Seismic Responses of Liquefiable Sandy Ground with Silt Layers

Size: px
Start display at page:

Download "Seismic Responses of Liquefiable Sandy Ground with Silt Layers"

Transcription

1 Journal of Applied Science and Engineering, Vol. 16, No. 1, pp (2013) 9 Seismic Responses of Liquefiable Sandy Ground with Silt Layers H. T. Chen 1 *, B. C. Ridla 2, R. M. Simatupang 2 and C. J. Lee 1 1 Department of Civil Engineering, National Central University, Taoyuan, Taiwan 320, R.O.C. 2 Department of Civil Engineering, National Central University, Taiwan and University of Brawijaya, Indonesia Abstract This paper presents the numerical simulation results of liquefable sand-silt stratum with silt intralayers under strong earthquakes. The numerical simulation results showed that the existence of silt intralayers in a sandy soil stratum will reduce the ground settlement and the excessive pore water pressure above the silt layer will also become smaller than that in the regular sand stratum. However, the pore water pressure beneath the silt layer will become higher due to the impermeable character of silt layer. Although the existence of more silt layers decreases the ground settlement furthermore, the pore water pressure will have slower dissipation. Key Words: Liquefaction, Sandy Stratum, Silt Intralayers, Effective Stress Analysis 1. Introduction Liquefaction is a phenomenon that the structural and the geotechnical engineers concern most as it can result in serious damage to the ground and the building such as sand boiling, lateral spreading, excessive settlement, tilting and overturning of structures. For a long time, many liquefaction-related studies mainly treated the ground as sandy ground; however, in reality there may be layers of silt or clay embedded in the sandy ground. In some earthquakes the failure of ground did not occur during the earthquake but after the earthquake stopped. The investigations on such a phenomenon showed that it may be due to the existence of a silt layer in the sandy ground where a water film develops at the bottom of the silt layer with high pore water pressure [1]. This indicates that the sandy soil stratum with silt intralayers may become unstable even after the main shake, causing the sliding of slope. The purpose of this study is to investigate numerically the behavior of liquefable sand-silt stratum with many layers of silt under strong earthquakes. *Corresponding author. chenht@cc.ncu.edu.tw 2. Method of Analysis For the numerical simulation the three-dimensional nonlinear effective stress finite element method was adopted [2]. This method was developed on the basis of Biot theory for porous media. The nonlinear soil behavior was modeled using the Cap model with Mohr- Coulomb type failure line and the pore pressure model consistent with the Cap model was adopted [3]. The lateral boundaries can be modeled as either roller-type boundaries or absorbing boundaries, while the bottom bedrock is always fixed. This method adopts the U-W form of equation of motion [4] as follows: (1) where u is the displacement of soil particle and w is the displacement of water relative to soil particle. The vector {J} is made up of 1 s and 0 s to account for the de-

2 10 H. T. Chen et al. sired direction of input motion. is the input motion specified at the bedrock of soil stratum. 3. Verification and Validation In this study the validation and verification of numerical simulation was first conducted by using the results of centrifuge tests on three models [5]. Although the validation was made for all three models [6], here only the comparisons for two models are presented. Shown in Figure 1 are the two finite element models which were constructed in accordance with the models used in the centrifuge test. The model in Figure 1a denoted as Sand model corresponds to the sandy stratum which was divided into 11 layers with the top and the bottom layers having the thickness of 1.2 m and the remaining layers with thickness of 2.4 m for each layer. Figure 1b shows the model denoted as Sand-Silt 1 model where the silt layer of 1.6 m thick was placed at the depth of 5.6 m from the surface and the model was divided into 13 different layers. The input motions measured at the base of shaking table on the centrifuge platform was used as the input motion. Figures 2 and 3 show the comparison for the surface settlement and excessive pore water pressure development, respectively. It can be seen that the simulation results show the same trend as the experimental results and the agreement is acceptable. 4. Numerical Results and Discussions 4.1 Modal Description Shown in Figure 4 are the five models adopted in this study. Sand model consisted of sand only. For Silt 1 model a silt layer of 2 m thick was placed at the depth of 8 m from the surface. Two silt layers of 2 m thick for each were placed at the depth of 8 m and 20 m, respectively, from the surface for Silt 2 model. Silt 3 model was the Figure 1. Finite element models: (a) Sand model, (b) Sand-Silt 1 mode1. Figure 2. Comparison for surface settlement: (a) Sand model, (b) Sand-Silt 1 model.

3 Seismic Responses of Liquefiable Sandy Ground with Silt Layers 11 Figure 3. Comparison of excess pore water pressure development: (a) Sand model, (b) Sand-Silt 1 model. Figure 4. Finite element models: (a) Sand model, (b) Silt 1 model, (c) Silt 2 model, (d) Silt 3 model, (e) Silt 4 model. one where two silt layers of 2 m thick for each were placed at the depth of 8 m and 14 m from the surface, respectively. For Silt 4 model, three silt layers of 2 m thick for each were placed at the depth of 8 m, 14 m and 20 m from the surface, respectively. All the models had dimensions of 26 m 26 m 30 m (length width depth) and were divided into 15 layers with element size of 2 m 2m 2 m. Detailed properties of the models can be seen in the thesis by Simatupang [6]. A real earthquake motion recorded in 1999 ChiChi earthquake at Chiayi station (Chiayi input motion) was used for this 3D simulation study. Before the simulation, from the selected earthquake the maximum acceleration of all components was selected and normalized to 0.2 g; thereafter, the same scaling factor was applied to the motions of the other two directions. These three scaled component of motions were then used as the input motions for the simulation.

4 12 H. T. Chen et al. 4.2 Discussions Figure 5 shows the time history of settlement on the surface for Sand, Silt 1, Silt 2, Silt 3, and Silt 4 models subjected to Chiayi input motion. The largest settlement occurs in the Sand model, which is around 0.87 m. The maximum settlements of Silt 1, Silt 2, Silt 3, and Silt 4 models are 0.55 m, 0.37 m, 0.34 m, and 0.22 m, respectively. Silt 1, Silt 2, and Silt 3 models have smaller settlement than the Sand model due to the existence of silt layer near the surface. Silt 4 model has the smallest settlement from all models due to the existence of three silt layers. Shown in Figure 6 are the excess pore water pressure ratios at different depths for Sand, Silt 1, Silt 2, Silt 3, and Silt 4 models subjected to Chiayi input motion. In this figure, it can be seen that the effect of silt layer in the sandy soil stratum is significant. At each depth, the behavior of EPWP was different. All five models liquefy at the depth of 1 m where Silt 1, Silt 2, Silt 3 and Silt 4 models have lower EPWP ratio and faster dissipation than Sand model. But at the depth of 5 m, only the Sand model liquefies, while the Silt 1, Silt 2, Silt 3 and Silt 4 models show almost the same development of EPWP without liquefaction. At the depths of 7 m and 9 m, which are inside the silt layer of Silt 1, Silt 2, Silt 3, and Silt 4 models, the development of EPWP is slower than that of Sand model before liquefaction and after the liquefaction occurs, the trend reverses. At this depth, there is a water film beneath a less permeable soil layers and it takes longer time to dissipate the EPWP. At the depths of 17 m, 21 m and 29 m, liquefaction does not occur for all five models; the development of EPWP for Sand model and Silt 1 model is almost the same, meaning that the EPWP is not affected by the existence the silt layer in Silt 1 model while a slight increase is observed for the Silt 2, Silt 3, and Silt 4 models at later time. Figure 7 depicts the initial effective stress and the EPWP profiles for all five models at several selected time. All five models show the similar behavior in the Figure 5. Time history of settlement for 5 models (Chiayi input motions). Figure 6. Time history of EPWP ratio at different depths for 5 models (Chiayi input motions).

5 Seismic Responses of Liquefiable Sandy Ground with Silt Layers 13 Figure 7. EPWP profile at different time for 5 models (Chiayi input motions). development of EPWP up to 5 seconds. At 15 seconds, for Silt 1 model, a jump in the EPWP occurs between the top and bottom of silt layer and for Silt 2, Silt 3, and Silt 4 models the jump occur between the top and bottom of each silt layer but there is no jump for Sand model. The variation of EPWP between the three silt layers of Silt 4 model is that the value of EPWP decreases to a value smaller than that of Sand, Silt 1, Silt 2, and Silt 3 models at the top of lower silt layer. The above phenomenon becomes less pronounced as the EPWP keeps increasing from 15 seconds to 40 seconds. At 40 seconds, EPWP in Silt 4 model is higher than that in Sand, Silt 1, Silt 2, and Silt 3 models. For the dissipation of EPWP, it starts from the bottom of soil stratum and proceeds upward. The Sand model shows fastest dissipation. Silt 1, Silt 2, Silt 3, and Silt 4 models show that the dissipation of EPWP is slow beneath the silt layer. As a result, Silt 4 model has the lowest dissipation rate, while the dissipation rate for Silt 1 model is the same as that of Sand model for the depth larger than 21 m and the dissipation rate for Silt 3 model is faster than that of Silt 2 for the depth larger than 19 m. After liquefaction (50 seconds to 80 seconds), the trend of EPWP profiles of Silt 2, Silt 3, and Silt 4 is similar to the post-liquefaction scheme predicted in [1]. 5. Conclusion The existence of silt intralayer in a sandy soil stratum will reduce the ground settlement. The excessive pore water pressure above the silt layer will also become

6 14 H. T. Chen et al. smaller than that in the regular sand stratum. However, the pore water pressure beneath the silt layer will become higher due to the impermeable character of silt layer. This can be dangerous especially when it is happened in the slope ground, because the water film will be produced during the motion and will remain even after the motion stops, leading to sliding or lateral movement of ground. Although the existence of more silt layers decreases the ground settlement furthermore, the pore water pressure will have slower dissipation. References [1] Kokusho, T. and Kojima, T., Water Film in Liquefied Sand and Its Effect on Lateral Spread, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, No. 10, pp (1999). [2] Jou, J. J., Study on Seismic Reponses Analysis of Pile Foundation Bridge, Dissertation, Doctor of Philosophy, Department of Civil Engineering, National Central University, Jhongli, Taiwan (2000). (in Chinese) [3] Pacheco, M. P., Altschaeffl, A. G. and Chameau, J. L., Pore Pressure Prediction in Finite Element Analysis, International Journal for Numerical Methods in Engineering, Vol. 13, pp (1989). [4] Zienkiewicz, O. C. and Shiomi, T., Dynamic Behavior of Saturated Porous Media; the Generalized Biot Formulation and Its Numerical Solution, International Journal for Numerical Methods in Engineering, Vol. 8, pp (1984). [5] Lee, C. J., Wei, Y. C., Lien, H. C. and Chen, H. T., Centrifuge Modeling on the Seismic Responses of Sandy Deposit with a Thin Silt Seam, 8 th International Conference on Urban Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan (2011). [6] Simatupang, R., A Numerical Investigation on Stone Columns as a Countermeasure for Liquefaction of Sandy Soil Stratum with Interlayers of Silt, Master Thesis, Department of Civil Engineering, National Central University, Jhongli, Taiwan (2011). Manuscript Received: Nov. 12, 2012 Accepted: Jan. 20, 2013

SEISMIC RESPONSE OF A SANDY STRATUM WITH A SILT LAYER UNDER STRONG GROUND MOTIONS

SEISMIC RESPONSE OF A SANDY STRATUM WITH A SILT LAYER UNDER STRONG GROUND MOTIONS SEISMIC RESPONSE OF A SANDY STRATUM WITH A SILT LAYER UNDER STRONG GROUND MOTIONS Bakhtiar Cahyandi Ridla 1), Huei-Tsyr Chen 2), M. Ruslin Anwar 3) 1) Double Degree Program E-mail: bakhtiar.ridla@gmail.com

More information

EFFECTS OF GROUND WATER ON SEISMIC RESPONSES OF BASIN

EFFECTS OF GROUND WATER ON SEISMIC RESPONSES OF BASIN EFFECTS OF GROUND WATER ON SEISMIC RESPONSES OF BASIN Huei-Tsyr CHEN And Jern-Chern HO 2 SUMMARY It has long been recognized that the local soil and geology conditions may affect significantly the nature

More information

Foundations on Deep Alluvial Soils

Foundations on Deep Alluvial Soils Canterbury Earthquakes Royal Commission Hearings 25 October 2011, Christchurch GEO.CUB.0001.1-35.1 Foundations on Deep Alluvial Soils Misko Cubrinovski, Ian McCahon, Civil and Natural Resources Engineering,

More information

1368. Seismic behavior of pile in liquefiable soil ground by centrifuge shaking table tests

1368. Seismic behavior of pile in liquefiable soil ground by centrifuge shaking table tests 1368. Seismic behavior of pile in liquefiable soil ground by centrifuge shaking table tests Wen-Yi Hung 1, Chung-Jung Lee 2, Wen-Ya Chung 3, Chen-Hui Tsai 4, Ting Chen 5, Chin-Cheng Huang 6, Yuan-Chieh

More information

Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit Considering Pore Water Flow and Migration

Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit Considering Pore Water Flow and Migration 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Finite Deformation Analysis of Dynamic Behavior of Embankment on Liquefiable Sand Deposit

More information

Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground

Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground Experimental Study on The Seismic Assessment of Pile Foundation in Volcanic Ash Ground Takuya EGAWA, Satoshi NISHIMOTO & Koichi TOMISAWA Civil Engineering Research Institute for Cold Region, Public Works

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

Investigation of Liquefaction Behaviour for Cohesive Soils

Investigation of Liquefaction Behaviour for Cohesive Soils Proceedings of the 3 rd World Congress on Civil, Structural, and Environmental Engineering (CSEE 18) Budapest, Hungary April 8-10, 2018 Paper No. ICGRE 134 DOI: 10.11159/icgre18.134 Investigation of Liquefaction

More information

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES A. AZIZIAN & R. POPESCU Faculty of Engineering & Applied Science, Memorial University, St. John s, Newfoundland, Canada A1B 3X5 Abstract

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

The Preliminary Study of the Impact of Liquefaction on Water Pipes

The Preliminary Study of the Impact of Liquefaction on Water Pipes The Preliminary Study of the Impact of Liquefaction on Water Pipes Jerry J. Chen and Y.C. Chou ABSTRACT Damages to the existing tap-water pipes have been found after earthquake. Some of these damages are

More information

CENTRIFUGE MODELING OF PILE FOUNDATIONS SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING IN SILTY SAND

CENTRIFUGE MODELING OF PILE FOUNDATIONS SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING IN SILTY SAND CENTRIFUGE MODELING OF PILE FOUNDATIONS SUBJECTED TO LIQUEFACTION-INDUCED LATERAL SPREADING IN SILTY SAND L. González 1, D. Lucas 2 and T. Abdoun 3 1 Assistant Professor, Dept. of Civil Engineering, University

More information

Seismic Stability of Tailings Dams, an Overview

Seismic Stability of Tailings Dams, an Overview Seismic Stability of Tailings Dams, an Overview BY Gonzalo Castro, Ph.D., P.E. Principal International Workshop on Seismic Stability of Tailings Dams Case Western Reserve University, November 2003 Small

More information

Validation Protocols for Constitutive Modeling of Liquefaction

Validation Protocols for Constitutive Modeling of Liquefaction 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Validation Protocols for Constitutive Modeling of Liquefaction K. Ziotopoulou 1 and R. W.

More information

Module 6 LIQUEFACTION (Lectures 27 to 32)

Module 6 LIQUEFACTION (Lectures 27 to 32) Module 6 LIQUEFACTION (Lectures 27 to 32) Lecture 31 Topics 6.6 EFFECTS OF LIQUEFACTION 6.6.1 Alteration of Ground Motion 6.6.2 Development of Sand Boils 6.6.3 Settlement 6.6.4 Settlement of Dry Sands

More information

Liquefaction-Induced Lateral Spreading Misko Cubrinovski University of Canterbury, Christchurch, New Zealand

Liquefaction-Induced Lateral Spreading Misko Cubrinovski University of Canterbury, Christchurch, New Zealand US New Zealand Japan International Workshop Liquefaction-Induced Ground Movements Effects UC Berkeley, California, 2 4 November 2016 Liquefaction-Induced Lateral Spreading Misko Cubrinovski University

More information

2005 OpenSees Symposium OpenSees

2005 OpenSees Symposium OpenSees P E E R 25 OpenSees Symposium OpenSees Geotechnical Capabilities and Applications Dr. Liangcai He Prof. Ahmed Elgamal Dr. Zhaohui Yang Mr. James L. Yan Mr. Jinchi Lu (U.C. San Diego) Soil Materials and

More information

Geotechnical Modeling Issues

Geotechnical Modeling Issues Nonlinear Analysis of Viaducts and Overpasses Geotechnical Modeling Issues Steve Kramer Pedro Arduino Hyung-Suk Shin University of Washington The Problem Approach Soil Soil Soil Soil Soil Soil Soil Soil

More information

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS Shin-Tower Wang 1, Luis Vasquez 2, and Lymon C. Reese 3, Honorary Member,, ASCE ABSTRACT : 1&2 President & Project Manager, Ensoft, Inc. Email: ensoft@ensoftinc.com

More information

Numerical simulation of inclined piles in liquefiable soils

Numerical simulation of inclined piles in liquefiable soils Proc. 20 th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier Y Wang & R P Orense Department of Civil and Environmental Engineering, University of Auckland, NZ. ywan833@aucklanduni.ac.nz

More information

Piles in Lateral Spreading due to Liquefaction: A Physically Simplified Method Versus Centrifuge Experiments

Piles in Lateral Spreading due to Liquefaction: A Physically Simplified Method Versus Centrifuge Experiments "Pile-Group Response to Large Soil Displacements and Liquefaction: Centrifuge Experiments Versus A Physically Simplified Analysis", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.

More information

Liquefaction Potential Variations Influenced by Building Constructions

Liquefaction Potential Variations Influenced by Building Constructions Earth Science Research; Vol. 1, No. 2; 2012 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Liquefaction Potential Variations Influenced by Building Constructions

More information

HORIZONTAL LOAD DISTRIBUTION WITHIN PILE GROUP IN LIQUEFIED GROUND

HORIZONTAL LOAD DISTRIBUTION WITHIN PILE GROUP IN LIQUEFIED GROUND 4 th International Conference on Earthquake Geotechnical Engineering June 2-28, 7 Paper No. 127 HORIZONTAL LOAD DISTRIBUTION WITHIN PILE GROUP IN LIQUEFIED GROUND Hiroko SUZUKI 1 and Kohji TOKIMATSU 2

More information

LATERAL SPREADING DURING CENTRIFUGE MODEL EARTHQUAKES

LATERAL SPREADING DURING CENTRIFUGE MODEL EARTHQUAKES LATERAL SPREADING DURING CENTRIFUGE MODEL EARTHQUAKES Stuart K. Haigh 1, S.P. Gopal Madabhushi 2, Kenichi Soga 3,Youichi Taji 4 and Yasuhiro Shamoto 5 ABSTRACT Lateral spreading of gently-sloping deposits

More information

LIQUEFACTION INDUCED GROUND FAILURES CAUSED BY STRONG GROUND MOTION

LIQUEFACTION INDUCED GROUND FAILURES CAUSED BY STRONG GROUND MOTION Paper No. ASOLE LIQUEFACTION INDUCED GROUND FAILURES CAUSED BY STRONG GROUND MOTION Wei F. LEE 1, Kenji ISHIHARA 2, Cheng Hsin CHEN 3, B. L. Chu 4 ABSTRACT During the 1999 Chi-Chi earthquake, a site named

More information

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3

Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3 Y. Shioi 1, Y. Hashizume 2 and H. Fukada 3 1 Emeritus Professor, Hachinohe Institute of Technology, Hachinohe, Japan 2 Chief Engineer, Izumo, Misawa, Aomori, Japan 3 Profesr, Geo-Technical Division, Fudo

More information

Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking. Nisqually earthquake 02/28/2001: Olympia, WA

Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking. Nisqually earthquake 02/28/2001: Olympia, WA Liquefaction is the sudden loss of shear strength of a saturated sediment due to earthquake shaking Nisqually earthquake 02/28/2001: Olympia, WA The shear strength is controlled by the degree of grain-to-grain

More information

EARTHQUAKE-INDUCED SUBMARINE LANDSLIDES IN VIEW OF VOID REDISTRIBUTION

EARTHQUAKE-INDUCED SUBMARINE LANDSLIDES IN VIEW OF VOID REDISTRIBUTION Liu, Deng and Chu (eds) 2008 Science Press Beijing and Springer-Verlag GmbH Berlin Heidelberg Geotechnical Engineering for Disaster Mitigation and Rehabilitation EARTHQUAKE-INDUCED SUBMARINE LANDSLIDES

More information

Study of the liquefaction phenomenon due to an earthquake: case study of Urayasu city

Study of the liquefaction phenomenon due to an earthquake: case study of Urayasu city Disaster Management and Human Health Risk III 311 Study of the liquefaction phenomenon due to an earthquake: case study of Urayasu city S. Kamao 1, M. Takezawa 1, K. Yamada 1, S. Jinno 1, T. Shinoda 1

More information

PORE WATER PRESSURE GENERATION AND DISSIPATION NEAR TO PILE AND FAR-FIELD IN LIQUEFIABLE SOILS

PORE WATER PRESSURE GENERATION AND DISSIPATION NEAR TO PILE AND FAR-FIELD IN LIQUEFIABLE SOILS Int. J. of GEOMATE, Dec., 25, Vol. 9, No. 2 (Sl. No. 8), pp. 454-459 Geotech., Const. Mat. and Env., ISSN:286-2982(P), 286-299(O), Japan PORE WATER PRESSURE GENERATION AND DISSIPATION NEAR TO PILE AND

More information

NUMERICAL ANALYSIS OF LIQUEFACTION-INDUCED LATERAL SPREADING

NUMERICAL ANALYSIS OF LIQUEFACTION-INDUCED LATERAL SPREADING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2123 NUMERICAL ANALYSIS OF LIQUEFACTION-INDUCED LATERAL SPREADING Abbas SOROUSH 1 and Sheila KOOHI 2

More information

Evaluation of Pore Water Pressure Characteristics in Embankment Model.

Evaluation of Pore Water Pressure Characteristics in Embankment Model. Evaluation of Pore Water Pressure Characteristics in Embankment Model. Abdoullah Namdar and Mehdi Khodashenas Pelkoo Mysore University, Mysore, India. 76. Amirkabir University, Department of Mining Engineering,

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

EXPERIMENTAL AND NUMERICAL MODELING OF THE LATERAL RESPONSE OF A PILE BURIED IN LIQUEFIED SAND

EXPERIMENTAL AND NUMERICAL MODELING OF THE LATERAL RESPONSE OF A PILE BURIED IN LIQUEFIED SAND 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 684 EXPERIMENTAL AND NUMERICAL MODELING OF THE LATERAL RESPONSE OF A PILE BURIED IN LIQUEFIED SAND Jonathan

More information

DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART ONE : BEHAVIOR OF FREE GROUND DURING EXTREME EARTHQUAKE CONDITIONS

DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART ONE : BEHAVIOR OF FREE GROUND DURING EXTREME EARTHQUAKE CONDITIONS DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART ONE : BEHAVIOR OF FREE GROUND DURING EXTREME EARTHQUAKE CONDITIONS Tsutomu NAMIKAWA 1, Katsuo TOGASHI 2, Satoru NAKAFUSA 3, Ryouichi BABASAKI 4

More information

PILE DESIGN IN LIQUEFYING SOIL

PILE DESIGN IN LIQUEFYING SOIL PILE DESIGN IN LIQUEFYING SOIL Vijay K. Puri 1 and Shamsher Prakash 2 1 Professor,Civil and Environmental Engineering, Southern Illinois University, Carbondale, USA 2 Professor Emeritus, Missouri University

More information

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method E. Yıldız & A.F. Gürdil Temelsu International Engineering Services Inc., Ankara, Turkey SUMMARY: Time history analyses conducted

More information

Liquefaction. Ajanta Sachan. Assistant Professor Civil Engineering IIT Gandhinagar. Why does the Liquefaction occur?

Liquefaction. Ajanta Sachan. Assistant Professor Civil Engineering IIT Gandhinagar. Why does the Liquefaction occur? Liquefaction Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar Liquefaction What is Liquefaction? Why does the Liquefaction occur? When has Liquefaction occurred in the past? Where does

More information

Residual Deformation Analyses to Demonstrate the Effect of Thin Steel Sheet Piles on Liquefaction-Induced Penetration Settlement of Wooden Houses

Residual Deformation Analyses to Demonstrate the Effect of Thin Steel Sheet Piles on Liquefaction-Induced Penetration Settlement of Wooden Houses 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Residual Deformation Analyses to Demonstrate the Effect of Thin Steel Sheet Piles on Liquefaction-Induced

More information

LARGE SCALE BIAXIAL SHEAR BOX TESTS ON SHAKING TABLE

LARGE SCALE BIAXIAL SHEAR BOX TESTS ON SHAKING TABLE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1778 LARGE SCALE BIAIAL SHEAR BO TESTS ON SHAKING TABLE Chia-Han CHEN 1, Tzou-Shin UENG 2 and Wei-Cheng

More information

Developing software to evaluate the liquefaction potential by using 2D numerical modeling: Applications.

Developing software to evaluate the liquefaction potential by using 2D numerical modeling: Applications. Developing software to evaluate the liquefaction potential by using 2D numerical modeling: Applications www.ingenieriasismica.utpl.edu.ec 1 Content 1. Introduction 2. Methods to evaluate the liquefaction

More information

EMBEDDED INSTRUMENTATION FOR COUPLED SHEAR STRAIN- PORE PRESSURE RESPONSE IN MULTIDIRECTIONAL SHAKING TABLE TEST

EMBEDDED INSTRUMENTATION FOR COUPLED SHEAR STRAIN- PORE PRESSURE RESPONSE IN MULTIDIRECTIONAL SHAKING TABLE TEST th International Conference on Earthquake Geotechnical Engineering June 5-8, 7 Paper No. 113 EMBEDDED INSTRUMENTATION FOR COUPLED SHEAR STRAIN- PORE PRESSURE RESPONSE IN MULTIDIRECTIONAL SHAKING TABLE

More information

3-D Numerical simulation of shake-table tests on piles subjected to lateral spreading

3-D Numerical simulation of shake-table tests on piles subjected to lateral spreading 3-D Numerical simulation of shake-table tests on piles subjected to lateral spreading M. Cubrinovski 1, H. Sugita 2, K. Tokimatsu 3, M. Sato 4, K. Ishihara 5, Y. Tsukamoto 5, T. Kamata 5 1 Department of

More information

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation Yong-Beom Lee, Jorge Castillo Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting

More information

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303 City of Newark - 36120 Ruschin Drive Project Draft Initial Study/Mitigated Negative Declaration Appendix C: Geologic Information FirstCarbon Solutions H:\Client (PN-JN)\4554\45540001\ISMND\45540001 36120

More information

LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING

LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING LIQUEFACTION ASSESSMENT BY THE ENERGY METHOD THROUGH CENTRIFUGE MODELING Hesham M. Dief, Associate Professor, Civil Engineering Department, Zagazig University, Zagazig, Egypt J. Ludwig Figueroa, Professor

More information

Modelling pore fluid migration in layered, liquefied soils

Modelling pore fluid migration in layered, liquefied soils Modelling pore fluid migration in layered, liquefied soils K.J. Butterfield Department of Civil Engineering, University of Canterbury, Christchurch New Zealand. M.D. Bolton Department of Engineering, University

More information

Effective stress analysis of pile foundations in liquefiable soil

Effective stress analysis of pile foundations in liquefiable soil Effective stress analysis of pile foundations in liquefiable soil H. J. Bowen, M. Cubrinovski University of Canterbury, Christchurch, New Zealand. M. E. Jacka Tonkin and Taylor Ltd., Christchurch, New

More information

Effect of Liquefaction on Pile Shaft Friction Capacity

Effect of Liquefaction on Pile Shaft Friction Capacity Missouri University of Science and Technology Scholars' Mine International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 21 - Fifth International Conference on

More information

Back-Calculation of Winkler Foundation Parameters for Dynamic Analysis of Piles from Field Test Data

Back-Calculation of Winkler Foundation Parameters for Dynamic Analysis of Piles from Field Test Data Back-Calculation of Winkler Foundation Parameters for Dynamic Analysis of Piles from Field Test Data ABSTRACT A. (Rajah) Anandarajah, Jigang Zhang and G. Gnanaranjan Department of Civil Engineering Johns

More information

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading Jorge Castillo, Yong-Beom Lee Ausenco, USA Aurelian C. Trandafir Fugro GeoConsulting Inc., USA ABSTRACT

More information

Study of a possible alternative progettual solution of Dubai s Palm.

Study of a possible alternative progettual solution of Dubai s Palm. Study of a possible alternative progettual solution of Dubai s Palm Seismic risk in Dubai Dubai located in the northern part of United Arab Emirates (UAE) between Arabian Gulf and Oman Gulf, because of

More information

SURFACE DEFORMATION TROUGHS INDUCED BY NORMAL FAULTING AND REVERSE FAULTING

SURFACE DEFORMATION TROUGHS INDUCED BY NORMAL FAULTING AND REVERSE FAULTING SURFACE DEFORMATION TROUGHS INDUCED BY NORMAL FAULTING AND REVERSE FAULTING Chung-Jung LEE 1, Yu-Yi CHANG 2, and Wen-Yi HUNG 3 ABSTRACT A series of centrifuge normal faulting and reverse faulting tests

More information

DETAILED INVESTIGATION OF PILES DAMAGED BY HYOGOKEN NAMBU EARTHQUAKE

DETAILED INVESTIGATION OF PILES DAMAGED BY HYOGOKEN NAMBU EARTHQUAKE DETAILED INVESTIGATION OF PILES DAMAGED BY HYOGOKEN NAMBU EARTHQUAKE Kenichi HORIKOSHI 1, Akira TATEISHI 2 And Hiroyasu OHTSU 3 SUMMARY Since the 199 Hyogoken Nambu earthquake, a number of detailed investigations

More information

Liquefaction: Additional issues. This presentation consists of two parts: Section 1

Liquefaction: Additional issues. This presentation consists of two parts: Section 1 Liquefaction: Additional issues Ahmed Elgamal This presentation consists of two parts: Section 1 Liquefaction of fine grained soils and cyclic softening in silts and clays Section 2 Empirical relationship

More information

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE

EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT OF LIQUEFACTION DURING EAST JAPAN EARTHQUAKE Proceedings of the International Symposium on Engineering Lessons Learned from the 211 Great East Japan Earthquake, March 1-4, 212, Tokyo, Japan EFFECTIVE STRESS ANALYSES OF TWO SITES WITH DIFFERENT EXTENT

More information

PREDICTION METHOD OF LIQUEFACTION AT FISHING VILLAGE IN KOCHI PREFECTURE BY NANKAI EARTHQUAKE

PREDICTION METHOD OF LIQUEFACTION AT FISHING VILLAGE IN KOCHI PREFECTURE BY NANKAI EARTHQUAKE PREDICTION METHOD OF LIQUEFACTION AT FISHING VILLAGE IN KOCHI PREFECTURE BY NANKAI EARTHQUAKE Kojiro OKABAYASHI, Kozo TAGAYA Kochi National College of Technology Katsuya MIZUTA Daiichi Consultant Co.Ltd.,

More information

Centrifuge Modelling of Fibre-Reinforcement as a Liquefaction Countermeasure for Quay Wall Backfill

Centrifuge Modelling of Fibre-Reinforcement as a Liquefaction Countermeasure for Quay Wall Backfill 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Centrifuge Modelling of Fibre-Reinforcement as a Liquefaction Countermeasure for Quay Wall

More information

The Preliminary Study of the Impact of Liquefaction on Water Pipes

The Preliminary Study of the Impact of Liquefaction on Water Pipes The Preliminary Study of the Impact of Liquefaction on Water Pipes Jerry J. Chen and Y.C. Chou Geotechnical Engineer, Dept. of Geotechnical Engineering, CECI Engineering Consultants, Inc. CONTENT 1. Introduction

More information

Remediation against Soil Liquefaction Induced Uplift of Manhole

Remediation against Soil Liquefaction Induced Uplift of Manhole 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Remediation against Soil Liquefaction Induced Uplift of Manhole Z. Zhang 1, S. C. Chian

More information

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room

2017 Soil Mechanics II and Exercises Final Exam. 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room 2017 Soil Mechanics II and Exercises Final Exam 2017/7/26 (Wed) 10:00-12:00 Kyotsu 4 Lecture room Attention: The exam consists of five questions for which you are provided with five answer sheets. Write

More information

EFFECT OF CLAY PARTICLE CONTENT ON LIQUEFACTION OF SOIL

EFFECT OF CLAY PARTICLE CONTENT ON LIQUEFACTION OF SOIL 56 EFFECT OF CLAY PARTICLE CONTENT ON LIQUEFACTION OF SOIL RenWang LIANG, XiaoHong BAI 2 And JiaChen WANG 3 SUMMARY This paper presents the results of experimental research and analysis of liquefaction

More information

DAMAGE TO PILES DUE TO OSCILLATION OF LIQUEFYING GROUND

DAMAGE TO PILES DUE TO OSCILLATION OF LIQUEFYING GROUND 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 116 DAMAGE TO PILES DUE TO OSCILLATION OF LIQUEFYING GROUND Shinichiro MORI 1 and Atsunori NUMATA 2 SUMMARY

More information

Frequency-Dependent Amplification of Unsaturated Surface Soil Layer

Frequency-Dependent Amplification of Unsaturated Surface Soil Layer Frequency-Dependent Amplification of Unsaturated Surface Soil Layer J. Yang, M.ASCE 1 Abstract: This paper presents a study of the amplification of SV waves obliquely incident on a surface soil layer overlying

More information

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures

Nonlinear Time-Dependent Soil Behavior due to Construction of Buried Structures Journal of Earth Sciences and Geotechnical Engineering, vol. 4, no. 1, 214, 71-88 ISSN: 172-4 (print), 172- (online) Scienpress Ltd, 214 Nonlinear Time-Dependent Soil Behavior due to Construction of Buried

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

Effect of Liquefaction on Displacement Spectra

Effect of Liquefaction on Displacement Spectra Effect of Liquefaction on Displacement Spectra Rui SUN 1, Longwei Chen 2, Xiaoming YUAN 3, Yi QIU 4 1 Professor, Dept. of Geotechnical Engineering, Institute of Engineering Mechanics, Harbin. China 2 PHD,

More information

Centrifuge modelling of municipal solid waste landfills under earthquake loading

Centrifuge modelling of municipal solid waste landfills under earthquake loading Centrifuge modelling of municipal solid waste landfills under earthquake loading N.I. Thusyanthan Ph.D research student, Schofield Centre, University of Cambridge, Cambridge, CB3 0EL, UK. Email: it206@cam.ac.uk

More information

PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR

PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR PRACTICAL THREE-DIMENSIONAL EFFECTIVE STRESS ANALYSIS CONSIDERING CYCLIC MOBILITY BEHAVIOR Hiroyuki Yoshida 1, Kohji Tokimatsu 2, Tatsuya Sugiyama 3 and Tadahiko Shiomi 4 1 Member, Arch. & Struct. Eng.

More information

Case Study - Undisturbed Sampling, Cyclic Testing and Numerical Modelling of a Low Plasticity Silt

Case Study - Undisturbed Sampling, Cyclic Testing and Numerical Modelling of a Low Plasticity Silt 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Case Study - Undisturbed Sampling, Cyclic Testing and Numerical Modelling of a Low Plasticity

More information

PHYSICAL SCIENCE FINAL

PHYSICAL SCIENCE FINAL PHYSICAL SCIENCE FINAL Liquefaction Doreen Wallace, Tesla Grogan, Amber Ward, Erik Garcia, Cinthia Salas, Alexis Albers Liquefaction What is it? Conditions needed How it works Effects of Liquefaction Soil

More information

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites Proceedings of the 1st IASME / WSEAS International Conference on Geology and Seismology (GES'7), Portoroz, Slovenia, May 15-17, 27 51 Endochronic model applied to earthfill dams with impervious core: design

More information

Improvement mechanisms of stone columns as a mitigation measure against liquefaction-induced lateral spreading

Improvement mechanisms of stone columns as a mitigation measure against liquefaction-induced lateral spreading Improvement mechanisms of stone columns as a mitigation measure against liquefaction-induced lateral spreading E. Tang Tonkin & Taylor Ltd, (formerly University of Auckland) R.P. Orense University of Auckland

More information

Excess Pore Pressure Generation in Sand Under Non-Uniform Strain Amplitudes

Excess Pore Pressure Generation in Sand Under Non-Uniform Strain Amplitudes 6 th International Conference on Earthquake Geotechnical Engineering -4 November 25 Christchurch, New Zealand Excess Pore Pressure Generation in Sand Under Non-Uniform Strain Amplitudes Saizhao DU, Siau

More information

Applicability of Multi-spring Model Based on Finite Strain Theory to Seismic Behavior of Embankment on Liquefiable Sand Deposit

Applicability of Multi-spring Model Based on Finite Strain Theory to Seismic Behavior of Embankment on Liquefiable Sand Deposit Applicability of Multi-spring Model Based on Finite Strain Theory to Seismic Behavior of Embankment on Liquefiable Sand Deposit Kyohei Ueda Railway Technical Research Institute, Kokubunji, Tokyo, Japan

More information

Comparison of the post-liquefaction behaviour of hard-grained and crushable pumice sands

Comparison of the post-liquefaction behaviour of hard-grained and crushable pumice sands Orense R.P., Asadi, M.S., Rouholamin M., Bhattacharya, S. (17) Proc. th NZGS Geotechnical Symposium. Eds. GJ Alexander & CY Chin, Napier Comparison of the post-liquefaction behaviour of hard-grained and

More information

Seismic Slope Stability

Seismic Slope Stability ISSN (e): 2250 3005 Volume, 06 Issue, 04 April 2016 International Journal of Computational Engineering Research (IJCER) Seismic Slope Stability Mohammad Anis 1, S. M. Ali Jawaid 2 1 Civil Engineering,

More information

THE LIQUEFACTION POTENTIAL OF LOESS IN CHINA AND ITS PREVENTION

THE LIQUEFACTION POTENTIAL OF LOESS IN CHINA AND ITS PREVENTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3462 THE LIQUEFACTION POTENTIAL OF LOESS IN CHINA AND ITS PREVENTION Lanmin WANG 1 Yaqiang WANG 2 Jun

More information

Liquefaction Resistance and Internal Erosion Potential of Non-Plastic Silty Sand

Liquefaction Resistance and Internal Erosion Potential of Non-Plastic Silty Sand Liquefaction Resistance and Internal Erosion Potential of Non-Plastic Silty Sand Jing-Wen CHEN 1, Wei F. LEE 2, Chun-Chi CHEN 3 1 Professor, Department of Civil Engineering, National Chen-Kung University

More information

AN EXPERIMETAL STUDY ON THE FLUID PROPERTIES OF LIQUEFIED SAND DURING ITS FLOW

AN EXPERIMETAL STUDY ON THE FLUID PROPERTIES OF LIQUEFIED SAND DURING ITS FLOW th World Conference on Earthquake Engineering ancouver, B.C., Canada August -6, 4 Paper No. 64 AN EXPERIMETAL STUDY ON TE FLUID PROPERTIES OF LIQUEFIED SAND DURING ITS FLOW Masanori AMADA, Yuji TAKAASI

More information

DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART TWO : BEHAVIOR OF STRUCTURE AND GROUND DURING EXTREME EARTHQUAKE CONDITIONS

DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART TWO : BEHAVIOR OF STRUCTURE AND GROUND DURING EXTREME EARTHQUAKE CONDITIONS DYNAMIC CENTRIFUGE TEST OF PILE FOUNDATION STRUCTURE PART TWO : BEHAVIOR OF STRUCTURE AND GROUND DURING EXTREME EARTHQUAKE CONDITIONS Ryouichi BABASAKI 1, Katsuo TOGASHI 2, Satoru NAKAFUSA 3, Toshio HASHIBA

More information

Effect of Non-Uniform Gravitational Field on Seismically-Induced Ground Movements in Centrifuge Models Antonios Vytiniotis Andrew J.

Effect of Non-Uniform Gravitational Field on Seismically-Induced Ground Movements in Centrifuge Models Antonios Vytiniotis Andrew J. NSF GRANT # CMS-0530478 ana NSF PROGRAM NAME: Seismic Risk Management for Port Systems Effect of Non-Uniform Gravitational Field on Seismically-Induced Ground Movements in Centrifuge Models Antonios Vytiniotis

More information

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model Proceedings Geohazards Engineering Conferences International Year 2006 Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model C. A. Stamatopoulos P. Petridis Stamatopoulos and Associates

More information

On equal settlement plane height in piled reinforced embankments

On equal settlement plane height in piled reinforced embankments Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):23-29 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 On equal settlement plane height in piled reinforced

More information

SEISMIC PERFORMANCE OF URBAN, RECLAIMED AND PORT AREAS -FULL SCALE EXPERIMENT USING BLAST TECHNIQUE. Takahiro SUGANO 1) and Eiji KOHAMA 2)

SEISMIC PERFORMANCE OF URBAN, RECLAIMED AND PORT AREAS -FULL SCALE EXPERIMENT USING BLAST TECHNIQUE. Takahiro SUGANO 1) and Eiji KOHAMA 2) SEISMIC PERFORMANCE OF URBAN, RECLAIMED AND PORT AREAS -FULL SCALE EXPERIMENT USING BLAST TECHNIQUE by Takahiro SUGANO 1) and Eiji KOHAMA 2) ABSTRACT A full scale lateral spreading experiment was carried

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM C A U T I O N!! (THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM EQLique&Settle2. THE AUTHOR IS HEREBY RELEASED OF ANY LIABILITY FOR ANY INCORRECT USE OF THIS SAMPLE

More information

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT

More information

Site Liquefaction. Stress-Strain Response Stress-Strain Models Site Response Lateral Deformation. Ahmed Elgamal

Site Liquefaction. Stress-Strain Response Stress-Strain Models Site Response Lateral Deformation. Ahmed Elgamal Site Liquefaction Stress-Strain Response Stress-Strain Models Site Response Lateral Deformation Ahmed Elgamal Nonlinear soil response (Shear stress τ and shear strain γ) 2 The above nonlinear shear stress-strain

More information

Module 8 SEISMIC SLOPE STABILITY (Lectures 37 to 40)

Module 8 SEISMIC SLOPE STABILITY (Lectures 37 to 40) Lecture 40 Topics Module 8 SEISMIC SLOPE STABILITY Lectures 37 to 40) 8.6.15 Analysis of Weakening Instability 8.6.16 Flow Failure Analysis 8.6.17 Analysis of Stability 8.6.18 Analysis of Deformation 8.6.19

More information

LIQUEFACTION OF SILT-CLAY MIXTURES

LIQUEFACTION OF SILT-CLAY MIXTURES LIQUEFACTION OF SILT-CLAY MIXTURES Tianqiang GUO 1 And Shamsher PRAKASH 2 SUMMARY No guidelines are available for evaluating the liquefaction potential of silt-clay mixtures during an earthquake, based

More information

Evaluation of Geotechnical Hazards

Evaluation of Geotechnical Hazards Evaluation of Geotechnical Hazards by Geoffrey R. Martin Appendix B: Evaluation of Geotechnical Hazards Describes Evaluation Procedures Soil Liquefaction Soil Settlement Surface Fault Rupture Flooding

More information

STUDIES ON SEVARAL COUNTERMEASURES AGAINST LIQUEFACTION-INDUCED FLOW AND AN APPLIVATION OF A MEASURE TO EXISTING BRIDGES IN TOKYO

STUDIES ON SEVARAL COUNTERMEASURES AGAINST LIQUEFACTION-INDUCED FLOW AND AN APPLIVATION OF A MEASURE TO EXISTING BRIDGES IN TOKYO Journal of Japan Association for Earthquake Engineering, Vol.4, No.3 (Special Issue), 2004 STUDIES ON SEVARAL COUNTERMEASURES AGAINST LIQUEFACTION-INDUCED FLOW AND AN APPLIVATION OF A MEASURE TO EXISTING

More information

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016

Tikrit University. College of Engineering Civil engineering Department CONSOILDATION. Soil Mechanics. 3 rd Class Lecture notes Up Copyrights 2016 Tikrit University CONSOILDATION College of Engineering Civil engineering Department Soil Mechanics 3 rd Class Lecture notes Up Copyrights 2016 Stresses at a point in a soil mass are divided into two main

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Effect of lateral load on the pile s buckling instability in liquefied soil

Effect of lateral load on the pile s buckling instability in liquefied soil Effect of lateral load on the pile s buckling instability in liquefied soil Xiaoyu Zhang 1, Liang Tang 2, Xianzhang Ling 3 and Andrew H. C. Chan 4 1. Corresponding Author. Ph. D. Candidate, School of Civil

More information

Sand Seismic Liquefaction Landslide-slipping and Debris and Treatment Wen-Hua CHEN 1,a, Qian ZHANG 2,b, Qi SONG 3,c

Sand Seismic Liquefaction Landslide-slipping and Debris and Treatment Wen-Hua CHEN 1,a, Qian ZHANG 2,b, Qi SONG 3,c International Conference on Mechanics and Civil Engineering (ICMCE 014) Sand Seismic Liquefaction Landslide-slipping and Debris and Treatment Wen-Hua CHEN 1,a, Qian ZHANG,b, Qi SONG 3,c 1,,3 Civil Engineering

More information

EFFECTS OF EARTHQUAKE-INDUCED SETTLEMENT OF CLAY LAYER ON THE GROUND SUBSIDENCE

EFFECTS OF EARTHQUAKE-INDUCED SETTLEMENT OF CLAY LAYER ON THE GROUND SUBSIDENCE EFFECTS OF EARTHQUAKE-INDUCED SETTLEMENT OF CLAY LAYER ON THE GROUND SUBSIDENCE Hiroshi MATSUDA 1, Keiji SAKURADANI 2 And Naoya EMOTO 3 SUMMARY At the Hyogo-ken Nanbu Earthquake on January 17, 1995, on

More information

Study of Sand Boiling Characteristics Along Tokyo Bay During The 2011 Tohoku-Pacific Ocean Earthquake

Study of Sand Boiling Characteristics Along Tokyo Bay During The 2011 Tohoku-Pacific Ocean Earthquake Study of Sand Boiling Characteristics Along Tokyo Bay During The 2011 Tohoku-Pacific Ocean Earthquake Keisuke Ishikawa Tokyo Denki University, Japan Susumu Yasuda Tokyo Denki University, Japan SUMMARY

More information

Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction of ground flow

Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction of ground flow Prediction of pile response to lateral spreading by 3-D soil-water coupled dynamic analysis: shaking in the direction of ground flow M. Cubrinovski a),*, R. Uzuoka b), H. Sugita c), K. Tokimatsu d), M.

More information