INVSP gathers of local earthquake seismograms: an approach for modelling the upper crustal P and S velocity structure

Size: px
Start display at page:

Download "INVSP gathers of local earthquake seismograms: an approach for modelling the upper crustal P and S velocity structure"

Transcription

1 Geophys. J. Int. (2006) 166, doi: /j X x FAST TRACK PAPER INVSP gathers of local earthquake seismograms: an approach for modelling the upper crustal P and S velocity structure V. G. Krishna Scientist, /2, West Marredpally, Secunderabad , India. v gopalak@yahoo.com Accepted 2006 March 15. Received 2006 March 5; in original form 2005 January 3 SUMMARY A new approach is presented here for obtaining INVSP gathers of local earthquake seismograms in regions with adequate seismogenic depth range. The inverse vertical seismic profiling (INVSP) geometry is in principle quite similar to the up-hole surveys of shallow seismic exploration in which shots fired at various depths in boreholes are recorded on the surface at a fixed offset. Similarly, local earthquake seismograms of selected events at different hypocentral depths can be gathered into Constant offset INVSP sections for various stations of a mobile seismograph network. They can be modelled for P and S velocity structure to upper crustal depths at each of the stations in the network with the aid of synthetic seismogram computations using appropriate source mechanisms of the earthquakes used. An INVSP gather, obtained to a depth range of about 10 km at a station with 28 km constant offset, is modelled for the upper crustal P and S velocity structure in the Koyna-Warna seismic region in the western Indian shield to demonstrate this approach. GJI Seismology 1 INTRODUCTION Mobile seismograph networks in seismogenic regions provide a significantly large database of local earthquake seismograms. Record sections, similar to those obtained in seismic refraction profiling, are assembled for an average source depth (Krishna et al. 1999; Krishna, in preparation, 2006a,b) using the seismograms of earthquakes of nearly equal source depths (varying within their error limits) and similar source mechanisms (e.g. strike-slip or normal) and recorded at seismograph stations in a narrow azimuth range (varying within degrees). Specifically, the regions with adequate seismogenic depth range potentially offer a further possibility to obtain the local earthquake seismogram gathers in the inverse vertical seismic profiling (INVSP) geometry. These INVSP gathers especially illuminating the upper crustal structures, possibly to depths beyond the seismogenic depth range, are in principle quite similar to those acquired in up-hole surveys by shooting in boreholes at various depths and recording on the surface (Galperin 1985). Thus seismograms of a number of earthquakes of similar source mechanisms, with considerable depth range extending into the upper crust, all recorded by the same seismograph station lying within a narrow azimuth range from various epicentres and at nearly equal epicentral distances (varying within 3 4 km), can be assembled into a constant (or an average) offset INVSP gather for each recording site (Fig. 1a). Key words: INVSP gathers, Koyna-Warna seismic region, local earthquake seismograms, mobile seismograph networks, synthetic seismograms, upper crustal P and S velocities. Stroujkova & Malin (2000) assembled the seismograms from the Long Valley caldera in California for a few stations of the seismograph network in the region in the INVSP geometry (the authors refer as VSP), in a limited depth range of km. They modelled the arrival times and moveouts of the phases in the INVSPs by ray tracing. Traveltime and synthetic seismogram modelling of the INVSP gathers as presented here over a larger depth range of 2 10 km, reveal the P and S wave velocity structure of the upper crust beneath various stations of the mobile seismograph network. The INVSP technique is proposed here as a new tool for exploring the upper crustal structures using the local earthquake seismograms and illustrated in the Koyna-Warna seismic region of the Deccan volcanic province (DVP) in the western Indian shield. The INVSP record sections are modelled with the aid of reflectivity synthetic seismograms as shown in the following by refining the P and S velocity models as well as the source mechanisms of the selected earthquakes. 2 EXPERIMENT AND THE DATA SET A state-of-the-art digital seismograph network of 20 stations was deployed during to provide a reliable database for studying the Earth s structure and the earthquake processes in the Koyna region (Rai et al. 1999). Local, regional, and teleseismic events were recorded by 24-bit REFTEK/PASSCAL recorders equipped 148 C 2006 The Author

2 INVSP gathers of local earthquake seismograms 149 Figure 1. (a) Schematic diagram showing a stratified upper crustal model and the Constant offset INVSP geometry. Seismograms of local earthquakes at various hypocentral depths (thick dots) as recorded by a common seismograph station (thick downward arrow) at nearly equal epicentral distances are gathered and displayed at their depths (see Fig. 3). Ray paths of the upgoing (dashed) direct wave (pi or si, for a source in the ith layer), and the downgoing (continuous) primary reflections (pipj or sisj, for a source in the ith layer and a reflection on the jth interface) are shown (only a few ray codes are illustrated by labelling; p2, p2p4, p4p4). A number of other phases including conversions and various multiples are also possible as described in the text. Interfaces 1 4 are in between the upper crustal layers, and the interface T is the base of the Deccan Traps. Note that the reflected phases from sources at varying depths sample each interface at different points thus extending the subsurface coverage. (b) Ray paths of the phases pipfpj or sisfsj (see Table 2) for a source in the second layer (i = 2) and reflection on the free surface (f) followed by a reflection on the interface 1 (j = 1) and reaching the free surface. (c) Ray paths of the phases pipjpfpt or sisjsfst (see Table 2) for a source in the second layer (i = 2) and reflection on the interface 1 (j = 1) followed by a reflection within the first layer of the Deccan Traps (i.e. reflection on the free surface and the interface T) before terminating on the free surface. with three-component short-period sensors and GPS timing system. Fig. 2 shows some of the well-located earthquake epicentres and the ten seismograph stations in the initial deployment of the network in the Koyna-Warna seismic region. Local earthquakes recorded by at least six stations were used for mapping the seismogenic faults in the region. Statistical analysis of the data set of about 400 local earthquakes by Rai et al. (1999) reveals well-constrained estimates of the epicentral locations and the hypocentral depths for various events in the depth range extending to about 10 km of the seismogenic upper crust. The seismicity pattern in the region delineated by them starts as a single seismic tract in the north trending NE SW, further branching into two distinct zones with NW SE trend in the south (see inset in Fig. 2). The focal mechanisms obtained by Sharma (2000) in the Koyna-Warna seismic region distinctly reveal leftlateral strike-slip faulting in the north rapidly changing to normal faulting in the south. In the present study well-located earthquakes Figure 1. (Continued.) in the region are used with their hypocentral depth errors (ERZ) of 0.2 km. The epicentral data of the selected earthquakes are given in Table 1 for the seismograph station WR. A constant offset of 28 km is considered for obtaining the INVSP gather that is further modelled for the P and S velocity structure beneath the station. 3 THE INVSP GATHERS The significance of the INVSP technique for exploring the upper crustal structures has been realized using local earthquake seismograms, for a range of hypocentral depths extending to about 10 km, acquired at various stations from the seismograph network in the Koyna region. A sufficient number of seismograms with good S/N ratio from well-located earthquakes are available at various stations satisfying the following conditions: (i) the hypocentral depths of the selected earthquakes cover a considerable depth range, to at least 10 km in the upper crust, (ii) the epicentral distances of the station considered from all the earthquakes are nearly equal (varying within 3 4 km), (iii) the station lies in a narrow azimuth range (station azimuths varying within degrees) with respect to the epicentres of all the earthquakes, (iv) the source mechanisms of all the earthquakes considered are similar (e.g. strike-slip or normal), and (v) the earthquakes are of comparable magnitudes. The conditions (ii) (v) ensure viability of the 1-D velocity structures derived from traveltime and amplitude modelling of the INVSP gathers. The traveltime variations, if any, due to differences in 3-D velocity structure, may not be significant. Similarly, significant amplitude variations may not be caused by slight variations in the source parameters and the slightly different, but comparable, magnitudes of the earthquakes selected for the INVSP gathers. Krishna et al. (1999) presented an approach to assemble record sections of local earthquake seismograms at various epicentral

3 150 V. G. Krishna Figure 2. Location map of the Koyna-Warna seismic region showing some of the well-located epicentres and the seismograph stations (station WR seismograms are displayed here) for the INVSP gathers. The inset shows the seismicity pattern in the region. Table 1. Koyna-Warna earthquakes (EQ) data for the seismograms gather in the INVSP geometry. Station WR (Average offset used: 28.0 km). EQ No. Epicentre Station Epicentral Focal Magnitude Strike (deg) Dip (deg) Rake (deg) lat. long. azimuth distance depth ERZ (Mcoda) Initial Final Initial Final Initial Final (deg) (deg) (km) (km) (km) Strike, Dip, and Rake: Initial (after Sharma, 2000) and Final (present study). Note that the final set of source parameters are obtained after refining the P and S velocity models. distances for an average common source depth, the hypocentral depths of various events being nearly equal (varying within their error limits). A similar approach is used to assemble the record sections in the INVSP geometry for an average common offset of a station, using seismograms of local earthquakes of various hypocentral depths, the epicentral distances to the station being nearly equal (varying within 3 4 km). The INVSP geometry is similar to that shown in Fig. 1(a). Ray paths of the prominent upgoing and the downgoing waves, as are designated here, from the earthquake sources at varying depths in the upper crust and recorded by a seismograph station at a constant offset are shown in this figure, and the prominent ray codes considered are explained in Table 2. The upgoing waves essentially include both P and S direct waves, although some converted phases and multiples are possibly present due to interaction at various interfaces along the propagation paths. Similarly, the downgoing waves are dominantly the primary P as well as S reflections from various interfaces. Again the converted phases and a variety of multiples also constitute the downgoing wavefield. The upgoing direct waves from various sources are designated as pi and si, for P and S waves, for the source in the ith layer (see Fig. 1a). A number of such waves from different source depths constitute the P and S upgoing wavefield as shown in the INVSP record section (Fig. 3) displayed as traveltime versus depth. The downgoing reflected waves leaving various sources are designated as pipj and sisj, for P and S waves, for the source in the ith layer and a reflection on the jth interface (see Fig. 1a). Again a number of such waves constitute the downgoing wavefield as shown in the INVSP record section (Fig. 3). Thus Pj, j=1 4 phase is due to various pipj reflections and Sj, j=1 4 phase is due to various sisj reflections. In the present study modelling is focussed on the prominent P and S upgoing waves as well as the primary P and S reflections from various interfaces (Pj and Sj, j=1 4 phases as shown in Fig. 3) in the

4 Table 2. Ray codes recognized and modelled from the INVSP record section. Ray code Ray paths Remarks INVSP gathers of local earthquake seismograms 151 pi upgoing direct P waves from a see Fig. 1(a) for the ray path (dashed line), source in the ith layer, terminating several pi phases constitute the P phase in Fig. 3 on the free surface si same as above for the S waves same as above for the S phase in Fig. 3 pipj downgoing P waves from a source see Fig. 1(a) for the ray path (continuous line), in the ith layer, reflected on the jth several pipj phases constitute the Pj, j=1 4 interface and reaching the free surface phases in Fig. 3 sisj same as above for the S waves same as above for the Sj, j=1 4 phases in Fig. 3 pipfpj upgoing P waves from a source see Fig. 1(b) for the ray path (dotted line), in the ith layer, reflected on the free dotted traveltime curves in the P wave window surface followed by a reflection on in Fig. 3 (in the same order as the Pj, j=1 4 the jth interface and reaching the phases) are constituted by several pipfpj phases the free surface sisfsj same as above for the S waves same as above for the sisfsj phases, dotted travel time curves in the S wave window in Fig. 3 are in the same order as the Sj, j=1 4 phases pipjpfpt downgoing P waves from a source see Fig. 1(c) for the ray path (dashed line), dashed in the ith layer, reflected on the jth traveltime curves in the P wave window interface followed by a free surface in Fig. 3 (in the same order as the Pj, j=1 4 reflection and another reflection at phases) are constituted by several pipjpfpt the base of the Deccan Traps (T) phases before terminating on the free surface sisjsfst same as above for the S waves same as above for the sisjsfstphases, dashed traveltime curves in the S wave window in Fig. 3 are in the same order as the Sj, j=1 4 phases Note that the ray codes given above are by no means exhaustive (although these are the phases modelled here), a large number of other multiples and P-to-S and S-to-P conversions are also possible from potential interfaces in the stratified upper crust. downgoing wavefield. For the purpose of illustration and modelling, only two types of multiples are considered here for both P and S waves: (i) an upgoing direct wave from the source reflected at the free surface followed by reflections at various interfaces, (see Fig. 1b, the phase designated as pipfpj and sisfsj, for P and S waves, for the source in the ith layer and reflection on the jth interface), and (ii) a downgoing wave from the source reflected at an interface and again reflected at the free surface followed by a reflection at the base of the Deccan Traps (interface T) before reaching the recording station (see Fig. 1c, the phase designated as pipjpfpt and sisjsfst, for P and S waves, for the source in the ith layer and reflection on the jth interface). All these ray codes are given in Table 2. Subsequent model computations revealed that at least these two multiples in the later arrivals are significant in constraining the velocity-depth models. In order to assemble the seismogram sections in the INVSP geometry, essentially both the upgoing P and S waves are aligned. A range of P and S velocity models within acceptable limits (of about ±10 per cent) for the upper crustal depths are considered, with the models for the nearby 1993 Latur earthquake region (Krishna et al. 1999) as the starting models. For each set of the P and S velocity models traveltimes are generated for all the source depths being considered for the chosen constant offset INVSP gather. The resulting alignment of onsets of both P and S upgoing waves are examined. Appropriate traveltime corrections are made in order to adjust only for the individual epicentral distance variations of each seismogram with respect to the constant offset chosen for the INVSP gather. Differences, if any, in 3-D velocity structure sampled, are assumed to be insignificant and not considered for the traveltime corrections. This procedure is repeated by perturbing either or both the P and S velocity models until the best possible alignment is achieved (based on visual check) for the upgoing P and S waves. This approach is found to be very successful to assemble constant offset INVSP gathers using local earthquake seismograms as the hypocentral depths of the events considered are quite reliable. The assumption that the hypocentral depths of the well-located events are accurate enough seems reasonable from the INVSP gather obtained and thus no attempt has been made here to revise these depths. Fig. 3 illustrates the INVSP gather thus obtained for the station WR (offset 28.0 km) in the study region using seismograms of local earthquakes in the hypocentral depth range of 2 10 km. It is clearly evident from this INVSP section that the P and S phases (upgoing waves) are well aligned. It can also be seen from this figure that the later arrivals (prominently consisting of the downgoing reflected wavefield both in the P and S windows; Pj and Sj, j=1 4 phases) are also well aligned, which are modelled as shown in the following. 4 MODELLING AND THE RESULTS The INVSP gather of vertical component seismograms are band pass filtered (5 25 Hz as found appropriate) and plotted at the respective hypocentral depths with amplitudes trace normalized (Fig. 3). Traveltime modelling of the P and S phases as well as the later arriving phases Pj and Sj, j=1 4, consistent with the ray geometry in the stratified upper crust shown in Fig. 1(a), yielded preliminary models

5 152 V. G. Krishna Figure 3. INVSP gather of the local earthquake seismograms for the station WR at a common offset of 28.0 km. The seismograms are plotted at their respective hypocentral depths and the amplitudes trace normalized. Computed traveltime curves for various correlated phases are shown as described in the text. The phases P, S, Pj and Sj, j=1 4 are explained in Table 2. The dotted curves for a free surface reflection preceding the full path reflection from an interface (phases pipfpj or sisfsj, see Fig. 1b), and the dashed curves for a reflection within the first layer of the Deccan Traps following reflection from an interface (phases pipjpfpt or sisjsfst, see Fig. 1c), are in the same order as the Pj and the Sj phases. of the P and S velocity structure to the upper crustal depths. A large number of P and S velocity models giving acceptable traveltime fits (based on visual check) are further tested for the relative amplitudes fit by computing reflectivity synthetic seismograms (Kind 1985; Mueller 1985). A double-couple point source with the source-time function of Brustle and Mueller (1983) is used for various computations. The set of source parameters (strike, dip, and rake) given by Sharma (2000) are initially used but further modified as necessary for each of the seismograms in order to achieve a better fit of the relative amplitudes in the synthetics. Thus by a trial and error approach, initially for refining the P and S velocity models and later for refining the source parameters, the synthetic seismogram section shown in Fig. 4 is obtained. The inferred P and S velocity models for the station WR are shown in Fig. 5 along with the starting models (LATUR). The initial and final sets of source parameters of the individual events are listed in Table 1. The reflectivity synthetics, revealing an acceptable fit (based on visual check) to the observed seismograms, are plotted for the station WR similar to the INVSP gather and shown in Fig. 4. It may be seen from the synthetic INVSP gather that in addition to the Pand S phases and the primary reflection phases Pj and Sj, j=1 4, the associated free-surface multiple reflections considered here are also well revealed. In Fig. 3, the dotted line correlations (phases pipfpj and sisfsj) are recognized as due to a free-surface reflection of a direct wave from the source, preceding the full path reflection on Figure 4. Synthetic INVSP gather of the reflectivity seismograms obtained for the station WR at a common offset of 28.0 km. P and S velocity models (shown in Fig. 5) are refined by a trial and error approach, further the source parameters are adjusted to improve the amplitudes fit. The synthetics fit presented here is by a visual check of the relative amplitudes. The seismograms are plotted at the same hypocentral depths and amplitudes are trace normalized. The direct and the later arrivals fit including those represented by the dotted and the dashed traveltime curves seem to be acceptable being consistent with the INVSP section in Fig. 3. an upper crustal interface (ray path as in Fig. 1b), while the dashed line correlations (phases pipjpfpt and sisjsfst) are recognized as due to an additional reflection in the first layer (on the interface T, the base of the Deccan Traps) near the recording station following a full path reflection from an upper crustal interface (ray path as in Fig. 1c). These two phases are also revealed in the synthetic INVSP gather for the station WR shown in Fig. 4. Therefore, it may be reasonable to believe that the synthetics simulate well the prominent phases recognized in the observed seismograms. It is possible that the thickness and the velocity structure of the first layer (Deccan Traps) may be slightly different from the model considered here. This may cause some misfit of the computed traveltimes for the dotted and dashed lines illustrated, although their trends are clearly revealed. Since the available sources are all deeper than 2 km (Table 1), the shallower structure may not be well constrained. 5 DISCUSSION AND CONCLUSIONS The INVSP technique presented here is quite promising and 1-D models of the P and S velocity structure can be obtained at several locations within the seismogenic regions deploying dense mobile seismograph networks. It is clear that narrower ranges in the conditions (ii) (v) given in Section 3 for data selection, develop the resulting INVSP gathers more comparable to those acquired in exploration seismics by up-hole surveys (INverted VSP). Nevertheless, the feasibility of adopting these conditions and constraining

6 INVSP gathers of local earthquake seismograms 153 Figure 5. P and S velocity models for the upper crust beneath the station WR inferred from modelling the INVSP gather. The inferred P velocity model KOYNA I from modelling the seismic wide-angle reflection/refraction data set in the region (Krishna et al. 1989) and the P and S velocity models LATUR (used here as the starting models) in the 1993 Latur earthquake region from modelling the aftershock seismograms (Krishna et al. 1999) are also shown for comparison. reflection/refraction sections. The alternating LVLs inferred in the present study seem to be consistent with a rheological stratification of the crust inferred in this region (Krishna et al. 1989). The similarity of the inferred upper crustal velocity model, with only slight variations, with that of the nearby 1993 Latur earthquake region (Krishna et al. 1999) suggests that these models are applicable in the Koyna-Warna seismic region as well. Further developments of the INVSP technique proposed here may consider this modelling procedure for its possible implementation into an efficient inversion scheme enabling an exhaustive search of the appropriate set of model parameters (velocity and attenuation models, as well as the source parameters) and quantifying goodness of the fits obtained. However, it is beyond the scope of the present communication as it is primarily intended to introduce the INVSP gather as a new approach towards utilizing the large data sets of local earthquake seismograms from mobile seismograph networks and obtaining the upper crustal P and S velocity models. With the availability of high-quality/high-density data sets in the INVSP gathers to upper crustal depths, they may be processed by the standard seismic software packages for the VSP processing of exploration seismics thus leading to reflectivity images of the upper crust. However, in order to apply these processing techniques, the data coverage of the available earthquake hypocentres and the seismograph network density will have to be almost similar to that of the exploration VSP surveys. A large number of the 1-D velocity models obtained by the INVSP gathers at several stations of the seismograph network can further be used with advantage to construct the 3-D velocity images in the region. The INVSP technique may also find similar applications for obtaining the P and S velocity models even to the upper mantle depths in regions with adequate depth distribution of seismicity (e.g. subduction zones and regions of the intracontinental/intraplate seismicity). data selection using the currently available high-quality earthquake data sets from the modern seismograph networks certainly ensures the desirable quality of the resulting INVSP gathers as obtained here. The INVSP technique can be used more effectively with increasing availability of high-quality/high-density local earthquake data sets in the seismogenic regions. The ranges set here to various conditions for data selection may possibly be made narrower and the INVSP gathers may be obtainable for more than one constant offset at each seismograph station as larger data sets are available. The viability of the inferred models can be checked more effectively if the INVSP gathers are available for multiple offsets at each station. The P and S velocity models for the station WR, inferred by traveltime and amplitude modelling of the INVSP gather are shown in Fig. 5. The inferred models are however based on visual check of the traveltime and amplitude fits and they seem to be reasonable for the available data set. These models reveal alternating low-velocity layers (LVLs) in the upper crust at depths of km and km with velocity reduction of 5 6 per cent for P and 7 9 per cent for S waves. A large number of record sections assembled for different average source depths of the local earthquake seismograms in this region, similar to those usually acquired by seismic refraction profiling, to offsets of km also substantiate these velocity models (Krishna, in preparation, 2006b), their interpretation being reserved for a forthcoming communication. The upper crustal LVL in the Koyna region shown in Fig. 5 (model KOYNA I), is well revealed from an earlier modelling of the seismic wide-angle ACKNOWLEDGMENTS The author is thankful to both the anonymous reviewers and Dr Andrew Curtis for their encouraging reviews and constructive suggestions to improve on an earlier version of the manuscript. Prof Dr Friedemann Wenzel of the Geophysical Institute, Univ. Karlsruhe, Germany, contributed by helpful discussions. Dr S. S. Rai of NGRI made available the digital seismograms data of the local earthquakes recorded at the station WR illustrated here. The Director of NGRI accorded approval to publish this research. Computations were made on the VAX-3100 system at NGRI, Hyderabad. REFERENCES Brustle, W. & Mueller, G., Moment and duration of shallow earthquakes from Love wave modeling for regional distances, Phys. Earth planet. Inter., 32, Galperin, E.I., Vertical seismic profiling and its exploration potential, D. Reidel Publ. Co., 442 pp. Kind, R., The reflectivity method for different source and receiver structures and comparison with GRF data, J. Geophys., 58, Krishna, V.G., Kaila, K.L. & Reddy, P.R., Synthetic seismogram modeling of crustal seismic record sections from the Koyna DSS profiles in the western India, in Properties and Processes of Earth s Lower Crust, Am. Geophys. Union, Geophys. Monogr., 51, IUGG, 6, Krishna, V.G., Rao, C.V.R.K., Gupta, H.K., Sarkar, D. & Baumbach, M., Crustal seismic velocity structure in the epicentral region of the

7 154 V. G. Krishna Latur earthquake (September 29, 1993), southern India: inferences from modeling of the aftershock seismograms, Tectonophysics, 304, Mueller, G., The reflectivity method: a tutorial, J. Geophys., 58, Rai, S.S., Singh, S.K., Rajagopal Sarma, P.V.S.S., Sri Nagesh, D., Reddy, K.N.S., Prakasam, K.S. & Satyanarayana, Y., What triggers Koyna region earthquakes? Preliminary results from seismic tomography digital array, Proc. Indian Acad. Sci. (Earth Planet. Sci.), 108, Sharma, J., Focal mechanism studies in Koyna-Warna seismic zone, M.Tech., Dissertation, Krukshetra University, India, 38 pp. Stroujkova, A.F. & Malin, P.E., A magma mass beneath Casa Diablo? Further evidence from reflected seismic waves, Bull. seism. Soc. Am., 90,

Data Repository: Seismic and Geodetic Evidence For Extensive, Long-Lived Fault Damage Zones

Data Repository: Seismic and Geodetic Evidence For Extensive, Long-Lived Fault Damage Zones DR2009082 Data Repository: Seismic and Geodetic Evidence For Extensive, Long-Lived Fault Damage Zones Fault Zone Trapped Wave Data and Methods Fault zone trapped waves observed for 2 shots and 5 local

More information

SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE

SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE SEISMOTECTONIC ANALYSIS OF A COMPLEX FAULT SYSTEM IN ITALY: THE GARFAGNANA-NORTH (NORTHERN TUSCANY) LINE. Eva Claudio 1, Eva Elena 2, Scafidi Davide 1, Solarino Stefano 2, Turino Chiara 1 1 Dipartimento

More information

Teleseismic waveform modelling of the 2008 Leonidio event

Teleseismic waveform modelling of the 2008 Leonidio event The 6 January 2008 (Mw6.2) Leonidio (southern Greece) intermediate depth earthquake: teleseismic body wave modelling Anastasia Kiratzi and Christoforos Benetatos Department of Geophysics, Aristotle University

More information

BROADBAND SEISMIC STUDIES IN SOUTHERN ASIA. Sponsored by Defense Threat Reduction Agency. Contract No. DTRA01-00-C-0028

BROADBAND SEISMIC STUDIES IN SOUTHERN ASIA. Sponsored by Defense Threat Reduction Agency. Contract No. DTRA01-00-C-0028 ABSTRACT BROADBAND SEISMIC STUDIES IN SOUTHERN ASIA Keith Priestley, 1 Vinod K. Gaur, 2 S. S. Rai, 2 Jessie L. Bonner, 3 and James F. Lewkowicz 3 Cambridge University, 1 Center for Mathematical Modeling

More information

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring Bruce R. Julian U. S. Geological Survey, Menlo Park, CA 94025 USA julian@usgs.gov Gillian R. Foulger Dept. Earth

More information

Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges

Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges 2017 SCEC Proposal Report #17133 Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges Principal Investigator Zhongwen Zhan Seismological Laboratory, California

More information

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 24, 2248, doi:10.1029/2003gl018413, 2003 Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies STRUCTURE OF THE KOREAN PENINSULA FROM WAVEFORM TRAVEL-TIME ANALYSIS Roland Gritto 1, Jacob E. Siegel 1, and Winston W. Chan 2 Array Information Technology 1 and Harris Corporation 2 Sponsored by Air Force

More information

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE Paulino C. FEITIO* Supervisors: Nobuo HURUKAWA** MEE07165 Toshiaki YOKOI** ABSTRACT

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

The Solid Earth Chapter 4 Answers to selected questions. (1) Love waves involve transverse motion, generally arrive before Rayleigh waves.

The Solid Earth Chapter 4 Answers to selected questions. (1) Love waves involve transverse motion, generally arrive before Rayleigh waves. The Solid Earth Chapter 4 Answers to selected questions (1) Love waves involve transverse motion, generally arrive before Rayleigh waves. () (a) T = 10 s, v ~4 kms -1, so wavelength is ~40 km. (b) T =

More information

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out 4. Focal Mechanism Solutions A way to investigate source properties of the 2001 sequence is to attempt finding well-constrained focal mechanism solutions to determine if they are consistent with those

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11492 Figure S1 Short-period Seismic Energy Release Pattern Imaged by F-net. (a) Locations of broadband seismograph stations in Japanese F-net used for the 0.5-2.0 Hz P wave back-projection

More information

Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge

Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge GSA Data Repository 176 1 5 6 7 9 1 11 1 SUPPLEMENTARY MATERIAL FOR: Evidence of an axial magma chamber beneath the ultraslow spreading Southwest Indian Ridge Hanchao Jian 1,, Satish C. Singh *, Yongshun

More information

Scattering and intrinsic attenuation structure in Central Anatolia, Turkey using BRTR (PS-43) array

Scattering and intrinsic attenuation structure in Central Anatolia, Turkey using BRTR (PS-43) array Scattering and intrinsic attenuation structure in Central Anatolia, Turkey using BRTR (PS-43) array CTBT: Science & Technology 2011 Korhan Umut SEMIN Nurcan Meral OZEL B.U. Kandilli Observatory & Earthquake

More information

revised October 30, 2001 Carlos Mendoza

revised October 30, 2001 Carlos Mendoza Earthquake Sources in the circum-caribbean Region Puerto Rico Tsunami Mitigation and Warning Program Federal Emergency Management Agency Preliminary Report: Task 3 revised October 30, 2001 Carlos Mendoza

More information

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations

Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations Earth Planets Space,,, Estimation of deep fault geometry of the Nagamachi-Rifu fault from seismic array observations Ayako Nakamura, Youichi Asano, and Akira Hasegawa Research Center for Prediction of

More information

San Jacinto Fault Zone and Sage Brush Flat High Frequency Experiments

San Jacinto Fault Zone and Sage Brush Flat High Frequency Experiments San Jacinto Fault Zone and Sage Brush Flat High Frequency Experiments Frank Vernon! Scripps Institution of Oceanography! University of California, San Diego!! 2015 Udine AUG! 13 March 2015! Southern California

More information

Some aspects of seismic tomography

Some aspects of seismic tomography Some aspects of seismic tomography Peter Shearer IGPP/SIO/U.C. San Diego September 7, 2009 Earthquake Research Institute Part 1: Global Tomography P velocity perturbations 200 km 1000 km 2700 km MIT 2006

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

Velocity contrast along the Calaveras fault from analysis of fault zone head waves generated by repeating earthquakes

Velocity contrast along the Calaveras fault from analysis of fault zone head waves generated by repeating earthquakes Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L01303, doi:10.1029/2007gl031810, 2008 Velocity contrast along the Calaveras fault from analysis of fault zone head waves generated by

More information

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough

We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough We A10 12 Common Reflection Angle Migration Revealing the Complex Deformation Structure beneath Forearc Basin in the Nankai Trough K. Shiraishi* (JAMSTEC), M. Robb (Emerson Paradigm), K. Hosgood (Emerson

More information

Probing Mid-Mantle Heterogeneity Using PKP Coda Waves

Probing Mid-Mantle Heterogeneity Using PKP Coda Waves Probing Mid-Mantle Heterogeneity Using PKP Coda Waves Michael A.H. Hedlin and Peter M. Shearer Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography,

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies TRANSITION ZONE WAVE PROPAGATION: CHARACTERIZING TRAVEL-TIME AND AMPLITUDE INFORMATION Peter M. Shearer and Jesse F. Lawrence University of California San Diego, Institute of Geophysics and Planetary Physics

More information

FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA

FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA FOCAL MECHANISM DETERMINATION OF LOCAL EARTHQUAKES IN MALAY PENINSULA Siti Norbaizura MAT SAID Supervisor: Tatsuhiko HARA MEE10505 ABSTRACT Since November 30, 2007, small local earthquakes have been observed

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1131692/dc1 Supporting Online Material for Localized Temporal Change of the Earth s Inner Core Boundary This PDF file includes: Materials and Methods Figs. S1 to S3

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

High Resolution Imaging of Fault Zone Properties

High Resolution Imaging of Fault Zone Properties Annual Report on 1998-99 Studies, Southern California Earthquake Center High Resolution Imaging of Fault Zone Properties Yehuda Ben-Zion Department of Earth Sciences, University of Southern California

More information

THE SEISMICITY OF THE CAMPANIAN PLAIN: PRELIMINARY RESULTS

THE SEISMICITY OF THE CAMPANIAN PLAIN: PRELIMINARY RESULTS THE SEISMICITY OF THE CAMPANIAN PLAIN: PRELIMINARY RESULTS Girolamo Milano Osservatorio Vesuviano, Via Diocleziano 328, 80124 Napoli milano@osve.unina.it INTRODUCTION In areas affected by active volcanism,

More information

Data Repository Item

Data Repository Item Data Repository Item 2009003 An abrupt transition from magma-starved to magma-rich rifting in the eastern Black Sea Donna J. Shillington, Caroline L. Scott, Timothy A. Minshull, Rosemary A. Edwards, Peter

More information

Seismic Reflection Views of the 1994 Northridge Earthquake Hypocentral Region Using Aftershock Data and Imaging Techniques

Seismic Reflection Views of the 1994 Northridge Earthquake Hypocentral Region Using Aftershock Data and Imaging Techniques Seismic Reflection Views of the 1994 Northridge Earthquake Hypocentral Region Using Aftershock Data and Imaging Techniques SERGIO CHÁVEZ-PÉREZ and JOHN N. LOUIE SEISMOLOGICAL LABORATORY/174, MACKAY SCHOOL

More information

Seismogram Interpretation. Seismogram Interpretation

Seismogram Interpretation. Seismogram Interpretation Travel times in the Earth Ray paths, phases and their name Wavefields in the Earth: SH waves, P-SV waves Seismic Tomography Receiver Functions Seismogram Example Long-period transverse displacement for

More information

Rupture Process of the Great 2004 Sumatra-Andaman Earthquake

Rupture Process of the Great 2004 Sumatra-Andaman Earthquake Rupture Process of the Great 2004 Sumatra-Andaman Earthquake Supporting Online Materials Submitted to Science, March 12, 2005 Charles J. Ammon 1, Ji Chen 2, Hong-Kie Thio 3, David Robinson 5, Sidao Ni

More information

3D VISCO-ELASTIC WAVE PROPAGATION IN THE BORREGO VALLEY, CALIFORNIA

3D VISCO-ELASTIC WAVE PROPAGATION IN THE BORREGO VALLEY, CALIFORNIA 3D VISCO-ELASTIC WAVE PROPAGATION IN THE BORREGO VALLEY, CALIFORNIA Kim B OLSEN 1, Robert L NIGBOR 2 And Takaaki KONNO 3 SUMMARY We have simulated 2-Hz wave propagation in a three-dimensional model of

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ANALYSIS AND SIMULATION OF THREE-DIMENSIONAL SCATTERING DUE TO HETEROGENEOUS CRUSTAL STRUCTURE AND SURFACE TOPOGRAPHY ON REGIONAL PHASES; MAGNITUDE AND DISCRIMINATION Arben Pitarka 1, Don V. Helmberger

More information

Borehole Seismic Monitoring of Injected CO 2 at the Frio Site

Borehole Seismic Monitoring of Injected CO 2 at the Frio Site Borehole Seismic Monitoring of Injected CO 2 at the Frio Site * Daley, T M (tmdaley@lbl.gov), Lawrence Berkeley National Lab., 1 Cyclotron Rd, Berkeley, CA 94720 Myer, L (lrmyer@lbl.gov), Lawrence Berkeley

More information

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER

DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER DEVELOPMENT OF AUTOMATED MOMENT TENSOR SOFTWARE AT THE PROTOTYPE INTERNATIONAL DATA CENTER Douglas Dreger, Barbara Romanowicz, and Jeffry Stevens* Seismological Laboratory 281 McCone Hall University of

More information

Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich

Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich Seminar des FA Ultraschallprüfung Vortrag 1 More info about this article: http://www.ndt.net/?id=20944 Vollständige Inversion seismischer Wellenfelder - Erderkundung im oberflächennahen Bereich Thomas

More information

Teleseismic receiver function using stacking and smoothing of multi seismic-records at a single station

Teleseismic receiver function using stacking and smoothing of multi seismic-records at a single station Earthq Sci (2012)25: 75 81 75 doi:10.1007/s11589-012-0833-7 Teleseismic receiver function using stacking and smoothing of multi seismic-records at a single station Yi Yang and Fuhu Xie Earthquake Administration

More information

Contract F C-0093 Sponsored by ARPA ABSTRACT

Contract F C-0093 Sponsored by ARPA ABSTRACT Path Calibration and Regional Discriminants in North Africa and the Middle East Chandan K. Saikia (PI) and B. B. Woods (Co-PI) Woodward-Clyde Federal Services Pasadena, CA 91101 Contract F19628-95-C-0093

More information

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study

Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Characterization of Induced Seismicity in a Petroleum Reservoir: A Case Study Edmond Sze, M. Nafi Toksöz, and Daniel R. Burns Earth Resources Laboratory Dept. of Earth, Atmospheric and Planetary Sciences

More information

Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima

Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima 1 2 3 Auxiliary materials for Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima nuclear power plant area 4 5 6 7 8 9 Ping Tong 1,2, Dapeng Zhao 1 and Dinghui Yang 2 [1] {Department of Geophysics,

More information

26th Seismic Research Review - Trends in Nuclear Explosion Monitoring

26th Seismic Research Review - Trends in Nuclear Explosion Monitoring GROUND TRUTH EVENTS FROM REGIONAL SEISMIC NETWORKS IN NORTHEASTERN AFRICA Richard A. Brazier 1, Yongcheol Park 1, Andrew A. Nyblade 1, and Michael E. Pasyanos 2 Penn State University 1 and Lawrence Livermore

More information

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results

Earthquake patterns in the Flinders Ranges - Temporary network , preliminary results Earthquake patterns in the Flinders Ranges - Temporary network 2003-2006, preliminary results Objectives David Love 1, Phil Cummins 2, Natalie Balfour 3 1 Primary Industries and Resources South Australia

More information

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies STRUCTURE OF THE KOREAN PENINSULA FROM WAVEFORM TRAVEL-TIME ANALYSIS Roland Gritto 1, Jacob E. Siegel 1, and Winston W. Chan 2 Array Information Technology 1 and Harris Corporation 2 Sponsored by Air Force

More information

Homework II Seismological Topics

Homework II Seismological Topics Revised September 6, 2012 EENS 6340/4340 Homework II Seismological Topics The Earth 1. The relationship between energy released, E, and earthquake magnitude, M, is given by the empirical relationship:

More information

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake K. Sato, K. Asano & T. Iwata Disaster Prevention Research Institute, Kyoto University, Japan

More information

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone IJMS 2017 vol. 4 (2): 49-54 International Journal of Multidisciplinary Studies (IJMS) Volume 4, Issue 2, 2017 DOI: http://doi.org/10.4038/ijms.v4i2.22 Seismic Activity near the Sunda and Andaman Trenches

More information

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge GSA Data Repository Item: 2007183 Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge Brian J. demartin 1*, Robert

More information

Seismic tests at Southern Ute Nation coal fire site

Seismic tests at Southern Ute Nation coal fire site Seismic tests at Southern Ute Nation coal fire site Sjoerd de Ridder and Seth S. Haines ABSTRACT We conducted a near surface seismic test at the Southern Ute Nation coal fire site near Durango, CO. The

More information

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks Earth Planets Space, 99, 1 8, 2011 Centroid moment-tensor analysis of the 2011 Tohoku earthquake and its larger foreshocks and aftershocks Meredith Nettles, Göran Ekström, and Howard C. Koss Lamont-Doherty

More information

ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA

ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA ATTENUATION RELATIONSHIP FOR ESTIMATION OF PEAK GROUND VERTICAL ACCELERATION USING DATA FROM STRONG MOTION ARRAYS IN INDIA Mukat L SHARMA 1 SUMMARY An attenuation relationship for peak vertical ground

More information

volcanic tremor and Low frequency earthquakes at mt. vesuvius M. La Rocca 1, D. Galluzzo 2 1

volcanic tremor and Low frequency earthquakes at mt. vesuvius M. La Rocca 1, D. Galluzzo 2 1 volcanic tremor and Low frequency earthquakes at mt. vesuvius M. La Rocca 1, D. Galluzzo 2 1 Università della Calabria, Cosenza, Italy 2 Istituto Nazionale di Geofisica e Vulcanologia Osservatorio Vesuviano,

More information

FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT THE GEYSERS GEOTHERMAL FIELD

FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT THE GEYSERS GEOTHERMAL FIELD PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 FULL MOMENT TENSOR ANALYSIS USING FIRST MOTION DATA AT

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (014) 198, 1431 1437 GJI Seismology doi: 10.1093/gji/ggu13 Estimation of shear velocity contrast from transmitted P s amplitude variation with ray-parameter

More information

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION Synopses of Master Papers Bulletin of IISEE, 47, 19-24, 2013 SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION Fabricio Moquete Everth* Supervisor:

More information

Tomographic imaging of P wave velocity structure beneath the region around Beijing

Tomographic imaging of P wave velocity structure beneath the region around Beijing 403 Doi: 10.1007/s11589-009-0403-9 Tomographic imaging of P wave velocity structure beneath the region around Beijing Zhifeng Ding Xiaofeng Zhou Yan Wu Guiyin Li and Hong Zhang Institute of Geophysics,

More information

Intrinsic and Scattering Seismic Attenuation in W. Greece

Intrinsic and Scattering Seismic Attenuation in W. Greece Pure appl. geophys. 153 (1998) 703 712 0033 4553/98/040703 10 $ 1.50+0.20/0 Intrinsic and Scattering Seismic Attenuation in W. Greece G-AKIS TSELENTIS 1 Abstract Intrinsic (Q 1 i ) and scattering (Q 1

More information

Walkaway Seismic Experiments: Stewart Gulch, Boise, Idaho

Walkaway Seismic Experiments: Stewart Gulch, Boise, Idaho Walkaway Seismic Experiments: Stewart Gulch, Boise, Idaho Lee M. Liberty Center for Geophysical Investigation of the Shallow Subsurface Boise State University Boise, Idaho 1. Summary CGISS conducted walkaway

More information

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics

Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Effect of an outer-rise earthquake on seismic cycle of large interplate earthquakes estimated from an instability model based on friction mechanics Naoyuki Kato (1) and Tomowo Hirasawa (2) (1) Geological

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies SEISMIC SOURCE AND PATH CALIBRATION IN THE KOREAN PENINSULA, YELLOW SEA, AND NORTHEAST CHINA Robert B. Herrmann 1, Young-Soo Jeon 1, William R. Walter 2, and Michael E. Pasyanos 2 Saint Louis University

More information

Supplementary Figure 1. Distribution of seismic event locations determined using the final 3-D velocity model. We separate the crust-related

Supplementary Figure 1. Distribution of seismic event locations determined using the final 3-D velocity model. We separate the crust-related Supplementary Figure 1. Distribution of seismic event locations determined using the final 3-D velocity model. We separate the crust-related seismicity at depths of less than 40 km (panel A) from the deeper

More information

Absolute strain determination from a calibrated seismic field experiment

Absolute strain determination from a calibrated seismic field experiment Absolute strain determination Absolute strain determination from a calibrated seismic field experiment David W. Eaton, Adam Pidlisecky, Robert J. Ferguson and Kevin W. Hall ABSTRACT The concepts of displacement

More information

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES

FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES FOCAL MECHANISM DETERMINATION USING WAVEFORM DATA FROM A BROADBAND STATION IN THE PHILIPPINES Vilma Castillejos Hernandez Supervisor: Tatsuhiko Hara MEE10508 ABSTRACT We performed time domain moment tensor

More information

Appendix B: Geophysical Data (Thesis Appendix, 2013)

Appendix B: Geophysical Data (Thesis Appendix, 2013) Utah State University From the SelectedWorks of David J Richey 2013 Appendix B: Geophysical Data (Thesis Appendix, 2013) David J Richey, Utah State University Available at: https://works.bepress.com/david_richey/2/

More information

Inversion of travel times to estimate Moho depth in Shillong Plateau and Kinematic implications through stress analysis of Northeastern India

Inversion of travel times to estimate Moho depth in Shillong Plateau and Kinematic implications through stress analysis of Northeastern India Inversion of travel times to estimate Moho depth in Shillong Plateau and Kinematic implications through stress analysis of Northeastern India by Saurabh Baruah Geoscience Division North-East Institute

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS ABSTRACT ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS Don V. Helmberger 1, Jeroen Tromp 1, and Arthur J. Rodgers 2 California Institute of Technology 1 and Lawrence Livermore National Laboratory

More information

Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves

Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L12S06, doi:10.1029/2003gl019044, 2004 Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves Yong-Gang Li Department

More information

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT Shunroku YAMAMOTO SUMMARY Waveform simulations of the 995 Hyogo-ken Nanbu earthquake were carried out to study

More information

APPLICATION OF RECEIVER FUNCTION TECHNIQUE TO WESTERN TURKEY

APPLICATION OF RECEIVER FUNCTION TECHNIQUE TO WESTERN TURKEY APPLICATION OF RECEIVER FUNCTION TECHNIQUE TO WESTERN TURKEY Timur TEZEL Supervisor: Takuo SHIBUTANI MEE07169 ABSTRACT In this study I tried to determine the shear wave velocity structure in the crust

More information

P Wave Reflection and Refraction and SH Wave Refraction Data Processing in the Mooring, TN Area

P Wave Reflection and Refraction and SH Wave Refraction Data Processing in the Mooring, TN Area P Wave Reflection and Refraction and SH Wave Refraction Data Processing in the Mooring, TN Area Abstract: Author: Duayne Rieger Home Institution: Slippery Rock University of Pennsylvania REU Institution:

More information

Seismic applications in coalbed methane exploration and development

Seismic applications in coalbed methane exploration and development Seismic applications in coalbed methane exploration and development Sarah E. Richardson*, Dr. Don C. Lawton and Dr. Gary F. Margrave Department of Geology and Geophysics and CREWES, University of Calgary

More information

DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION IN A PRODUCING INDONESIAN GEOTHERMAL FIELD

DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION IN A PRODUCING INDONESIAN GEOTHERMAL FIELD PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 DETAILED IMAGE OF FRACTURES ACTIVATED BY A FLUID INJECTION

More information

Determination of fault planes in a complex aftershock sequence using two-dimensional slip inversion

Determination of fault planes in a complex aftershock sequence using two-dimensional slip inversion Geophys. J. Int. (2001) 146, 134 142 Determination of fault planes in a complex aftershock sequence using two-dimensional slip inversion Rachel E. Abercrombie, 1,2, * Stephen Bannister, 1 Aasha Pancha,

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults?

BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults? BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults? What are some of the key parameters which we describe faults? GEOMETRICAL PROPERTIES

More information

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No.

A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA. Sponsored by Defense Threat Reduction Agency. Contract No. A BROADBAND SEISMIC EXPERIMENT IN YUNNAN, SOUTHWEST CHINA Wenjie Jiao, 1 Winston Chan, 1 and Chunyong Wang 2 Multimax Inc., 1 Institute of Geophysics, China Seismological Bureau 2 Sponsored by Defense

More information

PART A: Short-answer questions (50%; each worth 2%)

PART A: Short-answer questions (50%; each worth 2%) PART A: Short-answer questions (50%; each worth 2%) Your answers should be brief (just a few words) and may be written on these pages if you wish. Remember to hand these pages in with your other exam pages!

More information

Bradley B. Woods and Chandan K. Saikia Woodward-Clyde Federal Services, Pasadena, CA. F C-0046 Sponsored by AFOSR ABSTRACT

Bradley B. Woods and Chandan K. Saikia Woodward-Clyde Federal Services, Pasadena, CA. F C-0046 Sponsored by AFOSR ABSTRACT The Portability of Some Regional Seismic Discriminants And Related Broadband Waveform Modeling Bradley B. Woods and Chandan K. Saikia Woodward-Clyde Federal Services, Pasadena, CA F49620-94-C-0046 Sponsored

More information

Calculation of Focal mechanism for Composite Microseismic Events

Calculation of Focal mechanism for Composite Microseismic Events Calculation of Focal mechanism for Composite Microseismic Events Hongliang Zhang, David W. Eaton Department of Geoscience, University of Calgary Summary It is often difficult to obtain a reliable single-event

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies REGIONAL VARIATION OF RAYLEIGH-WAVE ATTENUATION IN SOUTHERN ASIA PREDICTED FROM NEW MAPS OF LG CODA Q AND ITS FREQUENCY DEPENDENCE AT 1 HZ Lianli Cong 1 and Brian J. Mitchell 2 Yunnan University 1 and

More information

SDSU Module Kim Olsen and Rumi Takedatsu San Diego State University

SDSU Module Kim Olsen and Rumi Takedatsu San Diego State University SDSU Module Kim Olsen and Rumi Takedatsu San Diego State University SWUS GMC Workshop #2, Oct 22-24, 2013 Question: Based on the June 26 2013 SCEC Meeting, is the output of the BBP consistent with the

More information

Downloaded 07/03/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 07/03/14 to Redistribution subject to SEG license or copyright; see Terms of Use at Downloaded 07/03/14 to 129.237.143.21. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ Rayleigh-wave diffractions due to a void in the layered half space

More information

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane.

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane. The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 28: Preliminary identification of the fault plane. J. Zahradnik 1, E. Sokos 2, A.Serpetsidaki 2, and G A.Tselentis 2 1 Charles University in

More information

Downloaded 07/03/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 07/03/14 to Redistribution subject to SEG license or copyright; see Terms of Use at Applications of the JARS Method to study levee sites in southern Texas and southern New Mexico Julia Ivanov*, Richard D. Miller, Jianghai Xia, Kansas Geological Survey, Lawrence, KS Joseph B. Dunbar, Engineer

More information

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Letter J. Phys. Earth, 41, 319-325, 1993 Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Yasuo Izutani Faculty of Engineering,

More information

Short Note Shear-Wave Velocity Structure of the Koyna Warna Region in Western India Using Ambient Noise Correlation and Surface-Wave Dispersion

Short Note Shear-Wave Velocity Structure of the Koyna Warna Region in Western India Using Ambient Noise Correlation and Surface-Wave Dispersion Bulletin of the Seismological Society of America, Vol. 15, No. 1, pp. 473 479, February 215, doi: 1.1785/121491 Short Note Shear-Wave Velocity Structure of the Koyna Warna Region in Western India Using

More information

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies MODELING P WAVE MULTIPATHING IN SOUTHEAST ASIA

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies MODELING P WAVE MULTIPATHING IN SOUTHEAST ASIA MODELING P WAVE MULTIPATHING IN SOUTHEAST ASIA Ali Fatehi and Keith D. Koper Saint Louis University Sponsored by the Air Force Research Laboratory ABSTRACT Contract No. FA8718-06-C-0003 We have used data

More information

EXCITATION AND PROPAGATION OF SHORT-PERIOD SURFACE WAVES IN YOUNG SEAFLOOR. Donald W. Forsyth. Department of Geological Sciences, Brown University

EXCITATION AND PROPAGATION OF SHORT-PERIOD SURFACE WAVES IN YOUNG SEAFLOOR. Donald W. Forsyth. Department of Geological Sciences, Brown University EXCITATION AND PROPAGATION OF SHORT-PERIOD SURFACE WAVES IN YOUNG SEAFLOOR ABSTRACT Donald W. Forsyth Department of Geological Sciences, Brown University Sponsored by The Defense Threat Reduction Agency

More information

Measurement of differential rupture durations as constraints on the source finiteness of deep-focus earthquakes

Measurement of differential rupture durations as constraints on the source finiteness of deep-focus earthquakes JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005jb004001, 2006 Measurement of differential rupture durations as constraints on the source finiteness of deep-focus earthquakes Linda M. Warren

More information

An Alternative Approach to Process the Wide-Angle Reflection Data By Pre-stack Compositing of Gathers for Sub-basalt Imaging

An Alternative Approach to Process the Wide-Angle Reflection Data By Pre-stack Compositing of Gathers for Sub-basalt Imaging 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 288-293 An Alternative Approach to Process the Wide-Angle Reflection Data By Pre-stack Compositing of Gathers for Sub-basalt

More information

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies EVALUATION OF CROSS-CORRELATION METHODS ON A MASSIVE SCALE FOR ACCURATE RELOCATION OF SEISMIC EVENTS Won-Young Kim, Paul G. Richards, David P. Schaff, Felix Waldhauser, and Jian Zhang Lamont-Doherty Earth

More information

What happened before the last five strong earthquakes in Greece: Facts and open questions

What happened before the last five strong earthquakes in Greece: Facts and open questions 86 Proc. Jpn. Acad., Ser. B 82 (2006) [Vol. 82, What happened before the last five strong earthquakes in Greece: Facts and open questions By Panayiotis A. VAROTSOS ) Solid State Section and Solid Earth

More information

Oil and Gas Research Institute Seismic Analysis Center Faults Detection Using High-Resolution Seismic Reflection Techniques

Oil and Gas Research Institute Seismic Analysis Center Faults Detection Using High-Resolution Seismic Reflection Techniques Oil and Gas Research Institute Seismic Analysis Center Faults Detection Using High-Resolution Seismic Reflection Techniques Ghunaim T. Al-Anezi (KACST) March 2013 1 Objectives The objective of the survey

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information

Drift time estimation by dynamic time warping

Drift time estimation by dynamic time warping Drift time estimation by dynamic time warping Tianci Cui and Gary F. Margrave CREWES, University of Calgary cuit@ucalgary.ca Summary The drift time is the difference in traveltime at the seismic frequency

More information

LOCAL MAGNITUDE SCALE FOR MONGOLIA AND DETERMINATION OF M WP AND M S (BB)

LOCAL MAGNITUDE SCALE FOR MONGOLIA AND DETERMINATION OF M WP AND M S (BB) Synopses of Master Papers Bulletin of IISEE, 47, 31-36, 2013 LOCAL MAGNITUDE SCALE FOR MONGOLIA AND DETERMINATION OF M WP AND M S (BB) Dashdondog Mungunsuren MEE11606 Supervisor: Tatsuhiko HARA ABSTRACT

More information

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data

The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data The 2003, M W 7.2 Fiordland Earthquake, and its nearsource aftershock strong motion data P. McGinty Institute of Geological & Nuclear Sciences, PO Box 30-368, Lower Hutt, New Zealand 2004 NZSEE Conference

More information

Earthquake Focal Mechanisms and Waveform Modeling

Earthquake Focal Mechanisms and Waveform Modeling Earthquake Focal Mechanisms and Waveform Modeling Rengin Gök Lawrence Livermore National Laboratory USA RELEMR Workshop İstanbul 2008 Gudmundar E. Sigvaldason The Dynamic Earth, USGS The size of the event

More information

S-wave velocity structure beneath Changbaishan volcano inferred from receiver function

S-wave velocity structure beneath Changbaishan volcano inferred from receiver function Earthq Sci (2009)22: 409 416 409 Doi: 10.1007/s11589-009-0409-3 S-wave velocity structure beneath Changbaishan volcano inferred from receiver function Jianping Wu Yuehong Ming Lihua Fang Weilai Wang Institute

More information