemann, a and Christoph

More information

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers

Animal Diversity. Features shared by all animals. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animal Diversity Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Nutritional mode Ingest food and use enzymes in the body to digest Cell structure and

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

b. By Proterozoic, - protected from solar radiation if about 10 M below surface of water - dominated by

b. By Proterozoic, - protected from solar radiation if about 10 M below surface of water - dominated by I. Diversification of Life A. Review 1. Hadean Eon a. b. 2. Archaean Eon a. Earliest fossils of b. Establishment of three major domains B. Proterozoic Eon (2.5 bya - 543 mya) 1. Emergence of the a. Rock

More information

Paleontology Muhittin Görmüş Department of Geology Lecture 12

Paleontology Muhittin Görmüş Department of Geology Lecture 12 Paleontology http://www.biltek.tubitak. gov.tr/bilgipaket/jeolojik /index.htm Muhittin Görmüş Department of Geology http://members.cox.net/jdmount/paleont.html http://www.ucmp.berkeley.edu/arthropoda/arthropoda.html

More information

Anatomy of a tree. clade is group of organisms with a shared ancestor. a monophyletic group shares a single common ancestor = tapirs-rhinos-horses

Anatomy of a tree. clade is group of organisms with a shared ancestor. a monophyletic group shares a single common ancestor = tapirs-rhinos-horses Anatomy of a tree outgroup: an early branching relative of the interest groups sister taxa: taxa derived from the same recent ancestor polytomy: >2 taxa emerge from a node Anatomy of a tree clade is group

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION VOLUME: 1 ARTICLE NUMBER: 0022 In the format provided by the authors and unedited. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos Harvey, Thomas H.P. 1*

More information

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Chapter 32 Introduction to Animal Diversity Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified

More information

Phylogenetic analysis. Characters

Phylogenetic analysis. Characters Typical steps: Phylogenetic analysis Selection of taxa. Selection of characters. Construction of data matrix: character coding. Estimating the best-fitting tree (model) from the data matrix: phylogenetic

More information

^ ^ LIBRARY Division of Crustace;

^ ^ LIBRARY Division of Crustace; /re/// ^ ^ LIBRARY Division of Crustace; Larval Development of Helice tridens wuana Rathbun ^Y RTEBRAT and H. tridens tridens de Haan (Crustacea, Brachyura) ZOOLOGY Reared in the Laboratory Crustacea By

More information

Acrobotrys tritubus Riedel

Acrobotrys tritubus Riedel 151 Acrobotrys tritubus Riedel Acrobotrys tritubus Riedel, 1957, p.80, pl.1, fig.5 DESCRIPTION Cephalis trilobate, with large subglobular [antecephalic] lobe, smaller globular [cephalic] lobe, and inflated-conical

More information

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26

Phylogeny 9/8/2014. Evolutionary Relationships. Data Supporting Phylogeny. Chapter 26 Phylogeny Chapter 26 Taxonomy Taxonomy: ordered division of organisms into categories based on a set of characteristics used to assess similarities and differences Carolus Linnaeus developed binomial nomenclature,

More information

Maine Geologic Facts and Localities October, Lobster Lake, Maine. Text by Robert G. Marvinney. Maine Geological Survey

Maine Geologic Facts and Localities October, Lobster Lake, Maine. Text by Robert G. Marvinney. Maine Geological Survey Maine Geologic Facts and Localities October, 1998 Lobster Lake, Maine 45 o 51 7.91 N, 69 o 30 53.88 W Text by Robert G. Marvinney, Department of Agriculture, Conservation & Forestry 1 Map by Introduction

More information

New long-proboscid lacewings of the mid-cretaceous provide insights into ancient. Gorges Entomological Museum, P.O. Box 4680, Chongqing , China.

New long-proboscid lacewings of the mid-cretaceous provide insights into ancient. Gorges Entomological Museum, P.O. Box 4680, Chongqing , China. Supplementary Materials. New long-proboscid lacewings of the mid-cretaceous provide insights into ancient plant-pollinator interactions Xiu-Mei Lu a, Wei-Wei Zhang b, Xing-Yue Liu a * a Department of Entomology,

More information

Forty. Annelids. The. group of in humid. elongate, worm-like. bodies with

Forty. Annelids. The. group of in humid. elongate, worm-like. bodies with WEEK 2: INSECT MACROEVOLUTION Forty million years ago some insects were trapped in tree resin and preserved in what became amber. These trapped insects look almost exactly the same as insects around us

More information

PHYLOGENY WHAT IS EVOLUTION? 1/22/2018. Change must occur in a population via allele

PHYLOGENY WHAT IS EVOLUTION? 1/22/2018. Change must occur in a population via allele PHYLOGENY EXERCISE 1 AND 2 WHAT IS EVOLUTION? The theory that all living organisms on earth are related and have a common ancestor. These organism have changed over time and are continuing to change. Changes

More information

How should we organize the diversity of animal life?

How should we organize the diversity of animal life? How should we organize the diversity of animal life? The difference between Taxonomy Linneaus, and Cladistics Darwin What are phylogenies? How do we read them? How do we estimate them? Classification (Taxonomy)

More information

Zoological Systematics & Taxonomy

Zoological Systematics & Taxonomy Name: PRE-LAB This lab is designed to introduce you to the basics of animal classification (systematics) and taxonomy of animals. This is a field that is constantly changing with the discovery of new animals,

More information

Surprise! A New Hominin Fossil Changes Almost Nothing!

Surprise! A New Hominin Fossil Changes Almost Nothing! Surprise! A New Hominin Fossil Changes Almost Nothing! Author: Andrew J Petto Table 1: Brief Comparison of Australopithecus with early Homo fossils Species Apes (outgroup) Thanks to Louise S Mead for comments

More information

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges.

A. Incorrect! Sponges are mostly marine animals. This is a feature of sponges. College Biology - Problem Drill 15: The Evolution of Animal Diversity Question No. 1 of 10 1. Which is not a feature of the phyla porifera- sponges? Question #01 (A) Most are marine animals. (B) They have

More information

Tuesday 16 June 2015 Morning

Tuesday 16 June 2015 Morning Oxford Cambridge and RSA Tuesday 16 June 2015 Morning A2 GCE GEOLOGY F795/01 Evolution of Life, Earth and Climate *5003753738* Candidates answer on the Question Paper. OCR supplied materials: None Other

More information

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017

Animal Diversity. Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers 9/20/2017 Animal Diversity Chapter 32 Which of these organisms are animals? Animals are multicellular, heterotrophic eukaryotes with tissues that develop from embryonic layers Animals share the same: Nutritional

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

Bio 2 Plant and Animal Biology

Bio 2 Plant and Animal Biology Bio 2 Plant and Animal Biology Evolution Evolution as the explanation for life s unity and diversity Darwinian Revolution Two main Points Descent with Modification Natural Selection Biological Species

More information

FOSSILS. Evidence of change over time

FOSSILS. Evidence of change over time FOSSILS Evidence of change over time Fossils What is a fossil? Preserved remains or evidence of an ancient organism. What do fossils tell us? Fossils tell us what an organism was like (structure) and what

More information

A MEGASECOPTERON FROM UPPER CARBONIFEROUS BY F. M. CARPENTER. In I962 Professor F. Stockmans, of the Institut Royal des Sciences STRATA IN SPAIN

A MEGASECOPTERON FROM UPPER CARBONIFEROUS BY F. M. CARPENTER. In I962 Professor F. Stockmans, of the Institut Royal des Sciences STRATA IN SPAIN A MEGASECOPTERON FROM UPPER CARBONIFEROUS STRATA IN SPAIN BY F. M. CARPENTER Harvard University In I962 Professor F. Stockmans, of the Institut Royal des Sciences Naturelles de. Belgique, kindly sent me

More information