Activity 1-2: Origin of the Earth

Size: px
Start display at page:

Download "Activity 1-2: Origin of the Earth"

Transcription

1 Earth Science 11 Name: Block: Activity 1-2: Origin of the Earth Read the following passage, and then answer the questions at the end: Where Earth Science Begins: The Solar System Where shall the study of earth science begin land, oceans, atmosphere, or sky? A good choice seems to be the origin of the planet Earth. But Earth is only one member of a whole family of planets circling the sun. So begin with the origin of the whole family, which is called the solar system. Many hypotheses explanations that try to fit known facts have been proposed for the origin of the solar system. Every hypothesis has to consider these facts: 1 All planets revolve around the sun in the same direction. 2 The paths, or orbits, of the planets around the sun are all nearly circular. 3 The orbits are all in nearly the same flat surface or plane. 4 The sun turns (rotates) on its axis in almost the same plane as the planets, and in the same direction as the planets revolve. 5 Most of the moons revolve around their planets in the same direction as the planets revolve around the sun. This artist s conception of the solar system illustrates the elliptical orbits of the planets revolving around the sun. Notice the asteroid belt which is located between the orbits of Mars and Jupiter. The hypothesis that many astronomers favor now because it best fits the facts listed above is called the protoplanet hypothesis. It was first proposed about 1944 by a German astronomer, von Weizsacker, and modified by an American astronomer, Kuiper, in 1950.

2 According to the protoplanet hypothesis a great cloud of gas and dust was gradually transformed into the planets and natural satellites which make up the solar system. The Protoplanet Hypothesis The protoplanet hypothesis begins about 5 x 10 9 years ago with a great cloud of gas and dust rotating slowly in space. The cloud is at least 10 x 10 9 km in diameter. As time passes, the cloud shrinks under the pull of its own gravitation or is made to collapse by the explosion of a passing star. Most of the cloud s material gathers around its centre. Its shrinking makes it rotate faster, like a spinning whirlpool. The compression of its material makes its interior so hot that hydrogen fusion begins and the core of the cloud blazes into a newborn sun. About 10 percent of the material in the cloud forms a great plate-like disk surrounding the sun far into space. Friction within the disk causes most of its mass to collect in a number of huge whirlpools or eddies. These eddies shrink into more compact masses called protoplanets and later form planets and moons. Some uncollected material still remains as comets, meteorites, and asteroids. Origin of the Oceans Scientists now agree that when Earth first formed, it had neither oceans nor atmosphere. But as the protoplanet Earth changed to the planet Earth, it grew hotter. There were three sources of heat: compression, radioactive materials, and bombardment by showers of meteorites. Radioactive minerals are natural substances that give off energy, much of which becomes heat. Meteorites produce heat both by friction and by impact. When Earth became hot enough, volcanoes erupted, bringing hot lava and hot gases to the surface. The gases contained vast amounts of steam, which condensed into water that slowly accumulated as oceans. But how did the oceans get their dissolved minerals? It was once thought that the minerals now found in ocean waters were deposited by rivers over hundreds of millions of years. But most scientists now think that as volcanic rains fell onto the then hot molten rock of Earth s surface, mineral matter dissolved to make the oceans salty.

3 Scientists believe that the protoplanet Earth (a) had no oceans or atmosphere. As the intense heat of Earth s interior built up, volcanic eruptions began to occur (b). Repeated huge eruptions produced volumes of volcanic gases. The steam in these gases condensed upon reaching the surface (c) to form Earth s oceans. Origin of the Atmosphere The atmosphere that surrounds Earth today includes about 78 percent free nitrogen and 21 percent free oxygen. Free means these gases are not combined with other elements. The remaining 1 percent is mostly other gases, such as argon, carbon dioxide, and helium. (Water vapour is in the atmosphere too, but it varies in amount with weather and climate.) This present mixture is very different from what scientists believe Earth s original atmosphere must have been. They believe that the original atmosphere came from volcanoes and was like the mixture of gases that now erupts from volcanoes. This mixture usually is over 50 percent water vapour with large amounts of carbon dioxide and sulfur gases. However, the mixture contains no free oxygen! Almost all forms of life on Earth need free oxygen. Where, then, did it come from? Scientists think the atmosphere s first free oxygen came from the breakup of water molecules by sunlight in the upper atmosphere. Then as simple green plants came into existence, they added more free oxygen to the atmosphere by photosynthesis. In this process, green plants manufacture sugars and starches from carbon dioxide and water in the presence of sunlight. But more than half of the oxygen in the carbon dioxide and water is left over. This excess is released into the atmosphere as free oxygen. Structure of the Solid Earth Geologists today have a fairly clear picture of Earth s structure from its surface to its very centre. Since the centre is nearly 6400 km from the surface, most of this picture of Earth is obviously based on indirect evidence. For now, look at the Earth model that geologists describe. It has a spherical inner core 2800 km in diameter, made of solid iron and nickel. Surrounding the inner core is an outer core about 2100 km thick made of liquid iron and nickel. Then comes a 2850 km thick layer of heavy rocks rich in compounds of iron, magnesium, and silicon. This layer is called the mantle. It reaches almost to Earth s surface. The mantle is covered by a layer of lighter rocks called the crust. The curst ranges in thickness form about 10 km below the ocean basins to about 65 km below the continents. Mines and wells go deep into the crust, but none have reached the mantle. Was Earth layered like this when it formed more than four hundred million years ago? Probably not! If we believe the protoplanet hypothesis, the surface of Earth looked much like the moon does today. Below its surface, Earth was probably composed of the same kind of rock all the way to its centre.

4 How then did Earth develop its layers of core, mantle, and crust? Many geologists think that as the temperature of the newly formed Earth increased, large quantities of iron and nickel in its rock melted. Great streams of these hot, heavy liquids flowed toward Earth s centre. On their way down they melted lighter rock materials and forced them up to the surface. At the surface the light rock became solid and formed Earth s crust. The mantle formed between the crust and the core. How the Continents Formed One hypothesis suggests that when the melted iron and nickel sank into Earth s core, it forced out enough light rock to form an immense single continent. Another suggestion is that the continents were formed by great lava flows form erupting volcanoes over hundreds of millions of years. In either case, today s continents are quite different from those that first formed on Earth s surface. In the hundreds of millions of years following their origin, the continents have undergone many changes. Source: Namowitz, Samuel N., and Nancy E. Spaulding. "Introduction to Earth Science." Earth Science. Canadian ed. Lexington, MA: D.C. Heath Canada, Print. Questions 1. Why do scientists think that all the planets formed at about the same time? List at least three reasons. 2. Briefly describe the protoplanet hypothesis. 3. What was the planet Earth like before the oceans were formed?

5 4. Where did the water that formed the oceans come from? 5. How did the new oceans get salty? 6. What was the original atmosphere of the Earth like? What was it made of? 7. Where did the gases that formed the original atmosphere come from? 8. What is Earth s present atmosphere made of? 9. Which process is responsible for introducing oxygen gas into the atmosphere?

6 10. Complete the following table: Layer Thickness of Layer Composition of Layer crust mantle outer core inner core 11. Label the layers of Earth s interior in the following diagram and colour code them: 12. Describe the process which caused the layers of the Earth to form. 13. As the layers of the Earth formed, where did the least dense materials accumulate? What feature of present-day Earth was formed from these materials?

7 Review of Sections 1-1 and Match each statement with the appropriate term: Made of solid iron. All water at or near Earth s surface. An explanation of known facts. The study of the seas. Allows matter to enter or exit. Made of molten iron and nickel. The study of the atmosphere. Movement of energy into and out of Earth system. Continuous circulation of water through the hydrosphere. Where all living things are located. Made of iron and magnesium silicates. Made of lighter aluminum silicates. The (mostly solid) Earth; all rock material. The study of Earth s surface and interior. Envelope of gases surrounding Earth. Allows energy to enter or exit, but not matter. Involves the movement of atoms between Earth s spheres. The study of the universe. Manufacture of sugars by plants. A) oceanography B) biosphere C) carbon cycle D) closed system E) crust F) meteorology G) mantle H) inner core I) atmosphere J) astronomy K) hypothesis L) geology M) hydrosphere N) photosynthesis O) open system P) outer core Q) water cycle R) geosphere S) energy cycle 2. Write the name of the earth scientist who studies the topic. Choose from geologist, meteorologist, oceanographer, or astronomer. a) Observes and predicts the appearance of comets. b) Predicts the weather. c) Explores for metal ores. d) Describes the paths of icebergs along shipping lanes. e) Predicts the paths of tsunamis. f) Studies solar radiation. g) Studies air pollution. h) Explores for geothermal power. i) Attempts to forecast earthquakes.

8 j) Studies marine plants and animals. k) Plans water supplies for cities and towns. l) Hypothesizes about distant galaxies. m) Maps ocean currents. n) Studies volcanic eruptions. o) Measures the strength of hurricanes. p) Studies the origin of the solar system. q) Measures ocean depths. r) Uses satellites to locate storms at sea. s) Studies how the ocean affects climate. t) Studies meteorites to determine if life exists elsewhere. u) Determines the locations sources of oil.

Earth Science Review Ch 1 & 2. Chapter 1 - Introduction to Earth Science

Earth Science Review Ch 1 & 2. Chapter 1 - Introduction to Earth Science Earth Science Review Ch 1 & 2 Chapter 1 - Introduction to Earth Science Lesson I - What is Earth Science Topic 1- Branches of Earth Science Earth Science - the study of Earth, its oceans, atmosphere, and

More information

What is Earth Science? Earth science is the branch of science dealing with the constitution of the earth and its atmosphere.

What is Earth Science? Earth science is the branch of science dealing with the constitution of the earth and its atmosphere. What is Earth Science? Earth science is the branch of science dealing with the constitution of the earth and its atmosphere. 1 2 The Branches of Earth Science Major Astronomy (celestial objects, space,

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

Chapter 1: Introduction to Earth Science

Chapter 1: Introduction to Earth Science Chapter 1: Introduction to Earth Science 1.1 What is Earth Science Earth science is the name for the group of sciences that deals with Earth and its neighbors in space. Includes: Geology Oceanography Meteorology

More information

EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock

EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock between the Earth s crust and core Core: The central

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 07 Oct. 15, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus Fall 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

Exploring Our Solar System

Exploring Our Solar System Exploring Our Solar System Our Solar System What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement

More information

Chapter 1: Earth as a System

Chapter 1: Earth as a System Chapter 1: Earth as a System Science is: Any system of knowledge which tries to observe, identify, understand and describe the nature of the Universe in whole or part. Science explains and predicts the

More information

Earth systems Unit 1 ( approx. 11 classes)

Earth systems Unit 1 ( approx. 11 classes) Earth systems 3209 Unit 1 ( approx. 11 classes) describe at least two aspects of Earth science that make it different from other sciences define Earth science (Geoscience) identify the major branches of

More information

Nebular Hypothesis (Kant, Laplace 1796) - Earth and the other bodies of our solar system (Sun, moons, etc.) formed from a vast cloud of dust and

Nebular Hypothesis (Kant, Laplace 1796) - Earth and the other bodies of our solar system (Sun, moons, etc.) formed from a vast cloud of dust and Plate Tectonics Origin of Universe Big Bang model (Hubble, 1929) - The universe began with an explosive e expansion of matter, which later became what we know as stars, planets, moons, etc. This event

More information

Formation of the Earth and Solar System

Formation of the Earth and Solar System Formation of the Earth and Solar System a. Supernova and formation of primordial dust cloud. NEBULAR HYPOTHESIS b. Condensation of primordial dust. Forms disk-shaped nubular cloud rotating counterclockwise.

More information

Science Practice Astronomy (AstronomyJSuber)

Science Practice Astronomy (AstronomyJSuber) Name: Date: 1. The pull of gravity on Earth is a direct result of the A. mass of Earth. B. magnetic field of Earth. C. rotation of Earth on its axis. D. weight of Earth's atmosphere. This online assessment

More information

Evolution of the Atmosphere: The Biological Connection

Evolution of the Atmosphere: The Biological Connection Evolution of the Atmosphere: The Biological Connection The Earth s Four Spheres How It All Began Or At Least How We Think It Began O.k. it s a good guess Egg of energy The Big Bang splattered radiation

More information

Evolution of the Solar System

Evolution of the Solar System DATE DUE: Name: Ms. Terry J. Boroughs Geology 305 Section: Evolution of the Solar System Instructions: Read each question carefully before selecting the BEST answer or option. Use GEOLOGIC vocabulary where

More information

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight

Comparative Planetology II: The Origin of Our Solar System. Chapter Eight Comparative Planetology II: The Origin of Our Solar System Chapter Eight ASTR 111 003 Fall 2007 Lecture 06 Oct. 09, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6)

More information

The Earth. Overall Structure of Earth

The Earth. Overall Structure of Earth The Earth Why Study The Earth??? It s our home! Where did life come from, where is it going. To understand the other planets. Study of other planets will, in turn, help us understand the Earth. Overall

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Session 2 THE EARTH Lecturer: Dr. Patrick Asamoah Sakyi Department of Earth Science, UG Contact Information: pasakyi@ug.edu.gh College of Education

More information

Shape and Size of the Earth

Shape and Size of the Earth Planet Earth Shape and Size of the Earth Gravity is what gives Earth its spherical shape Only effective if the body is of a critical size Critical radius is about 350 km Shape and Size of the Earth Earth

More information

Send Completed HW to:

Send Completed HW to: Section 1.1 What Is Earth Science? This section explains what Earth science is and what Earth scientists study. Reading Strategy Categorizing As you read about the different branches of Earth science,

More information

Explain Distinguish between inner and outer planet characteristics Describe unique features of all the planets

Explain Distinguish between inner and outer planet characteristics Describe unique features of all the planets Loulousis Objectives Explain the nebular hypothesis of the origin of the solar system and describe how the planets formed Distinguish between inner and outer planet characteristics Describe unique features

More information

The History of the Earth

The History of the Earth The History of the Earth Origin of the Universe The universe began about 13.9 billion years ago According to Big Bang theory almost all matter was in the form of energy E = MC 2 E = energy, M = mass and

More information

ESC102. Earth in Context

ESC102. Earth in Context ESC102 Earth in Context Scientific Method The scientific method is an orderly and logical approach that relies on data to inform our understanding of a problem or process. assumes that nature is consistent

More information

Formation of the Universe The organization of Space

Formation of the Universe The organization of Space February 21, 2014 Formation of the Universe The organization of Space Theory: A theory is An example is cell Cell Theory Cell Theory states 1. All living organisms are composed of one or more cells 2.

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

The Inner Planets. Chapter 3 Lesson 1. Pages Workbook pages 51-52

The Inner Planets. Chapter 3 Lesson 1. Pages Workbook pages 51-52 The Inner Planets Chapter 3 Lesson 1 Pages 152-159 Workbook pages 51-52 Create the Foldable on pg 159 The solar The planets system The four inner planets Compare and Contrast Question What are planets?

More information

The Scope of Earth Science

The Scope of Earth Science Earth science Earth Science The Scope of Earth Science The field of Earth Science can be broken into four major areas of specialization: astronomy, meteorology, geology, and oceanography. 1. Astronomy

More information

D) outer core B) 1300 C A) rigid mantle A) 2000 C B) density, temperature, and pressure increase D) stiffer mantle C) outer core

D) outer core B) 1300 C A) rigid mantle A) 2000 C B) density, temperature, and pressure increase D) stiffer mantle C) outer core 1. In which area of Earth's interior is the pressure most likely to be 2.5 million atmospheres? A) asthenosphere B) stiffer mantle C) inner core D) outer core Base your answers to questions 2 and 3 on

More information

2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune

2. Which of the following planets has exactly two moons? A) Venus B) Mercury C) Uranus D) Mars E) Neptune Summer 2015 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

GEOLOGY FOR MINING ENGINEERS. Prof.Dr.Kadir DİRİK Lecture Notes 2015

GEOLOGY FOR MINING ENGINEERS. Prof.Dr.Kadir DİRİK Lecture Notes 2015 GEOLOGY FOR MINING ENGINEERS Prof.Dr.Kadir DİRİK Lecture Notes 2015 THE SCIENCE OF GEOLOGY GEOLOGY is the study of the Earth, including the materials that it is made of, the physical and chemical changes

More information

The History of the Solar System. From cloud to Sun, planets, and smaller bodies

The History of the Solar System. From cloud to Sun, planets, and smaller bodies The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of

More information

TODAY S FOCUS LAYERS OF THE EARTH

TODAY S FOCUS LAYERS OF THE EARTH TODAY S FOCUS LAYERS OF THE EARTH 8.6C investigate and describe applications of Newton s law of inertia, law of force and acceleration, and law of action-reaction such as in vehicle restraints, sports

More information

The Big Bang Theory (page 854)

The Big Bang Theory (page 854) Name Class Date Space Homework Packet Homework #1 Hubble s Law (pages 852 853) 1. How can astronomers use the Doppler effect? 2. The shift in the light of a galaxy toward the red wavelengths is called

More information

Chapter 2 Geography. Getting to know Earth

Chapter 2 Geography. Getting to know Earth Chapter 2 Geography Getting to know Earth Our Solar System Sun is at the center of our solar system Contains a lot of Mass» Mass gives the Sun gravitational pull» This keeps the planets in our solar system

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy Have you ever wondered what is out there in space besides Earth? As you see the stars and moon, many questions come up with the universe, possibility of living on another planet

More information

EARTH S HISTORY. What is Geology? logy: science. Geology is the scientific study of the Earth, including its:

EARTH S HISTORY. What is Geology? logy: science. Geology is the scientific study of the Earth, including its: EARTH S HISTORY 1 What is Geology? Geo: earth logy: science Geology is the scientific study of the Earth, including its: composition, structure, and physical properties. 2 1 Geologists study: the origin

More information

Unit 1: The Earth in the Universe

Unit 1: The Earth in the Universe Unit 1: The Earth in the Universe 1. The Universe 1.1. First ideas about the Universe 1.2. Components and origin 1.3. Sizes and distances 2. The Solar System 3. The planet Earth 3.1. Movements of the Earth

More information

The Planets, Asteroids, Moons, etc.

The Planets, Asteroids, Moons, etc. DATE DUE: Ms. Terry J. Boroughs Geology 305 Name: Section: The Planets, Asteroids, Moons, etc. Instructions: Read each question carefully before selecting the BEST answer or option. Use GEOLOGIC vocabulary

More information

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.5 Analyze the methods used to develop a scientific explanation as seen in different fields of science. SC.8.E.5.3 Distinguish the hierarchical relationships between planets

More information

Comparative Planetology I: Our Solar System

Comparative Planetology I: Our Solar System Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

More information

Physical Oceanography

Physical Oceanography Physical Oceanography SECTION 15.1 The Oceans In your textbook, read about modern oceanography. For each item in Column A, write the letter of the matching item in Column B. e b c d a Column A 1. German

More information

Earth as Planet. Earth s s Magnetic Field. The Earth s s Crust. Earth s s Interior

Earth as Planet. Earth s s Magnetic Field. The Earth s s Crust. Earth s s Interior Earth as Planet Earth s s Interior The Earth is a medium size planet with a diameter of 12,756 kilometers (7926 miles) Composed primarily of iron, silicon, and oxygen Nearly circular orbit and just the

More information

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa

3. The moon with the most substantial atmosphere in the Solar System is A) Iapetus B) Io C) Titan D) Triton E) Europa Spring 2013 Astronomy - Test 2 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

1. What is Earth Science? 2. Scientific Method 3. Measurements in Science 4. Communicating in Science

1. What is Earth Science? 2. Scientific Method 3. Measurements in Science 4. Communicating in Science 1. What is Earth Science? 2. Scientific Method 3. Measurements in Science 4. Communicating in Science Earth Scienceis the scientific study of Earth and the universe around it. Branches of Earth Science:

More information

EARTH AND UNIVERSE. Earth

EARTH AND UNIVERSE. Earth EARTH AND UNIVERSE Earth Earth is the third planet from the Sun and the only object in the Universe known to harbor life. According to radiometric dating and other sources of evidence, Earth formed over

More information

Astro 1010 Planetary Astronomy Sample Questions for Exam 4

Astro 1010 Planetary Astronomy Sample Questions for Exam 4 Astro 1010 Planetary Astronomy Sample Questions for Exam 4 Chapter 8 1. Which of the following processes is not important in shaping the surface of terrestrial planets? a) Impact cratering b) Tectonism

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

5. How did Copernicus s model solve the problem of some planets moving backwards?

5. How did Copernicus s model solve the problem of some planets moving backwards? MODELS OF THE SOLAR SYSTEM Reading Guide: Chapter 27.2 (read text pages 691-694) 1k. Recognize the cumulative nature of scientific evidence. 1n. Know that when an observation does not agree with an accepted

More information

FCAT Review Space Science

FCAT Review Space Science FCAT Review Space Science The Law of Universal Gravitation The law of universal gravitation states that ALL matter in the universe attracts each other. Gravity is greatly impacted by both mass and distance

More information

1. The geosphere consists of three major layers: the,, and.

1. The geosphere consists of three major layers: the,, and. 1. The geosphere consists of three major layers: the,, and. rust, mantle, core crust, core, mantle mantle, crust, core mantle, core, crust core, crust, mantle core, mantle, crust 2. The is the zone inhabited

More information

Invention of microscopes and telescopes expanded understanding of the Earth revealing new things

Invention of microscopes and telescopes expanded understanding of the Earth revealing new things Miss Loulousis Began with careful observation Scientists in China began keeping records of earthquakes as early as 780BCE Maya tracked movements of the sun, moon, and planets Created calendars from observations

More information

http://eps.mcgill.ca/~courses/c220/ Nucleosynthesis neutron electron + proton = é + H + t 1/2 = 12 minutes H + + neutron Deuterium (D) 2 H + + neutrons Helium (He) 3 H + + neutrons Lithium (Li) From: W.S.

More information

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc. Review Clickers The Cosmic Perspective Seventh Edition Jovian Planet Systems If Jupiter was the size of a basketball, Earth would be the size of a(n) a) bacterium. b) grain of rice. c) marble. d) orange.

More information

Earth Systems Overview

Earth Systems Overview Earth Systems Overview The Earth is a system consisting of four major interacting components known as spheres: the atmosphere, the biosphere, the hydrosphere, the cryosphere, and the geosphere Let s examine

More information

Making a Solar System

Making a Solar System Making a Solar System Learning Objectives! What are our Solar System s broad features? Where are asteroids, comets and each type of planet? Where is most of the mass? In what direction do planets orbit

More information

Evolution of the Solar System

Evolution of the Solar System DATE DUE: Name: Ms. Terry J. Boroughs Geology 305 Section: Evolution of the Solar System Instructions: Read each question carefully before selecting the BEST answer or option. Use GEOLOGIC vocabulary where

More information

Accretionary Disk Model

Accretionary Disk Model Accretionary Disk Model SOLAR NEBULAR THEORY a large cloud of gas began eventually forming the Sun at its center while the outer, cooler, parts created the planets. SOLAR NEBULA A cloud of gasses and

More information

Name Class Date. Write the letter that best answers the question or completes the statement on the line provided.

Name Class Date. Write the letter that best answers the question or completes the statement on the line provided. Chapter 1 Introduction to Earth Science Chapter Study Guide Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following is

More information

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 What Objects Are Part of the Solar System? Copyright Houghton Mifflin Harcourt Publishing Company Unit 2 Lesson 1 What Objects Are Part of the Solar System? Florida Benchmarks SC.5.E.5.2 Recognize the major common characteristics of all planets and compare/contrast the properties of inner and outer

More information

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

The Nature of Science

The Nature of Science Chapter 1 Earth Science Lesson 1 The Nature of Science Main idea: Earth science encompasses five areas of study: astronomy, meteorology, geology oceanography, and environmental science. Earth has four

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

Lecture Outlines PowerPoint. Chapter 1 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 1 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 1 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Use models to describe the sun s place in space in relation to the Milky Way Galaxy and the distribution of galaxy clusters in the universe.

Use models to describe the sun s place in space in relation to the Milky Way Galaxy and the distribution of galaxy clusters in the universe. The Milky Way Galaxy consists of more than two hundred billion stars, the sun being one of them, and is one of hundreds of billions of galaxies in the known universe. s of the formation and structure of

More information

Grades 9-12: Earth Sciences

Grades 9-12: Earth Sciences Grades 9-12: Earth Sciences Earth Sciences...1 Earth s Place in the Universe...1 Dynamic Earth Processes...2 Energy in the Earth System...2 Biogeochemical cycles...4 Structure and Composition of the Atmosphere...4

More information

Outline 9: Origin of the Earth: solids, liquids, and gases

Outline 9: Origin of the Earth: solids, liquids, and gases Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

(4) Meteorites: Remnants of Creation

(4) Meteorites: Remnants of Creation (4) Meteorites: Remnants of Creation Meteoroid: small piece of debris in space Meteor: space debris heated by friction as it plunges into the Earth s atmosphere Meteorite: Space debris that has reached

More information

Our Planet Earth. Earth Systems

Our Planet Earth. Earth Systems Our Planet Earth Earth Systems What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or

More information

Physical Oceanography

Physical Oceanography Physical Oceanography SECTION 15.1 The Oceans In your textbook, read about modern oceanography. For each item in Column A, write the letter of the matching item in Column B. Column A 1. German research

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

National Science Standards Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8

National Science Standards Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unifying Concepts and Processes Geology Geologic Changes The Dynamic Earth Water and Water Systems National Science Standards Systems, order, and organization Evidence, models, and explanation Change,

More information

Section 1: The Geosphere

Section 1: The Geosphere Section 1: The Geosphere Preview Classroom Catalyst Objectives The Earth as a System Discovering Earth s Interior The Composition of the Earth The Structure of the Earth Plate Tectonics Section 1: The

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

The Dynamic Earth Section 1. Chapter 3 The Dynamic Earth Section 1: The Geosphere DAY 1

The Dynamic Earth Section 1. Chapter 3 The Dynamic Earth Section 1: The Geosphere DAY 1 Chapter 3 The Dynamic Earth Section 1: The Geosphere DAY 1 The Earth as a System The Earth is an integrated system that consists of rock, air, water, and living things that all interact with each other.

More information

Q1. Scientists study the atmosphere on planets and moons in the Solar System to understand how the Earth s atmosphere has changed.

Q1. Scientists study the atmosphere on planets and moons in the Solar System to understand how the Earth s atmosphere has changed. Q. Scientists study the atmosphere on planets and moons in the Solar System to understand how the Earth s atmosphere has changed. (a) Millions of years ago the Earth s atmosphere was probably just like

More information

Chapter 19 The Origin of the Solar System

Chapter 19 The Origin of the Solar System Chapter 19 The Origin of the Solar System Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing closely to the the sun tore material out of the sun, from which planets could

More information

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour Name Test Date Hour Astronomy#3 - Notebook The Solar System LEARNING TARGETS I can describe the objects that make up our solar system. I can identify the inner and outer planets. I can explain the difference

More information

Introduction to Earth Science SCIENTIFIC MEASUREMENTS AND GRAPHING

Introduction to Earth Science SCIENTIFIC MEASUREMENTS AND GRAPHING EARTH SCIENCE Introduction to Earth Science SCIENTIFIC MEASUREMENTS AND GRAPHING Volume of Regular, Rectangular Objects (a box) Volume of Irregularly Shaped Objects (rocks) Common Instrument Mass Distance

More information

The Official CA State Science Education Standards for Earth Science K 8

The Official CA State Science Education Standards for Earth Science K 8 The Official CA State Science Education Standards for Earth Science K 8 Kindergarten The Earth is composed of land, air and water. As a basis for understanding this concept, students know: a. characteristics

More information

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher -Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher Formation Overview All explanations as to how the solar system was formed are only

More information

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System

Chapter 8 Lecture. The Cosmic Perspective Seventh Edition. Formation of the Solar System Chapter 8 Lecture The Cosmic Perspective Seventh Edition Formation of the Solar System Formation of the Solar System 8.1 The Search for Origins Our goals for learning: Develop a theory of solar system

More information

Unit 4: Formation of the Earth

Unit 4: Formation of the Earth Unit 4: Formation of the Earth Objectives: E2.2A - Describe the Earth s principal sources of internal and external energy (e.g.,radioactive decay, gravity, solar energy). E3.2A - Describe the interior

More information

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides Earth Interior Crust Hydrosphere Atmosphere Magnetosphere Tides Semi-major Axis 1 A.U. Inclination 0 Orbital period 1.000 tropical year Orbital eccentricity 0.017 Rotational period 23 h 56 min 4.1 s Tilt

More information

Salt Water. Copyright 2012 LessonSnips

Salt Water. Copyright 2012 LessonSnips Salt Water Humans need salt in their diet to achieve stable body chemistry. As Americans who frequently eat in fast food restaurants, our problem is ingesting more salt than needed rather than getting

More information

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System

Chapter Outline. Earth and Other Planets. The Formation of the Solar System. Clue #1: Planetary Orbits. Clues to the Origin of the Solar System Chapter Outline Earth and Other Planets The Formation of the Solar System Exploring the Solar System Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)

More information

Lesson 3 THE SOLAR SYSTEM

Lesson 3 THE SOLAR SYSTEM Lesson 3 THE SOLAR SYSTEM THE NATURE OF THE SUN At the center of our solar system is the Sun which is a typical medium sized star. Composed mainly of Hydrogen (73% by mass), 23% helium and the rest is

More information

The Earth System. The Geosphere

The Earth System. The Geosphere The Earth System The Geosphere Key Concepts How do materials in the geosphere differ? Why does the geosphere have a layered structure? What do you think? Read the three statements below and decide whether

More information

2011 Pearson Education, Inc. 1

2011 Pearson Education, Inc. 1 1 An Introduction to Geology Earth, 10e - Chapter 1 Stan Hatfield Southwestern Illinois College 3 The Science of Geology Geology is the science that pursues an understanding of planet Earth. Physical geology

More information

The Solar System consists of

The Solar System consists of The Universe The Milky Way Galaxy, one of billions of other galaxies in the universe, contains about 400 billion stars and countless other objects. Why is it called the Milky Way? Welcome to your Solar

More information

Introduction to Earth Science

Introduction to Earth Science Introduction to Earth Science Overview of Earth Science Encompasses all sciences that seek to understand Earth Earth's neighbors in space Overview of Earth Science Earth science includes 1. geology, the

More information

Distance of Mercury to the Sun or the Orbital Radius

Distance of Mercury to the Sun or the Orbital Radius Distance of Mercury to the Sun or the Orbital Radius The minimum distance from the Sun to Mercury is about 45866304 kilometers and the maximum distance is about 70006464 kilometers. Space Station One Day

More information

Planet Earth. Our Home APOD

Planet Earth. Our Home APOD Planet Earth Our Home APOD 1 Earth a highly evolved planet = altered dramatically since formation, due to flow of energy from interior to surface 2 Planet Earth Facts diameter (equator) 12,756 km radius

More information

Lesson 2 The Inner Planets

Lesson 2 The Inner Planets Lesson 2 Student Labs and Activities Page Launch Lab 25 Content Vocabulary 26 Lesson Outline 27 MiniLab 29 Content Practice A 30 Content Practice B 31 School to Home 32 Key Concept Builders 33 Enrichment

More information

Terrestrial Planets: The Earth as a Planet

Terrestrial Planets: The Earth as a Planet Terrestrial Planets: The Earth as a Planet In today s class, we want to look at those characteristics of the Earth that are also important in our understanding of the other terrestrial planets. This is

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

2011 Pearson Education, Inc. 1

2011 Pearson Education, Inc. 1 1 Earth: An Introduction to Physical Geology, 10e Tarbuck & Lutgens An Introduction to Geology Earth, 10e - Chapter 1 Stan Hatfield Southwestern Illinois College 4 The Science of Geology Geology is the

More information

Unit 12 Lesson 1 What Objects Are Part of the Solar System?

Unit 12 Lesson 1 What Objects Are Part of the Solar System? Unit 12 Lesson 1 What Objects Are Part of the Solar System? The Solar System Earth, other planets, and the moon are part of a solar system. A solar system is made up of a star and the planets and other

More information

The Solar System. Name Test Date Hour

The Solar System. Name Test Date Hour Name Test Date Hour Astronomy#3 - Notebook The Solar System LEARNING TARGETS I can describe the objects that make up our solar system. I can identify the inner and outer planets. I can explain the difference

More information

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years

Radioactive Dating. U238>Pb206. Halflife: Oldest earth rocks. Meteors and Moon rocks. 4.5 billion years billion years U238>Pb206 Halflife: 4.5 billion years Oldest earth rocks 3.96 billion years Meteors and Moon rocks 4.6 billion years This is the time they solidified The solar system is older than this. Radioactive Dating

More information