The trajectory, structure and origin of the Chelyabinsk asteroidal impactor

Size: px
Start display at page:

Download "The trajectory, structure and origin of the Chelyabinsk asteroidal impactor"

Transcription

1 The trajectory, structure and origin of the Chelyabinsk asteroidal impactor Jiří Borovička Astronomical Institute, Academy of Sciences, Ondřejov, Czech Republic with the help of O. Popova(Moscow) and P. Brown (London, ON) HyMep, Erice, October 4, 2017

2 Feb 15, 2013, 3:20 UT Chelyabinsk and wide surroundings Extremely bright superbolide During local sunrise Damaging blast wave Massive dust trail

3 Chelyabinsk city More than million inhabitants Central Russia, south Ural

4 Damage by the blast wave Many windows broken ~ 1600 injured people Collapsed roof of a zinc plant

5 Dust trail in the atmosphere

6 Hole in ice, Chebarkul lake 70 km W of Chelyabinsk Diameter 8 m Impact observed by local fishermen and caught by a camera from distance Small meteorite fragments found on ice A 650 kg fragment recovered from the lake on October 16

7 Meteorites es under the snow South of Chelyabinsk Thousands of mostly small meteorites, one big (1,8 kg) Totally > 100 kg Many other meteorites found in spring, including a 4 kg piece Ordinary chondrites, type LL5

8 The importance of trajectory determination Inputs for modeling of the entry Heights of fragmentation (strength and structure of the body) Heights of energy deposition (damage assessment) Location of meteorites Pre-impact orbit (origin, search for pre-discovery images)

9 Available data MSG2 satellite (EUMETSAT, CHMI) Videos (~1000), including audio tracks Seismic records Infrasonic records from around the world Satellite observations US Government sensors Meteorological satellites Recovered meteorites Damage on ground See the video summary

10 Stellar calibration of videos

11 15 videos from 9 cities used Later extended to 29 videos

12 Trajectory computation Straight least squares method (Borovicka 1990) Additional corrections to account for Earth s s gravity 1850 bolide measurements on 15 videos Vertical deviation [km] Measurements video 1 video 2 video 14 Expected curvature Time [s] Note: Velocity (time) measurements needed to compute expected curvature

13 Trajectory and velocity Length of luminous trajectory: 272 km Observed height span: km Slope: 18.5 at the beginning 17 at the end Initial velocity: ± 0.13 km/s Terminal velocity: 3.2 km/s Bolide duration: 17 seconds Data from Borovička et al. (2013). Popova et al. (2013) obtained similar values.

14 Input data Fragmentation model Light curve (total bolide brightness as a function of time/height) Times of arrivals of secondary sonic booms Deceleration toward the end of trajectory Modeling Semi-empirical empirical fragmentation model Fitting the deceleration and major features of the light curve

15 Observed and modeled light curve (the brightest part) dust = sub kg fragments

16 Other models Hybrid model (Popova( et al. 2013) Fragment-cloud model (Wheeler et al. 2017) Both use combination of individual fragments and debris clouds to explain the light curve Strength models (Robertson et al. 2017) No ablation, disruption depends on strength model Quasi-liquid model (Shuvalov( et al. 2017) Single body with no strength

17 Popova et al. (2013) model observed Part of mass independent fragments Other part spreading debris clouds Fragmentation at P ~ MPa In total >96% of mass goes into debris clouds Lightcurve - black Model fits red and blue

18 Wheeler et al. (2017) Three disruptions into four almost equal fragments and a debris cloud Dust cloud forms 86% of mass at each disruption General model with limited number of free parameters

19 Robertson et al. (2017) Burst altitude depends on shear strength Strength < 5 MPa

20 Shuvalov et al. (2017) Hydrocode No strength, separated fragments formation not taken into account

21 Main features All models agree on ~95% loss of mass in form of dust and small fragments at heights km Numerous sonic booms suggest numerous individual fragmentation events Extent of the dust trail shows that dust loss started already at high altitudes

22 Light curve and source heights 100 of sonic booms Mesured normalized signal Mesured signal Beloreck (bolide) Kurgan (bolide) Tyumen (bolide) Nizhny Tagil (illumination) Break-up positions from sonic booms Mirnyi dynamic pressure ρv 2 : 0.7 MPa 2 MPa 4 MPa 5 MPa 10 MPa 18 MPa Height [km]

23 Extent of the dust trail starting at height ~70 km diameter 2 3 km between heights km volume ~600 km 3

24 No evidence for an early -30 fragmentation Approximate absolute magnitude h = 70 km Time [seconds after 3:20:20 UT]

25 Fragmentation sequence Intensive dust release (from near-surface) started at height ~ 70 km First fragmentation at ~ 45 km at P ~ 0.5 MPa (1% mass loss) Large scale disruption (95% mass loss) at km height with P = 1 51 MPa By 29 km object was boulders of sizes 1 3 m These boulders break again at km under P ~ MPa Lateral fragment speeds ~400 m/s Normal tensile strength of meteorites is ~ 50 MPa Fractures in the body decreased the bulk strength

26 Fragmentation and deceleration

27 Individually observed fragments

28 Motion of the fragments Height [km] F14 F13 F16 F15 F12 F7 F6 F5 F4 M HS2 F3 F11 TE F2 HS kg* hot spots kg* HS kg* Time [seconds after 3:20:20 UT] F1 * assuming spherical shape

29 Detail end of trajectory using wind from Verkhnee Dubrovo

30 A 24 kg meteorite recovered Found 240 m from the predicted location of fragment F3 December 1, 2013

31 Detail lake Chebarkul 2 km wind: F1 V. Dubrovo, K Kurgan, U UKMO model, G G2S model

32 Total energy Brown et al. (2013) Seismic Infrasound 600 US government sensor 530 Video-derived light curve >470 Popova et al. (2013) Infrasound, damage area kt TNT 1 kt TNT = 4, J

33 Comparison with other airbursts Bolide Tunguska (1908) Chelyabinsk (2013) Indonesia (2009) Marshall islands (1994) Energy 10 Mt 500 kt 50 kt 30 kt There was an unconfirmed ~1 Mt bolide over Indian Ocean in 1963 Largest thermonuclear explosion (USSR 1961) Mt. St. Helen volcano (USA 1980) Hiroshima bomb (1945) 50 Mt 20 Mt 15 kt

34 Numerical model of shock wave and trail evolution (from O. Popova) ~85 km S

35 (from O. Popova) ~85 km S

36 Map of glass damage with models of overpressure 7, 230 7, 230 buildings affected (Popova et al. 2013)

37 Orbit was similar to that of asteroid (1999 NC43) (Borovička et al. 2013)

38 Asteroid (1999 NC43) Diameter 2.2 km Spectral type Q (ordinary chondrite) Rotation period hours (tumbler) There is only ~1:10,000 chance that the proximity of Chelyabinsk orbit with an asteroid of this size is due purely to chance However, detailed spectral comparison does not confirm genetic relation (Reddy et al. 2015)

39 Spectral comparison (Reddy et al. 2015) Chelyabinsk meteorites LL type 1999 NC43 L type

40 Summary Chelyabinsk was extraordinary large: mass tonst ons, size 19 meters ers Relatively fragile body; disrupted at 30 km height Only small part of the original mass landed as meteorites Damage only from the blast wave. If the body penetrated deeper intact, the blast wave would be stronger Potential risk misidentification with military attack

The Chelyabinsk event what we know one year later

The Chelyabinsk event what we know one year later The Chelyabinsk event what we know one year later Jiri Borovicka Astronomical Institute of the Academy of Sciences of the Czech Republic, Ondrejov, Czech Republic Feb 15, 2013, 3:20 UT Chelyabinsk and

More information

Chapter 7 7. Conclusions and Future Work

Chapter 7 7. Conclusions and Future Work 231 Chapter 7 7. Conclusions and Future Work There is no real ending. It s just the place where you stop the story. Frank Herbert 7.1 Conclusions The main goals of this dissertation were to investigate

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12671 1 Video calibration and trajectory determination The casual video records we used for the determination of the bolide trajectory and velocity are given in Extended Data Table 1.

More information

The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Table 1 Trajectory of the Chelyabinsk superbolide

The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Table 1 Trajectory of the Chelyabinsk superbolide doi:10.1038/nature12671 The trajectory, structure and origin of the Chelyabinsk asteroidal impactor Jiří Borovička 1, Pavel Spurný 1, Peter Brown 2,3, Paul Wiegert 2,3, Pavel Kalenda 4, David Clark 2,3

More information

arxiv: v1 [astro-ph.ep] 27 Oct 2015

arxiv: v1 [astro-ph.ep] 27 Oct 2015 Asteroids: New Observations, New Models Proceedings IAU Symposium No. 318, 2015 S. Chesley, A. Morbidelli, & R. Jedicke, eds. c 2015 International Astronomical Union DOI: 00.0000/X000000000000000X Are

More information

arxiv: v1 [astro-ph.ep] 20 Feb 2018

arxiv: v1 [astro-ph.ep] 20 Feb 2018 The frequency of window damage caused by bolide airbursts: a quarter century case study Nayeob Gi a, Peter Brown b,c, Michael Aftosmis d arxiv:1802.07299v1 [astro-ph.ep] 20 Feb 2018 a Department of Earth

More information

Fragmentation model analysis of the observed atmospheric trajectory of the Tagish Lake fireball

Fragmentation model analysis of the observed atmospheric trajectory of the Tagish Lake fireball Meteoritics & Planetary Science 42, Nr 2, 185 189 (2007) Abstract available online at http://meteoritics.org Fragmentation model analysis of the observed atmospheric trajectory of the Tagish Lake fireball

More information

PTYS 214 Spring Announcements. Midterm #4 in one week!

PTYS 214 Spring Announcements. Midterm #4 in one week! PTYS 214 Spring 2018 Announcements Midterm #4 in one week! 1 Previously Mass extinctions K/Pg extinction Impact theory -- evidence? Other possible causes Other extinctions 2 Where did the K/Pg impactor

More information

Rocks from space can be classified in 4 different categories: 1. Meteorites 2. Meteors (also called shooxng stars) 2 3. Micrometeorides 4.

Rocks from space can be classified in 4 different categories: 1. Meteorites 2. Meteors (also called shooxng stars) 2 3. Micrometeorides 4. ROCKS FROM SPACE CALLED METEORITES Ioannis Haranas Dept. of Physics and Computer Science, Wilfrid Laurier University, 75 University Ave. W. Waterloo, ON, N2L 3C5, CANADA e-mail: iharanas@wlu.ca The word

More information

PUBLICATIONS. Journal of Geophysical Research: Atmospheres. Simulation of the airwave caused by the Chelyabinsk superbolide

PUBLICATIONS. Journal of Geophysical Research: Atmospheres. Simulation of the airwave caused by the Chelyabinsk superbolide PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Points: Reconstruction of the meteoroid s trajectory Released energy estimation Simulations of the airwave propagation Correspondence

More information

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company Unit 2 Lesson 1 What Objects Are Part of the Solar System? Florida Benchmarks SC.5.E.5.2 Recognize the major common characteristics of all planets and compare/contrast the properties of inner and outer

More information

Title Seismic Observations of the Chebarkul Meteorite Sonic B Author(s) YAMADA, Masumi; MORI, James Citation 京都大学防災研究所年報. B = Disaster Preventio Institute Annuals. B (2015), 58(B): Issue Date 2015-06 URL

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore meteor

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore meteor Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore meteor shooting star, falling star For the complete encyclopedic

More information

A numerical assessment of simple airblast models of impact airbursts

A numerical assessment of simple airblast models of impact airbursts Meteoritics & Planetary Science 52, Nr 8, 1542 1560 (2017) doi: 10.1111/maps.12873 A numerical assessment of simple airblast models of impact airbursts Gareth S. COLLINS *, Elliot LYNCH, Ronan MCADAM,

More information

Space Notes 2. Covers Objectives 3, 4, and 8

Space Notes 2. Covers Objectives 3, 4, and 8 Space Notes 2 Covers Objectives 3, 4, and 8 Sun Average Size Star Sun 101 Sun s Mass almost 100 times the mass of all the planets combined. Most of the mass is hydrogen gas Thermonuclear Reaction Thermonuclear

More information

Earth. Physical Properties of Earth kg. Average Density g/cm 2. Surface Gravity 9.8 m/s o C to 50 o C. Surface Temperature

Earth. Physical Properties of Earth kg. Average Density g/cm 2. Surface Gravity 9.8 m/s o C to 50 o C. Surface Temperature Earth Physical Properties of Earth Equatorial Diameter Mass 12,756 km 5.976 10 24 kg Average Density 5.497 g/cm 2 Surface Gravity 9.8 m/s 2 Escape Velocity Surface Temperature 11.2 km/s -50 o C to 50 o

More information

ASTRONOMY AND ASTROPHYSICS Bolides produced by impacts of large meteoroids into the Earth s atmosphere: comparison of theory with observations

ASTRONOMY AND ASTROPHYSICS Bolides produced by impacts of large meteoroids into the Earth s atmosphere: comparison of theory with observations Astron. Astrophys. 334, 713 728 (1998) ASTRONOMY AND ASTROPHYSICS Bolides produced by impacts of large meteoroids into the Earth s atmosphere: comparison of theory with observations I. Benešov bolide dynamics

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or

More information

The impact flux (hazard?) on Earth

The impact flux (hazard?) on Earth The impact flux (hazard?) on Earth The young Earth and Moon suffered the same heavy bombardment early in the Solar System Only the Moon preserves the record of this The lunar record indicates roughly constant

More information

An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records

An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records Meteoritics & Planetary Science 37, 661 675 (2002) Available online at http://www.uark.edu/meteor An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records PETER G. BROWN

More information

BOLIDE ENERGY ESTIMATES FROM INFRASONIC MEASUREMENTS

BOLIDE ENERGY ESTIMATES FROM INFRASONIC MEASUREMENTS Earth, Moon, and Planets (2004) 95: 501 512 Ó Springer 2005 DOI 10.1007/s11038-005-2244-4 BOLIDE ENERGY ESTIMATES FROM INFRASONIC MEASUREMENTS WAYNE N. EDWARDS Department of Earth Sciences, University

More information

Solar System Junk however, a large number of bodies were left over as Junk or the debris of planet building

Solar System Junk however, a large number of bodies were left over as Junk or the debris of planet building Solar System Junk So far, we ve taken a brief look at the 8 planets of the solar system, their array of moons or natural satellites, and how we think such a system formed. Most of the material in the solar

More information

D..O. ReVelle, EES-2. Acoustical Society of America Meeting Cancun, Mexico Dec. 2-6,2002

D..O. ReVelle, EES-2. Acoustical Society of America Meeting Cancun, Mexico Dec. 2-6,2002 Approved for public release; distribution is unlimited. Title: ARGE METEROID DETECTION USING THE GLOBAL IMS INFRASOUND SYSTEM Author(s). D..O. ReVelle, EES-2 Submitted to Acoustical Society of America

More information

Finding Impact Craters with Landsat

Finding Impact Craters with Landsat Name Finding Impact Craters with Landsat Known Effects of Impact Events When an object from space hits the Earth, here is what can happen. There's a huge explosion. The impact makes a big hole or crater

More information

Teacher Background. Impact! Down to Earth KS 3&4

Teacher Background. Impact! Down to Earth KS 3&4 Teacher Background Impact! Impact! - Teacher Background- 2 Meteorites What Are They, and Where Do They Come From? Meteorites are rocks from space that have passed through the atmosphere and landed on the

More information

Big Impacts and Bio-Extinctions ASTR 2120 Sarazin

Big Impacts and Bio-Extinctions ASTR 2120 Sarazin Big Impacts and Bio-Extinctions ASTR 2120 Sarazin Final Exam Saturday, May 5, 9:00 am - noon ASTR 265 (classroom) Bring pencils, paper, calculator You may not consult the text, your notes, or any other

More information

Calculating Damage from Asteroid Impacts. H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013

Calculating Damage from Asteroid Impacts. H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013 Calculating Damage from Asteroid Impacts H. J. Melosh Purdue University Planetary Defense Conference April 18, 2013 Impact Effects can be divided into two basic categories: Local or Regional: Global: Thermal

More information

SPACE NOTES 2. Covers Objectives 3, 4, and 8

SPACE NOTES 2. Covers Objectives 3, 4, and 8 SPACE NOTES 2 Covers Objectives 3, 4, and 8 THE SUN Average Size Star Sun 101 SUN S MASS o almost 100 times the mass of all the planets combined. o Most of the mass is hydrogen gas THERMONUCLEAR REACTION

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: Sound Waves Sound Waves: 1 Sound Waves Sound Waves Linear Waves compression rarefaction 2 H H L L L Gravity Waves 3 Gravity Waves Gravity Waves 4 Gravity Waves Kayak Surfing on ocean gravity waves Oregon

More information

The End of the World...

The End of the World... The End of the World... as we know it. Impacts in the Inner Solar System Collisions have played a key role in the past formation of planets by accretion fragmentation (formation of the Moon) sustained

More information

III. Section 3.3 Vertical air motion can cause severe storms

III. Section 3.3 Vertical air motion can cause severe storms III. Section 3.3 Vertical air motion can cause severe storms http://www.youtube.com/watch?v=nxwbr60tflg&feature=relmfu A. Thunderstorms form from rising moist air Electrical charges build up near the tops

More information

Asteroids, Comets, and Meteoroids

Asteroids, Comets, and Meteoroids Asteroids, Comets, and Meteoroids Bode s Law In 1772 Johann Bode, a German astronomer, created a mathematical formula now called Bode s Law. This formula determines the pattern that describes the distances

More information

Physical properties of meteoroids based on observations

Physical properties of meteoroids based on observations Physical properties of meteoroids based on observations Maria Gritsevich 1,, Johan Kero 3, Jenni Virtanen 1, Csilla Szasz 3, Takuji Nakamura 4, Jouni Peltoniemi 1, and Detlef Koschny 5 (1) Finnish Geodetic

More information

TELESCOPES. How do they work?

TELESCOPES. How do they work? TELESCOPES How do they work? There are two types of Telescopes Refractor telescopes They use glass lenses Reflector telescopes They use mirrors and lenses Parts of a Telescope Tube - a long tube, made

More information

The Chelyabinsk airburst : Implications for the Impact Hazard

The Chelyabinsk airburst : Implications for the Impact Hazard LETTERS TO NATURE The Chelyabinsk airburst : Implications for the Impact Hazard P.G. Brown 1,2, J. D. Assink 3, L. Astiz 4, R. Blaauw 5, M.B. Boslough 6, J. Borovicka 7, N. Brachet 3, D. Brown 8, M. Campbell-Brown

More information

Overview of Meteor Science Research at the University of Western Ontario

Overview of Meteor Science Research at the University of Western Ontario Overview of Meteor Science Research at the University of Western Ontario Dr. Peter Brown Dept. of Physics and Astronomy University of Western Ontario London, ON CANADA pbrown@uwo.ca Research Focus Western

More information

Mt St Helens was know to have entered into active periods that lasted from years once every years over the last 500 years, (Figure 5).

Mt St Helens was know to have entered into active periods that lasted from years once every years over the last 500 years, (Figure 5). Lecture #8 notes; Geology 3950, Spring 2006; CR Stern May 1980 eruption of Mt St Helens volcano (text pages 183-192 in the 4 th edition and 206-222 in the 5 th edition) Mt St Helens in southwest Washington

More information

DETECTION OF NATURALLY OCCURRING EVENTS FROM SMALL APERTURE INFRASOUND ARRAYS

DETECTION OF NATURALLY OCCURRING EVENTS FROM SMALL APERTURE INFRASOUND ARRAYS DETECTION OF NATURALLY OCCURRING EVENTS FROM SMALL APERTURE INFRASOUND ARRAYS John M. Noble and Stephen M. Tenney U.S. Army Research Laboratory 2800 Powder Mill Road, Adelphi, MD 20783 Phone:301-394-5663;

More information

Chapter 2 Geography. Getting to know Earth

Chapter 2 Geography. Getting to know Earth Chapter 2 Geography Getting to know Earth Our Solar System Sun is at the center of our solar system Contains a lot of Mass» Mass gives the Sun gravitational pull» This keeps the planets in our solar system

More information

Volcanoes: Help or Hindrance?

Volcanoes: Help or Hindrance? Volcanoes: Help or Hindrance? Volcanic eruptions can range from violent to mild. All kinds of eruptions have effects that can be both harmful and beneficial to people and the environment. Volcanoes Can

More information

PUBLICATIONS. Journal of Geophysical Research: Planets. Effect of yield curves and porous crush on hydrocode simulations of asteroid airburst

PUBLICATIONS. Journal of Geophysical Research: Planets. Effect of yield curves and porous crush on hydrocode simulations of asteroid airburst PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Key Points: Strong asteroids fail and create peak energy deposition close to the altitude at which ram dynamic pressure equals the

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Measuring Earthquakes Two measurements that describe the power or strength of an earthquake are: Intensity a measure of the degree of earthquake shaking at a given locale based

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Review: What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. The point inside the Earth where

More information

Questions. 1. To what altitude raises the typical mushroom cloud? 2. What overpressure generates hurricane like winds?

Questions. 1. To what altitude raises the typical mushroom cloud? 2. What overpressure generates hurricane like winds? Questions 1. To what altitude raises the typical mushroom cloud?. What overpressure generates hurricane like winds? 3. Why is a nuclear burst at a certain altitude more damaging than the ground burst?

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday.

Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday. Homework #3 is due Friday at 11:50am! Nighttime observing has 10 more nights. Check the webpage. 1 st exam is October 10 th 2 weeks from Friday. Outline Back to Atoms for fun The Earth as a Planet. magnetic

More information

Outline. Atoms in the Solar System. Atoms in the Earth. Back to Atoms for fun The Earth as a Planet. Homework #3 is due Friday at 11:50am!

Outline. Atoms in the Solar System. Atoms in the Earth. Back to Atoms for fun The Earth as a Planet. Homework #3 is due Friday at 11:50am! Homework #3 is due Friday at 11:50am! Nighttime observing has more nights. Check the webpage. 1 st exam is October th 2 weeks from Friday. Outline Back to Atoms for fun The Earth as a Planet. magnetic

More information

Chapter 17 Solar System

Chapter 17 Solar System Chapter 17 Solar System Rotation Earth spinning on its axis (like a top) "TOP" imaginary rod running through the center of the Earth from North pole to South pole The Earth is tilted on its axis at an

More information

Asteroids: Introduction

Asteroids: Introduction Asteroids: Introduction Name Read through the information below. Then complete the Fill-Ins at the bottom of page. Asteroids are rocky objects that orbit the Sun in our solar system. Also known as minor

More information

The Good Earth: Introduction to Earth Science 3rd Edition Test Bank Chapter 03 - Near-Earth Objects

The Good Earth: Introduction to Earth Science 3rd Edition Test Bank Chapter 03 - Near-Earth Objects Test Bank The Good Earth: Introduction to Earth Science 3rd Edition McConnell Steer Completed download: https://testbankreal.com/download/good-earth-introduction-earth-science- 3rd-edition-test-bank-mcconnell-steer/

More information

CST Prep- 8 th Grade Astronomy

CST Prep- 8 th Grade Astronomy CST Prep- 8 th Grade Astronomy Chapter 15 (Part 1) 1. The theory of how the universe was created is called the 2. Which equation states that matter and energy are interchangeable? 3. All matter in the

More information

Erupted and killed approximately 15,000 people 200 years ago

Erupted and killed approximately 15,000 people 200 years ago 1 2 3 4 5 6 7 8 Introduction to Environmental Geology, 5e Chapter 8 Volcanic Activity Volcanoes: summary in haiku form A volcano forms. Magma comes to the surface - explodes, if felsic. Case History: Mt.

More information

Smaller Bodies of the Solar System Chapter 2 continued

Smaller Bodies of the Solar System Chapter 2 continued Smaller Bodies of the Solar System Chapter 2 continued Small, rocky (sometimes metallic) bodies with no atmospheres. or planetoids 100,000 numbered and 12,000 named 1-1000 km in size most are small ~ 1

More information

Aside from my last lecture: my solar cooker!

Aside from my last lecture: my solar cooker! Aside from my last lecture: my solar cooker! Don t forget to turn in homework. Bring star wheel on Wed! Remember, no class next Monday, Nov 11, Veteran s day Wed Nov 13: second Kitt Peak trip: many more

More information

Today. Events. asteroids, meteorites, comets. Homework 5 Due. things that go bump. Thanksgiving next week. Exam III - Dec. 7

Today. Events. asteroids, meteorites, comets. Homework 5 Due. things that go bump. Thanksgiving next week. Exam III - Dec. 7 Today asteroids, meteorites, comets things that go bump Events Homework 5 Due Thanksgiving next week Exam III - Dec. 7 Lots of small asteroids number A few big asteroids apparent brightness Asteroids are

More information

Tectonic Plates Test Study Guide Answers

Tectonic Plates Test Study Guide Answers Tectonic Plates Test Study Guide Answers Weathering and Erosion 1. What is the difference between weathering and erosion? Weathering is the breakdown of earth materials and erosion is the movement of earth

More information

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion?

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? These small, rocky worlds orbit the sun generally between the orbits of

More information

Introduction to volcanoes. Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt

Introduction to volcanoes. Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt Introduction to volcanoes Volcano: an opening in the earth s surface through which lava, hot gases, and rock fragments erupt Origin of Volcanoes 1. Magma 50-100 miles below the earth s surface slowly begins

More information

Astronomy 1. 10/17/17 - NASA JPL field trip 10/17/17 - LA Griffith Observatory field trip

Astronomy 1. 10/17/17 - NASA JPL field trip 10/17/17 - LA Griffith Observatory field trip Astronomy 1 10/17/17 - NASA JPL field trip 10/17/17 - LA Griffith Observatory field trip CH 1 Here and NOW Where do we fit in the Universe? How-small-we-really-are-in-this-universe Start here: The figure

More information

10/3/18 east side of Revelle Plaza https://igppweb.ucsd.edu/~gabi/sio15 scroll down to table handwritten or printed submission before class 10/8 outside lecture hall no late/online submission 1 https://igppweb.ucsd.edu/~gabi/sio15

More information

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a

More information

What is Nuclear Winter?

What is Nuclear Winter? Nuclear Winter What is Nuclear Winter? Prediction by some scientists that smoke and debris rising from massive fires of a nuclear war could block sunlight for weeks or months, cooling the earth's surface

More information

Unit 1: Space. Section 2- Stars

Unit 1: Space. Section 2- Stars Unit 1: Space Section 2- Stars Stars Recall: stars are celestial bodies of hot gas that give off heat and light Stars The milky way contains hundreds of billions of stars and is only one of hundreds of

More information

Questions. 1. How likely is in your estimate the chances for a major nuclear war within the next decade? Please justify your opinion!

Questions. 1. How likely is in your estimate the chances for a major nuclear war within the next decade? Please justify your opinion! Questions 1. How likely is in your estimate the chances for a major nuclear war within the next decade? Please justify your opinion! 2. What is the dose the average South Bend citizen would receive from

More information

Vagabonds of the Solar System

Vagabonds of the Solar System Vagabonds of the Solar System Guiding Questions 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How

More information

12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids

12/3/14. Guiding Questions. Vagabonds of the Solar System. A search for a planet between Mars and Jupiter led to the discovery of asteroids Guiding Questions Vagabonds of the Solar System 1. How and why were the asteroids first discovered? 2. Why didn t the asteroids coalesce to form a single planet? 3. What do asteroids look like? 4. How

More information

Tour of the Universe!

Tour of the Universe! Tour of the Universe! Andromeda: M31 (NGC 224, the famous Andromeda Galaxy) is the nearest large galaxy to our own Milky Way galaxy. It is so bright that it is easily seen by naked eye as a faint fuzzy

More information

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION Accretion Discs Mathematical Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION 0.1. Accretion If a particle of mass m falls from infinity and comes to rest on the surface of a star of mass

More information

Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM

Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM Wednesday, February 3, 2016 First exam Friday. First Sky Watch Due (typed, 8.5x11 paper). Review sheet posted. Review session Thursday, 4:30 5:30 PM RLM 15.216B (Backup RLM 15.202A) Reading: Chapter 6

More information

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope)

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope) Asteroids Titius-Bode Law (1766) 2 The distances between the planets gets bigger as you go out. Johann Daniel Titius ( 1729 1796) Johann Elert Bode (1747-1826) updated May 16, 2013 Titius & Bode came up

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

TEACHER BACKGROUND INFORMATION

TEACHER BACKGROUND INFORMATION TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a

More information

Essential Knowledge and Skills Aligned Learning Activities Other Resources DISTRICT OF COLUMBIA PUBLIC SCHOOLS, SCIENCE, Grade 6 SCIENCE

Essential Knowledge and Skills Aligned Learning Activities Other Resources DISTRICT OF COLUMBIA PUBLIC SCHOOLS, SCIENCE, Grade 6 SCIENCE District of Columbia Public Schools Essential Knowledge and Skills for Science (Grade 6) DISTRICT OF COLUMBIA PUBLIC SCHOOLS, SCIENCE, Grade 6 SCIENCE Earth and Space Sciences Content Standard 4: Understanding

More information

Debris Avalanches. Debris avalanche deposits on a volcano in Chile. All of the area in the foreground is buried by a thick debris avalanche.

Debris Avalanches. Debris avalanche deposits on a volcano in Chile. All of the area in the foreground is buried by a thick debris avalanche. Debris Avalanches Volcanoes are not very stable structures. From time to time, they collapse producing large rock and ash avalanches that travel at high speeds down valleys. Collapse maybe caused by an

More information

Sun Mercury Venus. Earth Mars Jupiter

Sun Mercury Venus. Earth Mars Jupiter Sun Mercury Venus Earth Mars Jupiter Venus is the hottest planet in our solar system. The thick clouds on Venus hold the heat in. The sun s lights reflect off Venus s clouds making it look like the brightest

More information

Gravity Waves Gravity Waves

Gravity Waves Gravity Waves Gravity Waves Gravity Waves 1 Gravity Waves Gravity Waves Kayak Surfing on ocean gravity waves Oregon Coast Waves: sea & ocean waves 3 Sound Waves Sound Waves: 4 Sound Waves Sound Waves Linear Waves compression

More information

water erosion lithosphere Describe the process of erosion and deposition. chemical weathering Dissolving limestone is an example of.

water erosion lithosphere Describe the process of erosion and deposition. chemical weathering Dissolving limestone is an example of. At one time, there was one large island off the coast of Mississippi and now it is two separate islands. What caused the island to be split into two? water erosion The crust and the top part of the upper

More information

Stars and Galaxies. Evolution of Stars

Stars and Galaxies. Evolution of Stars chapter 13 3 Stars and Galaxies section 3 Evolution of Stars Before You Read What makes one star different from another? Do you think the Sun is the same as other stars? Write your ideas on the lines below.

More information

Chapter 19: Meteorites, Asteroids, and Comets

Chapter 19: Meteorites, Asteroids, and Comets Chapter 19: Meteorites, Asteroids, and Comets Comet Superstition Throughout history, comets have been considered as portants of doom, even until very recently: Appearances of comet Kohoutek (1973), Halley

More information

Chapter 9 Remnants of Rock and Ice. Asteroids, Comets, and Pluto

Chapter 9 Remnants of Rock and Ice. Asteroids, Comets, and Pluto Chapter 9 Remnants of Rock and Ice Asteroids, Comets, and Pluto 9.1 Asteroids and Meteorites Our Goals for Learning Why is there an asteroid belt? How are meteorites related to asteroids? Asteroid Facts

More information

Rings, asteroids, meteorites. Homework 5 Due. Thanksgiving next week. Final Dec. 20

Rings, asteroids, meteorites. Homework 5 Due. Thanksgiving next week. Final Dec. 20 Today Rings, asteroids, meteorites Events Homework 5 Due Thanksgiving next week Final Dec. 20 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Saturn s rings Note refraction in atmosphere

More information

The Little Things. Today. Rings, meteorites. Asteroids & Comets. Dwarf Planets Events. Homework 5. Due

The Little Things. Today. Rings, meteorites. Asteroids & Comets. Dwarf Planets Events. Homework 5. Due Today The Little Things Rings, meteorites Asteroids & Comets Dwarf Planets Events Homework 5 Due geysers on Triton Rocky Planets versus Icy Moons Rock melts at higher temperatures. Only large rocky planets

More information

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface 1. Base your answer to the following question on the diagram below which shows two identical houses, A and B, in a city in North Carolina. One house was built on the east side of a factory, and the other

More information

Constructive & Destructive Forces

Constructive & Destructive Forces Constructive & Destructive Forces Intro: Constructive Forces Processes that create landforms. Destructive Forces Processes that destroy landforms. Intro: Constructive Forces Volcanoes Deposition Landslides

More information

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS AST 101 INTRODUCTION TO ASTRONOMY SPRING 2008 - MIDTERM EXAM 2 TEST VERSION 1 ANSWERS Multiple Choice. In the blanks provided before each question write the letter for the phrase that best answers the

More information

http://eps.mcgill.ca/~courses/c201_winter/ http://eps.mcgill.ca/~courses/c201_winter/ Neutron Proton Nucleosynthesis neutron!! electron!+!proton!!=!!é!!+!h +!! t 1/2 =!12!minutes H + +!neutron!! Deuterium!(D)

More information

The Life Histories of Stars I. Birth and Violent Lives

The Life Histories of Stars I. Birth and Violent Lives The Life Histories of Stars I Birth and Violent Lives Stellar evolution--first problem for new discipline of astrophysics What is a star? What is it made of? How does it produce and release energy? How

More information

Lecture 21 Formation of Stars November 15, 2017

Lecture 21 Formation of Stars November 15, 2017 Lecture 21 Formation of Stars November 15, 2017 1 2 Birth of Stars Stars originally condense out of a COLD, interstellar cloud composed of H and He + trace elements. cloud breaks into clumps (gravity)

More information

Chapter 2 Planet Earth

Chapter 2 Planet Earth Chapter 2 Planet Earth Section Notes Earth and the Sun s Energy Water on Earth The Land Close-up The Water Cycle World Almanac Major Eruptions in the Ring of Fire Quick Facts Chapter 2 Visual Summary Video

More information

Astronomy Unit Notes Name:

Astronomy Unit Notes Name: Astronomy Unit Notes Name: (DO NOT LOSE!) To help with the planets order 1 My = M 2 V = Venus 3 Eager = E 4 M = Mars 5 Just = J 6 Served = Saturn 7 Us = Uranus 8 N = N 1 Orbit: The path (usually elliptical)

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

The solar system pt 2 MR. BANKS 8 TH GRADE SCIENCE

The solar system pt 2 MR. BANKS 8 TH GRADE SCIENCE The solar system pt 2 MR. BANKS 8 TH GRADE SCIENCE Dwarf planets Following the discovery of multiple objects similar to Pluto (and one that was even bigger than Pluto) a new classification for planets

More information

Terrestrial Planetary Atmospheres

Terrestrial Planetary Atmospheres Terrestrial For the first time in my life, I saw the horizon as a curved line. It was accentuated by a thin seam of dark blue light our atmosphere. Obviously this was not the ocean of air I had been told

More information

Meteors. Meteors Comet dust particles entering our atmosphere and burning up from the friction. The Peekskill, NY Meteorite Fall.

Meteors. Meteors Comet dust particles entering our atmosphere and burning up from the friction. The Peekskill, NY Meteorite Fall. Meteors Meteors Comet dust particles entering our atmosphere and burning up from the friction. 2 Updated july 19, 2009 Every year about Nov. 18 the Earth goes through the path of an old comet. Meteorites

More information

PUBLICATIONS. Journal of Geophysical Research: Planets. Optical observations of meteors generating infrasound: Weak shock theory and validation

PUBLICATIONS. Journal of Geophysical Research: Planets. Optical observations of meteors generating infrasound: Weak shock theory and validation PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE 10.1002/2014JE004680 Key Points: Tested the weak shock model for meteor-generated infrasound against observations Derived empirical

More information

Cloud formation in underwater tests

Cloud formation in underwater tests Underwater Blasts Cloud formation in underwater tests Formation of spray dome & condensation cloud from erupted water Baker (fat man design) Bikini Atoll 1946; 23 kt First Moments Eruption through water

More information

Vagabonds of the Solar System. Chapter 15

Vagabonds of the Solar System. Chapter 15 Vagabonds of the Solar System Chapter 15 ASTR 111 003 Fall 2007 Lecture 13 Nov. 26, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15)

More information

Today. Events. The Little Things. Impacts & extinctions. Dwarf Planets. Homework 5 DUE

Today. Events. The Little Things. Impacts & extinctions. Dwarf Planets. Homework 5 DUE Today The Little Things Impacts & extinctions Dwarf Planets Events Homework 5 DUE Facts About Impacts on Earth Asteroids and comets have hit the Earth. A major impact is only a matter of time: not IF but

More information

http://eps.mcgill.ca/~courses/c220/ Nucleosynthesis neutron electron + proton = é + H + t 1/2 = 12 minutes H + + neutron Deuterium (D) 2 H + + neutrons Helium (He) 3 H + + neutrons Lithium (Li) From: W.S.

More information

Name: Date: Hour: 179 degrees celsius. 5% of Earth A 70 pound person would weigh 27 pounds on Mercury.

Name: Date: Hour: 179 degrees celsius. 5% of Earth A 70 pound person would weigh 27 pounds on Mercury. Planet Exploration- http://www.kidsastronomy.com/solar_.htm Mercury 1 87.9 days 58.6 days 57 million Km 465 degrees celsius Minimum -184 degrees celsius 179 degrees celsius Moons Terrestrial or Gaseous?

More information