Stratigraphic Cross-Section

Size: px
Start display at page:

Download "Stratigraphic Cross-Section"

Transcription

1 Stratigraphic cross-sections are used to show stratigraphic relationships of strata along some path. They differ from structural cross-sections in three ways. First, their goals differ. Stratigraphic cross-sections are meant to convey the depositional relationships of the units, as close to the time of deposition as possible. Structural crosssections are meant to portray present-day structural relationships, such as faults and folds. Second, they differ in their datum, the horizontal surface on which the columns are hung. Stratigraphic cross-sections use some surface thought to represent a moment in time as a datum. In contrast, structural cross-sections use present-day elevation as a datum. Because stratigraphic cross-sections use a surface that approximates a time line as a datum, rocks of equal age lie approximately along a horizontal line. This approximation weakens with distance from a datum, such that time lines far from a datum may be substantially inclined. Common surfaces used as a stratigraphic datum include volcanic ash beds (bentonites) and other event beds, as well as some types of disconformities, such as flooding surfaces, which are recognized as sharp contacts at which deeper water facies abruptly overlie shallower water facies. Third, most stratigraphic cross-sections have a substantial amount of vertical exaggeration because this allows detailed stratigraphic relationships to be seen over great distances. Structural cross-sections avoid vertical exaggeration, because it distorts structural relationships, such as perception of dip. Strike lines and dip lines To interpret a stratigraphic cross-section, it is essential to understand the orientation of the line of the cross-section at the time of deposition. On a dip line, the path of the cross-section is more or less parallel to depositional dip; that is, the cross-section passes from relatively landward at one end to relatively seaward at the opposite end. Dip lines are often the most useful in that they portray the greatest amount of regional variation in the stratigraphy. A strike line is nearly parallel to depositional strike, that is, parallel to the regional depositional coastline. Strike lines often display the least amount of stratigraphic variation laterally, because all points along the cross-section were at essentially the same water depth. Strike lines can be useful for displaying along-shore facies variations, such as transitions from deltas to strand plains. Strike lines are especially useful for detecting incised valleys, because the along-shore variations in the amount of erosion can be quite pronounced. An oblique line is any line that contains substantial components of both along-coast and across-coast facies variation. If possible, oblique lines should be avoided in favor of cross-sections that isolate facies variations along depositional strike and depositional dip. Sedimentary Geology

2 Types of contacts Three types of contacts can be found on a stratigraphic cross-section, and it is important to distinguish these in a key, as they are critical to the interpretation of the stratigraphic relationships. Sharp contacts represent abrupt contacts of unrelated facies, typically representing surfaces that separate facies that are not joined by Walther s Law. One of the most common types of sharp contact is a flooding surface, a sharp surface across which deeper-water facies abruptly overlie shallower-water facies. Sharp contacts may have local erosion, but generally do not display substantial erosional relief, that is laterally varying depths of erosion. Sharp contacts are typically drawn with a solid, straight line. Facies contacts are contacts between two facies joined through Walther s Law. Facies descriptions will commonly report such contacts by describing them as gradational. For example, if Facies 1 is described as passing gradationally upwards into Facies 2, then such a contact should be treated as a facies contact conforming to Walther s Law. Facies contacts are commonly drawn with a zig-zag line, often called a shazam line. Erosional contacts are contacts where a strongly erosional surface separates an overlying and underlying facies. Facies descriptions are often the best clue that the base of a par ticular surface is erosional. Erosional contacts are usually drawn with a wavy line. Sedimentary Geology 2

3 Presentation Stratigraphic cross-sections are presented in many different ways. One common approach (shown above) is to show each stratigraphic column as a narrow vertical strip, with contacts correlated between these strip. The advantage of this approach is that it emphasizes the data, that is, the succession of rocks observed in each exposure. The disadvantage is that the columns are much narrower in reality than the horizontal scale would suggest. This style is also difficult to display when there are many stratigraphic columns, unless the cross-section is made substantially wider. Note in the example below the features that should be in all cross-sections: a key to facies and surfaces, graphical vertical and horizontal scales, compass directions at the ends of the cross-section that describe its orientation, and the labeled direction of depositional dip (if the cross-section is a dip line). Another approach is to portray the individual columns as vertical lines, which has the advantage of not exaggerating their width (shown below). Color is used in this cross-section, and color is generally far better for portraying stratigraphic relationships than black and white symbols. Again, notice in this example the key, the labeling of column names across the top, horizontal and vertical graphical scales, and compass directions at the ends of the cross-sections. Sedimentary Geology 3

4 Common correlation examples Correlation is done by connecting equivalent contacts in adjacent columns, or by inferring those contacts between adjacent columns. It is important to remember that correlation is a tracing of contacts between facies, not the tracing of the facies themselves. Several common scenarios typically arise: (1) In many cases, the same contact between facies is found at roughly the same stratigraphic position in adjacent columns. In most cases, correlating that contact will be the correct correlation. (2) In some cases, a sharp contact will be found in adjacent columns at roughly the same position, but the facies above (or below) that contact will differ in the two columns. A good starting point in this case is to correlate the sharp contact, and draw a facies contact between the two columns with different facies such that the facies contact intersects the sharp contact between the columns. In other words, one of the facies is said to pinch out between the columns. The pinch-out should not be drawn exactly at one of the columns, but should be made somewhere between the two columns. Sedimentary Geology 4

5 (3) Erosional contacts can strongly truncate underlying strata. If a series of strata in one column are at roughly the same elevation as strata overlying an erosional surface in an adjacent column, contacts from the first column should be extended roughly horizontal ly, where they can be truncated by the erosional surface. (4) Sometimes, a thin stratigraphic unit may be present in one column but not the adjacent column at the same position. It is possible that the unit is actually present in all columns, but simply overlooked in some columns. In that case, the contacts should be extended with dashed lines through the columns where the unit is absent. It is also possible that the unit pinches out between the columns and the contacts can be drawn this way. Sedimentary Geology 5

6 Correlation guidelines Because the datum is chosen at a surface that approximates a time line, other such time lines ought to be relatively flat. For example, sharp contacts and facies contacts should be relatively flat. For reasons we will discuss later, sharp contacts may dip slightly seaward, but they should not dip landwards or steeply seawards. Shallow-water facies should pinch out downdip and deeper-water facies should pinch out updip. This requires knowing your facies and first establishing whether the cross-section is a strike line or a dip line, and if it is a dip line, which way is landward and which way is seaward. The pinch-out of a facies should always be indicated between two columns, never immediately at or adjacent to a column, because it is unlikely that a facies would pinch out immediately next to where a column was measured. Correlation is a prediction of what is present between two columns. Be sure that what you predict is both possible and likely in a geological sense. This will require you to think about your units as depositional environments, not just bodies of rock. To avoid this trap, be sure to label your rock units with the name of the depositional environment that they represent and not with some arbitrary label like Facies A. Procedure The first step in constructing a cross-section is to build the framework. Begin by drawing a long horizontal line that will represent your datum. Next, start at one end and add tick marks to this datum that correspond to the scaled distances between the vertical columns. For each column, draw a vertical line perpendicular to the datum, and mark off properly scaled ticks that correspond to the thicknesses of the stratigraphic units. Adjacent to each interval, lightly label the facies name in pencil. The next step is correlating the stratigraphic contacts between the exposures. This is the hardest part, and it will require substantial thought and geological intuition. Contacts should be drawn according to whether they are sharp, facies, or erosional. Draw your contacts in pencil, as you will rethink and revise your correlations. To make revisions easier, many people photocopy their finished framework and work out their correlations in pencil on the photocopy, so that it is easy to erase any false starts. When you are satisfied with your cross-section, ink it in and erase any pencil lines or labels. Finally, color your facies. Add a key for the facies and a key for contact types. Add labels above the columns. Add compass labels to the ends of the cross-section; these should be from opposite ends of a compass, such as northwest and southeast. Add a graphical vertical scale and horizontal scale, with ticks in even increments. Add numerical scales next to your graphical scales, such as 1 cm = 5 km. If the cross-section is a dip line, write the words Depositional Dip at the top, with an arrow pointing in the downdip direction. Sedimentary Geology 6

7 What to do In this lab, you will construct a regional cross-section based on the facies descriptions presented in the environmental interpretation lab last week, and the thicknesses of those facies listed below. Vertical scale: 1 centimeter = 5 meters. Horizontal scale: 1 centimeter = 250 meters. Your cross-section should be neatly and professionally done. Although you can use computer drawing programs like Illustrator, I strongly recommend doing this lab by hand unless you are already proficient with these programs. Lines should be neatly drawn; in particular, do not make your facies contacts too exaggerated. Lines and text should be inked neatly in black, and the lettering should be neatly done. When coloring your facies, you will get the best results if you color lightly and in one direction with good colored pencils. Indicate on the top of the page whether this a strike line or a dip line, and if it is a dip line, indicate which direction is seaward. When you are finished, make a photocopy of your cross-section. Turn in the original, and keep the photocopy - you will need it for the next lab exercise. The data Listed below are the five measured columns that lie along the cross-section. The distance of each column from the first column is listed after its name. Below this, each line indicates the thickness of a facies given in the previous lab, and the descriptions are given in the order that they were measured. In other words, the first line corresponds to the lowest unit, the second line is the next highest unit, and so on. Make sure that you do not get your sections upside-down! Use the lowest contact of facies FH2 on FS2 as the datum. Column 1, southwest end of cross-section 7.6 meters of FS2 2.2 meters of FH2 2.5 meters of M 1.6 meters of FH2 2.5 meters of M 0.6 meters of FC 8.9 meters of M Sedimentary Geology 7

8 4.1 meters of FM 2.2 meters of FH2 4.4 meters of FM 3.8 meters of FH2 3.2 meters of FM 3.8 meters of FH2 2.5 meters of FS1 1.9 meters of FH1 8.6 meters of FM Column 2, 1.6 km northeast of Column meters of FS2 2.9 meters of FH2 1.3 meters of FM 1.3 meters of FH meters of FM 5.4 meters of FM 1.9 meters of FH2 4.4 meters of FM 2.9 meters of FH2 1.9 meters of FS meters of FH1 3.8 meters of FM Column 3, 3.6 km northeast of Column meters of FS2 2.9 meters of FH2 1.9 meters of FM 1.6 meters of FH2 3.2 meters of FM Sedimentary Geology 8

9 0.3 meters of FC 6.3 meters of FM 4.8 meters of FM 2.9 meters of FH2 7.9 meters of FS meters of FH meters of FM Column 4, 4.5 km northeast of Column meters of FS2 2.2 meters of FH2 2.2 meters of FM 1.0 meters of FH2 9.5 meters of FM 4.1 meters of FM 2.2 meters of FH2 3.5 meters of FM 4.4 meters of FH2 3.5 meters of FM 2.5 meters of FH2 6.0 meters of FH1 7.6 meters of FM Column 5, 5.8 km northeast of Column meters of FS2 2.2 meters of FH2 1.3 meters of FM 3.5 meters of FM Sedimentary Geology 9

10 0.3 meters of FC 6.0 meters of FM 4.1 meters of FM 1.6 meters of FH2 3.2 meters of FM 4.8 meters of FH2 4.1 meters of FM 2.9 meters of FH2 3.5 meters of FS1 1.9 meters of FH2 1.0 meters of FS1. The top of this unit is strongly stained red and has sparse carbonate nodules 5.1 meters of FM Sedimentary Geology 10

A. Refer to Appendix F in back of lab manual for list of commonly used geologic map symbols

A. Refer to Appendix F in back of lab manual for list of commonly used geologic map symbols Structural Geology Lab 2: Outcrop Patterns and Structure Contours I. Geologic Map Symbols A. Refer to Appendix F in back of lab manual for list of commonly used geologic map symbols 1. Emphasis: a. strike

More information

Geology 101 Lab Worksheet: Geologic Structures

Geology 101 Lab Worksheet: Geologic Structures Name: Geology 101 Lab Worksheet: Geologic Structures Refer to the Geologic Structures Lab for the information you need to complete this worksheet (http://commons.wvc.edu/rdawes/g101ocl/labs/structurelab.html).

More information

Geology Stratigraphic Correlations (Lab #4, Winter 2010)

Geology Stratigraphic Correlations (Lab #4, Winter 2010) Name: Answers Reg. lab day: Tu W Th Geology 1023 Stratigraphic Correlations (Lab #4, Winter 2010) Introduction Stratigraphic correlation is the process of comparing rocks at one locality with related rocks

More information

LAB 1: ORIENTATION OF LINES AND PLANES

LAB 1: ORIENTATION OF LINES AND PLANES LAB 1: ORIENTATION OF LINES AND PLANES Read the introductory section, chapter 1, pages 1-3, of the manual by Rowland et al (2007) and make sure you understand the concepts of bearing, strike, dip, trend,

More information

EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations

EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations Name: EPS 50 Lab 6: Maps Topography, geologic structures and relative age determinations Introduction: Maps are some of the most interesting and informative printed documents available. We are familiar

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials I. Properties of Earth Materials GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps Name When rocks are subjected to differential stress the resulting build-up in strain can

More information

MAPS AND CROSS SECTIONS (I)

MAPS AND CROSS SECTIONS (I) GG303 Lab 3 8/27/09 1 MAPS AND CROSS SECTIONS (I) I Main Topics A Three point problems B Rule of vees C Map interpretation and cross sections II Three point problems (see handout) A Three points define

More information

GEOL 02: Historical Geology Lab 14: Topographic Maps. Name: Date:

GEOL 02: Historical Geology Lab 14: Topographic Maps. Name: Date: GEOL 02: Historical Geology Lab 14: Topographic Maps Name: Date: A topographic map is a two dimensional (flat) representation (model) of a three dimensional land surface (landscape). It shows landforms

More information

Part I. PRELAB SECTION To be completed before labs starts:

Part I. PRELAB SECTION To be completed before labs starts: Student Name: Physical Geology 101 Laboratory #13 Structural Geology II Drawing and Analyzing Folds and Faults Grade: Introduction & Purpose: Structural geology is the study of how geologic rock units

More information

Dip-Sequence Analysis

Dip-Sequence Analysis Chapter 9 Dip-Sequence Analysis 9.1 Introduction The three-dimensional geometry of a structure can be determined from the bedding attitudes measured in a single well bore or on a traverse through a structure.

More information

In this lab, we will study and analyze geologic maps from a few regions, including the Grand Canyon, western Wyoming, and coastal California.

In this lab, we will study and analyze geologic maps from a few regions, including the Grand Canyon, western Wyoming, and coastal California. Name: Lab Section: work in groups, but each person turns in his/her own GEOSCIENCE 001 LAB UNDERSTANDING GEOLOGIC MAPS Geologic maps are colorful and even beautiful, but they also contain an amazing amount

More information

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS This set of labs will focus on the structures that result from deformation in earth s crust, namely folds and faults. By the end of these labs you should be able

More information

GEOL 3700 STRUCTURE AND TECTONICS LABORATORY EXERCISE 3

GEOL 3700 STRUCTURE AND TECTONICS LABORATORY EXERCISE 3 GEOL 3700 STRUCTURE AND TECTONICS LABORATORY EXERCISE 3 Goals: 1. Improve your map-reading and map-making skills. 2. Learn to generate and interpret structure contour maps. 3. Learn to generate and interpret

More information

Geology Wilson Computer lab Pitfalls II

Geology Wilson Computer lab Pitfalls II Geology 554 - Wilson Computer lab Pitfalls II Today we ll explore a subtle pitfall that can have significant influence on the interpretation of both simple and complex structures alike (see example 10

More information

UNCONFORMITY. Commonly four types of unconformities are distinguished by geologists: a) Disconformity (Parallel Unconformity)

UNCONFORMITY. Commonly four types of unconformities are distinguished by geologists: a) Disconformity (Parallel Unconformity) UNCONFORMITY Unconformities are gaps in the geologic record that may indicate episodes of crustal deformation, erosion, and sea level variations. They are a feature of stratified rocks, and are therefore

More information

Stratigraphy. Stratigraphy deals with the study of any layered (stratified) rock, but primarily with sedimentary rocks and their

Stratigraphy. Stratigraphy deals with the study of any layered (stratified) rock, but primarily with sedimentary rocks and their Stratigraphy Stratigraphy deals with the study of any layered (stratified) rock, but primarily with sedimentary rocks and their composition origin age relationships geographic extent Stratified Sedimentary

More information

Geol 755: Basin Analysis Geophysics Week 4.5. Seismic Stratigraphy Basics. Seismic Sequence Analysis. Seismic Sequence Analysis

Geol 755: Basin Analysis Geophysics Week 4.5. Seismic Stratigraphy Basics. Seismic Sequence Analysis. Seismic Sequence Analysis Geol 755: Basin Analysis Geophysics Week 4.5 John N. Louie, Presenter Seismic Stratigraphy Basics Reflector Terminations Sequence Boundary Identification Procedure Example Objective: Define the genetic

More information

Field Exercise Handout ERTH 480 & 483

Field Exercise Handout ERTH 480 & 483 Field Exercise Handout ERTH 480 & 483 General This handout is intended to provide you with some of the basic information that you will use in the next few weeks. The following pages contain suggestions

More information

UNDERSTANDING GEOLOGIC M APS

UNDERSTANDING GEOLOGIC M APS Name: Lab Section: work in groups, but each person turns in his/her own GEOSCIENCE 001 L AB UNDERSTANDING GEOLOGIC M APS Geologic maps are colorful and even beautiful, but they also contain an amazing

More information

Structural Geology Lab. The Objectives are to gain experience

Structural Geology Lab. The Objectives are to gain experience Geology 2 Structural Geology Lab The Objectives are to gain experience 1. Drawing cross sections from information given on geologic maps. 2. Recognizing folds and naming their parts on stereoscopic air

More information

6. 地質圖 6.1 岩層於地形圖上的分布 6.2 地質剖面圖 6.3 地質圖判識 地調所五萬分之一地質圖台中圖幅

6. 地質圖 6.1 岩層於地形圖上的分布 6.2 地質剖面圖 6.3 地質圖判識 地調所五萬分之一地質圖台中圖幅 6. 地質圖 6.1 岩層於地形圖上的分布 6.2 地質剖面圖 6.3 地質圖判識 A geological shows how geological features (rock units, faults, etc.) are distributed across a region. It is a twodimensional representation of part of the Earth

More information

GG303 Lab 5 10/4/17 1

GG303 Lab 5 10/4/17 1 GG303 Lab 5 10/4/17 1 Lab 5 Spherical Projections Use a separate piece of paper for each exercise, and include printouts of your Matlab work. 103 pts for Ex. 1-4; 124 points for Ex. 1-5. Exercise 1: Plots

More information

Structural Geology, GEOL 330 Fold mapping lab: Even folds get parasites Spring, 2012

Structural Geology, GEOL 330 Fold mapping lab: Even folds get parasites Spring, 2012 Structural Geology, GEOL 330 Name: Fold mapping lab: Even folds get parasites Spring, 2012 This exercise is meant to mimic a field experience in which you, the student, will measure beddingcleavage relationships

More information

Paleocurrents. Why measure paleocurrent directions? Features that give paleocurrent directions. Correction to paleocurrent measurements

Paleocurrents. Why measure paleocurrent directions? Features that give paleocurrent directions. Correction to paleocurrent measurements Why measure paleocurrent directions? Paleocurrent measurements can provide valuable information on ancient flow conditions, which can often shed light on paleogeography. For example, paleocurrent data

More information

Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode

Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode K. S. Krishna National Institute of Oceanography, Dona Paula, Goa-403 004. krishna@nio.org Seismic

More information

DATA REPOSITORY MATERIAL: PALEOCHANNEL GROUP MAPPING DESCRIPTIONS

DATA REPOSITORY MATERIAL: PALEOCHANNEL GROUP MAPPING DESCRIPTIONS Data Repository item 2695 DATA REPOSITORY MATERIAL: PALEOCHANNEL GROUP MAPPING DESCRIPTIONS Groups 1 (North Myrtle Beach) and 2 (Atlantic Beach) Channel Groups 1 (North Myrtle Beach) and 2 (Atlantic Beach)

More information

Lab 6: Plate tectonics, structural geology and geologic maps

Lab 6: Plate tectonics, structural geology and geologic maps Geology 103 Name(s): Lab 6: Plate tectonics, structural geology and geologic maps Objective: To show the effects of plate tectonics on a large-scale set of rocks and to reconstruct the geological history

More information

Biostratigraphic and Lithostratigraphic Correlation of Sedimentary Strata in the Atlantic Coastal Plain

Biostratigraphic and Lithostratigraphic Correlation of Sedimentary Strata in the Atlantic Coastal Plain Biostratigraphic and Lithostratigraphic Correlation of Sedimentary Strata in the Atlantic Coastal Plain Introduction to the Atlantic Coastal Plain (Please read this page prior to doing the lab) The Atlantic

More information

EOSC 110 Reading Week Activity, February Visible Geology: Building structural geology skills by exploring 3D models online

EOSC 110 Reading Week Activity, February Visible Geology: Building structural geology skills by exploring 3D models online EOSC 110 Reading Week Activity, February 2015. Visible Geology: Building structural geology skills by exploring 3D models online Geological maps show where rocks of different ages occur on the Earth s

More information

Chapter 8: Geological Structures. Part 1: Strike, Dip, and Structural Cross-Sections

Chapter 8: Geological Structures. Part 1: Strike, Dip, and Structural Cross-Sections Chapter 8: Geological Structures Part 1: Strike, Dip, and Structural Cross-Sections Adapted by Karla Panchuk, Joyce M. McBeth, Lyndsay R. Hauber, & Michael B. Cuggy (2018) University of Saskatchewan from

More information

Topographic Maps and Landforms Geology Lab

Topographic Maps and Landforms Geology Lab Topographic Maps and Landforms Geology Lab Ray Rector: Instructor Today s Lab Activities 1) Discussion of Last Week s Lab 2) Lecture on Topo Maps and Elevation Contours 3) Construct Topographic Maps and

More information

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS APPENDIX C GEOLOGICAL CHANCE OF SUCCESS Page 2 The Geological Chance of Success is intended to evaluate the probability that a functioning petroleum system is in place for each prospective reservoir. The

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

A.M. TUESDAY, 12 May hours

A.M. TUESDAY, 12 May hours Candidate Name Centre Number 2 Candidate Number GCE AS/A level 1212/01 New AS GEOLOGY - GL2a Investigative Geology A.M. TUESDAY, 12 May 2009 1 1 2 hours For Examiner s Use Only ADDITIONAL MATERIALS In

More information

Geologic Mapping Regional Tournament Trial Event

Geologic Mapping Regional Tournament Trial Event Geologic Mapping Regional Tournament Trial Event A TEAM OF UP TO: 2 Team Name AVAILABLE TIME: 50 min Required Materials: Each team MUST have a protractor, ruler, non-programmable calculator, colored pencils,

More information

Distortion Effects of Faults on Gravity Worm Strings Robin O Leary

Distortion Effects of Faults on Gravity Worm Strings Robin O Leary Distortion Effects of Faults on Gravity Worm Strings Robin O Leary Problem Can upward continued gravity anomaly worm strings be used as a tool to determine the dip direction of an offsetting structure

More information

GEOL 02 Lab 9 Field Trip III Centerville Stratigraphic Section Name: Date:

GEOL 02 Lab 9 Field Trip III Centerville Stratigraphic Section Name: Date: Name: Date: Team Name: Team Members: Our goal today is to describe the sedimentary lithostratigraphic section of exposed bedrock along the road near Centerville Beach, interpret the depositional environment,

More information

Field Trip to Tempe Butte

Field Trip to Tempe Butte Synopsis Field Trip to Tempe Butte So far you have been identifying rocks and mapping their locations without actually going there. Now it is your chance to put it all together and see real rocks out in

More information

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 7. Reading the Geologic History of Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 3 Minerals, Rocks, and Structures Section 7 Reading the Geologic History of Your Community What Do You See? Learning Outcomes In this section, you will Goals Text Learning Outcomes In this section,

More information

Elevations are in meters above mean sea level. Scale 1:2000

Elevations are in meters above mean sea level. Scale 1:2000 12.001 LAB 7: TOPOGRAPHIC MAPS Due: Monday, April 11 PART I: CONTOURING AND PROFILES (20 PTS) 1. Contour this area map using a 5 meter contour interval. Remember some fundamental rules of contour lines,

More information

GEOLOGIC MAPS PART II

GEOLOGIC MAPS PART II EARTH AND ENVIRONMENT THROUGH TIME LABORATORY - EES 1005 LABORATORY FIVE GEOLOGIC MAPS PART II Introduction Geologic maps of orogenic belts are much more complex than maps of the stable interior. Just

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting.

GLY 155 Introduction to Physical Geology, W. Altermann. Press & Siever, compressive forces. Compressive forces cause folding and faulting. Press & Siever, 1995 compressive forces Compressive forces cause folding and faulting. faults 1 Uplift is followed by erosion, which creates new horizontal surface. lava flows Volcanic eruptions cover

More information

Lower Skinner Valley Fill Sandstones: Attractive Exploration Targets on the Northeast Oklahoma Platform*

Lower Skinner Valley Fill Sandstones: Attractive Exploration Targets on the Northeast Oklahoma Platform* Lower Skinner Valley Fill Sandstones: Attractive Exploration Targets on the Northeast Oklahoma Platform* By Jim Puckette 1 Search and Discovery Article #10050 (2003) *Adapted from presentation to Tulsa

More information

Core Description, Stratigraphic Correlation, and Mapping of Pennsylvanian Strata in the Appalachians

Core Description, Stratigraphic Correlation, and Mapping of Pennsylvanian Strata in the Appalachians Core Description, Stratigraphic Correlation, and Mapping of Pennsylvanian Strata in the Appalachians The remaining laboratory sessions for the semester will be collected into a series of exercises designed

More information

Structural Analysis of Rocks and Regions 2017 Maps and cross-sections

Structural Analysis of Rocks and Regions 2017 Maps and cross-sections Structural Analysis of Rocks and Regions 2017 Maps and cross-sections The practicals in SARR will introduce you to (or remind you of) the tools and skills that are typically used to reconstruct and quantify

More information

OCEAN/ESS 410. Lab 12. Earthquake Focal Mechanisms. You can write your answers to all be (e) on this paper.

OCEAN/ESS 410. Lab 12. Earthquake Focal Mechanisms. You can write your answers to all be (e) on this paper. Lab 1. Earthquake Focal Mechanisms You can write your answers to all be (e) on this paper. In this class we are going to use P-wave first motions to obtain a double-couple focal mechanism for a subduction

More information

Blocks Module Content Guide

Blocks Module Content Guide Blocks Module Content Guide This guide covers the basics of the content within the Interactive 3D Geologic Blocks Module. The content guide is intended to assist you, the teacher, in creating effective

More information

Subsurface Mapping 1 TYPES OF SUBSURFACE MAPS:- 1.1 Structural Maps and Sections: -

Subsurface Mapping 1 TYPES OF SUBSURFACE MAPS:- 1.1 Structural Maps and Sections: - Subsurface Mapping The purpose of subsurface mapping in the geology of petroleum Is to find traps that contain oil and gas pools and the information obtained from wells forms the heart of the data upon

More information

Geology 101 Lab Worksheet: Geologic Time

Geology 101 Lab Worksheet: Geologic Time Geology 101 Lab Worksheet: Geologic Time Name: Refer to the Geologic Time Lab for the information you need to complete this worksheet (http://commons.wvc.edu/rdawes/g101ocl/labs/geotimelab.html). All calculations

More information

Accommodation. Tectonics (local to regional) Subsidence Uplift

Accommodation. Tectonics (local to regional) Subsidence Uplift Accommodation Accommodation varies over time; it is the distance between a reference horizon and the sea surface (i.e. relative sea level). The space to be filled in with sediments or water What are the

More information

N30 E-45 SE S25 E-10 SW N85 W-80 NE

N30 E-45 SE S25 E-10 SW N85 W-80 NE Geologic aps and tructures Name Geology 100 Harbor section Read h. 7 before you begin. The objectives of this lab are for you to learn the basic geologic structures in 3- and to develop some facility in

More information

Earth Science 11: Geologic Time Unit

Earth Science 11: Geologic Time Unit Earth Science 11: Geologic Time Unit Text: Chapters 8 Lab: Exercise 6 Name Earth Science 11: Geologic Time Page 1 Geology 12: Geologic Time 8.1: The Geologic Time Scale Today, we know that Earth is approximately

More information

Notes and Summary pages:

Notes and Summary pages: Topographic Mapping 8.9C Interpret topographical maps and satellite views to identify land and erosional features and predict how these shapes may be reshaped by weathering ATL Skills: Communication taking

More information

Geological mapwork from scratch 2: valley with simple geology Draw your own cross sections and 3D geological model

Geological mapwork from scratch 2: valley with simple geology Draw your own cross sections and 3D geological model Geological mapwork scratch 2: valley with simple geology Draw your own cross sections and 3D geological model A valley with a stream looks like this: Modified the Geograph project collection. Copyright

More information

Relative Dating Exercises

Relative Dating Exercises Laboratory 1 Relative Dating Exercises Pamela J. W. Gore Department of Geology, Georgia Perimeter College Clarkston, GA 30021 Copyright 1998-2005 Pamela J. W. Gore Examine the geologic cross sections which

More information

Viking Lowstand Deposits in West Central Saskatchewan: Depositional Model for the Reservoir Units in Dodsland-Hoosier Area, Saskatchewan, Canada

Viking Lowstand Deposits in West Central Saskatchewan: Depositional Model for the Reservoir Units in Dodsland-Hoosier Area, Saskatchewan, Canada Viking Lowstand Deposits in West Central Saskatchewan: Depositional Model for the Reservoir Units in Dodsland-Hoosier Area, Saskatchewan, Canada Hasan Ferdous* PetroSed Geoconsulting Resources, Calgary,

More information

Landforms and Rock Structure

Landforms and Rock Structure Landforms and Rock Structure Rock Structure as a Landform Control Landforms of Horizontal Strata and Coastal Plains Landforms of Warped Rock Layers Landforms Developed on Other Land-Mass Types Landforms

More information

depression above scarp scarp

depression above scarp scarp 1 LAB 1: FIELD TRIP TO McKINLEYVILLE AND MOUTH OF THE MAD RIVER OBJECTIVES: a. to look at geomorphic and geologic evidence for large scale thrust-faulting of young sediments in the Humboldt Bay region

More information

Lecture Outline Friday March 2 thru Wednesday March 7, 2018

Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Lecture Outline Friday March 2 thru Wednesday March 7, 2018 Questions? Lecture Exam Friday March 9, 2018 Same time, Same room Bring Pencils and WSU ID 50 question Multiple Choice, Computer Graded Interlude

More information

GEOLOGY 435 FIELD EXERCISE 2, SPRING SKETCHING, DESCRIBING, AND MAPPING EXPOSURES OBJECTIVES:

GEOLOGY 435 FIELD EXERCISE 2, SPRING SKETCHING, DESCRIBING, AND MAPPING EXPOSURES OBJECTIVES: OBJECTIVES: GEOLOGY 435 FIELD EXERCISE 2, SPRING 2016 -- SKETCHING, DESCRIBING, AND MAPPING EXPOSURES To develop and refine your field skills in: 1. observation and rock and sediment description 2. sketching

More information

EN5302. US ARMY ENGINEER SCHOOL CARTOGRAPHY II Grid Construction, Plotting and Projection Graticules

EN5302. US ARMY ENGINEER SCHOOL CARTOGRAPHY II Grid Construction, Plotting and Projection Graticules SUBCOURSE EN5302 EDITION 6 US ARMY ENGINEER SCHOOL CARTOGRAPHY II Grid Construction, Plotting and Projection Graticules TABLE OF CONTENTS PAGE INTRODUCTION... iii GRADING AND CERTIFICATION INSTRUCTIONS...

More information

Geologic Mapping Invitational Trial Event

Geologic Mapping Invitational Trial Event Geologic Mapping Invitational Trial Event A TEAM OF UP TO: 2 Team Name AVAILABLE TIME: 50 min Required Materials: Each team MUST have a protractor, ruler, non-programmable calculator, colored pencils,

More information

Ge Problem Set 1

Ge Problem Set 1 Ge 101 2012 Problem Set 1 This problem set covers basic techniques in structural geology, geomorphology and the construction of cross sections. Questions 2 and 3 are simple exercises; 1 and 4 are reallife

More information

Lab 4: Structures and Geologic Maps

Lab 4: Structures and Geologic Maps Key Questions: GEOL 1311 Earth Science Lab 4 Structures and Geologic Maps What shapes do rock bodies take in the Earth? How do two-dimensional visualizations of the Earth, such as maps and cross-sections

More information

GY 112L Earth History

GY 112L Earth History GY 112L Earth History Lab 2 Vertical Successions and Sequences of Events GY 112L Instructors: Douglas Haywick, James Connors, Mary Anne Connors Department of Earth Sciences, University of South Alabama

More information

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis)

Staple this part to part one of lab 6 and turn in. Lab 6, part two: Structural geology (analysis) Geology 101 Staple this part to part one of lab 6 and turn in Lab 6, part two: Structural geology (analysis) Recall that the objective of this lab is to describe the geologic structures of Cougar Mountain

More information

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Page - 1 Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Section A Overview of Lands with Dry Climates The definition of a dry climate is tied to an understanding of the hydrologic cycle

More information

GEOLOGY 470 FIELD EXERCISE 3, SPRING SKETCHING, DESCRIBING, AND MAPPING EXPOSURES

GEOLOGY 470 FIELD EXERCISE 3, SPRING SKETCHING, DESCRIBING, AND MAPPING EXPOSURES GEOLOGY 470 FIELD EXERCISE 3, SPRING 2009 -- SKETCHING, DESCRIBING, AND MAPPING EXPOSURES 1 OBJECTIVES: To develop and refine your field skills in: 1. observation and rock and sediment description 2. sketching

More information

Team Name. Name(s) SSSS Unome Geologic Mapping Test Packet p1

Team Name. Name(s) SSSS Unome Geologic Mapping Test Packet p1 Scioly Summer Study Session 2018-2019 Geologic Mapping Test Packet Written by Unome Instructions 1) This test is based on the 2016 rules for Geologic Mapping. 2) This test is out of 115 points. Questions

More information

NAME: GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test.

NAME: GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test. GEL 109 Final Study Guide - Winter 2008 Questions 6-24 WILL be on the final exactly as written here; this is 60% of the test. 1. Sketch a map view of three types of deltas showing the differences in river,

More information

These maps make the idea of elevations and contours more tangible follow any of the brown-line contours; they should form a level path.

These maps make the idea of elevations and contours more tangible follow any of the brown-line contours; they should form a level path. Geology 101 Name(s): Lab 1: Maps and geologic time Note: On all labs, you may work in small groups. You may turn in one lab for all of the group members; make sure that everyone who should get credit is

More information

PLEASE DO NOT WRITE ON THIS QUIZ! Relative Dating and Stratigraphic Principles Quiz

PLEASE DO NOT WRITE ON THIS QUIZ! Relative Dating and Stratigraphic Principles Quiz PLEASE DO NOT WRITE ON THIS QUIZ! Relative Dating and Stratigraphic Principles Quiz TEST NO A Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

More information

Depositional Sequences Sequences

Depositional Sequences Sequences Depositional Sequences Transgressive and Regressive packages can be bound by unconformities Because sediment can only be preserved during net aggradation and progradation All other times there is either

More information

Geological mapwork: using surface geology to make a geological map Match the photos to a map to see how a geological map works

Geological mapwork: using surface geology to make a geological map Match the photos to a map to see how a geological map works eological mapwork: using surface geology to make a geological map Match the photos to a map to see how a geological map works For each of the photographs: 1. Draw straight lines to link each photograph

More information

GEOL 10: Environmental Geology Activity 9: Topographic Maps and Mt. St. Helens. Name: Date:

GEOL 10: Environmental Geology Activity 9: Topographic Maps and Mt. St. Helens. Name: Date: GEOL 10: Environmental Geology Activity 9: Topographic Maps and Mt. St. Helens Name: Date: A topographic map is a two dimensional (flat) representation (model) of a three dimensional land surface (landscape).

More information

Page 1 of 9 Name: Base your answer to the question on the diagram below. The arrows show the direction in which sediment is being transported along the shoreline. A barrier beach has formed, creating a

More information

EAS 233 Geologic Structures and Maps Winter Miscellaneous practice map exercises. 1. Fault and separation:

EAS 233 Geologic Structures and Maps Winter Miscellaneous practice map exercises. 1. Fault and separation: Miscellaneous practice map exercises 1. Fault and separation: With respect to Map 1, what are (a) the orientation of the fault, and (b) the orientation of bedding in the units cut by the fault. (c) Mark

More information

Geological Mapping C Answer Key

Geological Mapping C Answer Key Northern Regional: January 19 th, 2019 Geological Mapping C Answer Key Name(s): Team Name: School Name: Team Number: Rank: Score: UF GEOMAP KEY Multiple Choice- Select All: 1. A, B, C 2. A, E 3. B, D 4.

More information

Unconformities are depositional contacts that overlie rocks distinctly older than they are. They are often called gaps in the sedimentary record.

Unconformities are depositional contacts that overlie rocks distinctly older than they are. They are often called gaps in the sedimentary record. UNCONFORMITIES Unconformities are depositional contacts that overlie rocks distinctly older than they are. They are often called gaps in the sedimentary record. The contact represents time when no sediment

More information

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information.

Use a highlighter to mark the most important parts, or the parts. you want to remember in the background information. P a g e 1 Name A Fault Model Purpose: To explore the types of faults and how they affect the geosphere Background Information: A fault is an area of stress in the earth where broken rocks slide past each

More information

INTRODUCTION TO STRATIGRAPHY

INTRODUCTION TO STRATIGRAPHY EPSC 240: GEOLOGY IN THE FIELD INTRODUCTION TO STRATIGRAPHY with material from: Huan Cui (UMD) McGill University Earth and Planetary Sciences/Earth System Sciences ANNOUNCEMENT: First year field trip September

More information

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives Chapter 3 Models of the Earth 3.1 Finding Locations on the Earth 3.1 Objectives Explain latitude and longitude. How can latitude and longitude be used to find locations on Earth? How can a magnetic compass

More information

Seismic interpretation. Principles of seismic stratigraphic interpretation

Seismic interpretation. Principles of seismic stratigraphic interpretation Seismic interpretation Principles of seismic stratigraphic interpretation Seismic interpretation Seismic stratigraphy is a technical for interpreting stratigraphic information from seismic data. The resolution

More information

Abstract. Introduction. Regional Setting. GCSSEPM to be published December 2003

Abstract. Introduction. Regional Setting. GCSSEPM to be published December 2003 Shelf Margin Deltas and Associated Deepwater Deposits: Implications on Reservoir Distribution and Hydrocarbon Entrapment, Block VI-1, Ulleung Basin, East Sea, South Korea Sneider, John S. Sneider Exploration,

More information

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change

More information

Delineation of tectonic features offshore Trinidad using 3-D seismic coherence

Delineation of tectonic features offshore Trinidad using 3-D seismic coherence CORNER INTERPRETER S Coordinated by llen ertagne Delineation of tectonic features offshore Trinidad using 3-D seismic coherence DM GERSZTENKORN, Tulsa, Oklahoma, U.S. JOHN SHRP, P moco, Houston, Texas,

More information

STAAR Science Tutorial 40 TEK 8.9C: Topographic Maps & Erosional Landforms

STAAR Science Tutorial 40 TEK 8.9C: Topographic Maps & Erosional Landforms Name: Teacher: Pd. Date: STAAR Science Tutorial 40 TEK 8.9C: Topographic Maps & Erosional Landforms TEK 8.9C: Interpret topographic maps and satellite views to identify land and erosional features and

More information

Seismic lab exercises

Seismic lab exercises Seismic lab exercises SEISMIC LAB 1st Exercise This type of analysis involves taking either seismic or geologic cross-sections and building a chronostratigraphic chart. Chronostratigraphic charts, also

More information

Continental Landscapes

Continental Landscapes Continental Landscapes Landscape influenced by tectonics, climate & differential weathering Most landforms developed within the last 2 million years System moves toward an equilibrium Continental Landscapes

More information

1. How many unconformities exist in each column? Note that it is not the same number, necessarily, for each column!

1. How many unconformities exist in each column? Note that it is not the same number, necessarily, for each column! Geology 103 Name(s): Lab 5: Sequence stratigraphy Introduction: In the previous lab, you were able to illustrate Walther s Law by showing how transgressive rock sequences mirrored the offshore facies sequence.

More information

Topographic Maps Lab 1

Topographic Maps Lab 1 Topographic Maps Lab 1 I. Objectives 1. Construct a material model of typical terrain found in a landscape. 2. Construct a topographic map corresponding to the terrain model. 3. Learn how to interpret

More information

Springshed Springshed Management Training Curriculum

Springshed Springshed Management Training Curriculum Springshed Springshed Management Training Curriculum Management Training Curriculum Draft Version 2 January 2016 The Springs Initiative 2016 The Springs Initiative SESSION TITLE: Section Mapping SECTION:

More information

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar Fold: A fold is a bend or wrinkle of rock layers or foliation; folds form as a sequence of ductile deformation. Folding is the processes by which crustal forces deform an area of crust so that layers of

More information

Using Map and Compass Together

Using Map and Compass Together Using Map and Compass Together In situations where you foresee a potential evacuation on foot, where there are no roads, and no indication as to the direction of travel (i.e., road signs), it is recommended

More information

STRUCTURAL GEOLOGY LABORATORY

STRUCTURAL GEOLOGY LABORATORY Structural Geology Lab 1 STRUCTURAL GEOLOGY LABORATORY INTRODUCTION Geologists have named the structures found on the earth: flat lying strata, anticlines, synclines, faults. These can be exposed by a

More information

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018)

Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018) Electric Field Mapping (approx. 2 h 15 min.) (8/8/2018) Equipment shallow glass pan pitcher for water masking tape graph paper (8.5 x14 ) colored pencils metal shapes sand paper paper towels DC power supply

More information

LAND NAVIGATION 2-1. DEFINITION

LAND NAVIGATION 2-1. DEFINITION LAND NAVIGATION MAPS Cartography is the art and science of expressing the known physical features of the earth graphically by maps and charts. No one knows who drew, molded, laced together, or scratched

More information

8. GEOLOGIC TIME LAST NAME (ALL IN CAPS): FIRST NAME: Instructions

8. GEOLOGIC TIME LAST NAME (ALL IN CAPS): FIRST NAME: Instructions LAST NAME (ALL IN CAPS): FIRST NAME: Instructions 8. GEOLOGIC TIME Refer to Exercise 6 in your Lab Manual on pages 151-168 to answer the questions in this work sheet. Your work will be graded on the basis

More information

Quick Look Interpretation Techniques

Quick Look Interpretation Techniques Quick Look Interpretation Techniques Odd Number of Contours A basic rule of contouring is that ALL contours on a continuous surface must close or end at the edge of the map. This rule seems so obvious

More information