Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides

Size: px
Start display at page:

Download "Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides"

Transcription

1 Earth Interior Crust Hydrosphere Atmosphere Magnetosphere Tides

2 Semi-major Axis 1 A.U. Inclination 0 Orbital period tropical year Orbital eccentricity Rotational period 23 h 56 min 4.1 s Tilt Radius Mass 6378 km 5.97 x10 24 kg Bulk density 5.52 g/cm 3 Atmosphere N 2, O 2 Albedo 0.40 Surface temperature Escape speed K 11.2 km/s Magnetic moment (equator) 8 x G.km 3

3 The Early History of Earth Earth formed 4.6 billion years ago from the inner solar nebula. Four main stages of evolution: Two sources of heat in the Earth s interior: Gravitational potential energy of infalling material Decay of radioactive materials Most traces of early bombardment (impact craters) are now destroyed by later geological activity

4 Overall Structure of the Earth Atmosphere Hydrosphere (oceans) Thin, layered crust Mantle also divided into layers Two-part core (solid and liquid)

5 Earth s Interior What can we know about the Earth s interior from its mass and size? Earth s Mass = M Earth = 5.97 x g Earth s Radius = R Earth = x 10 8 cm Earth s Volume = V Earth = 4/3 π R 3 = 1.1 x cm 3 Earth s Average Density = ρ Earth = M Earth /V Earth = 5.49 g/cm 3 ρ Water = 1 g/cm 3 ρ Rock = ~3 g/cm 3 ρ Iron = 7 g/cm 3 Cannot be made mostly of water Cannot be made mostly of rock Can be rock on the outside and iron on the inside A planet that has dense material in the interior and light material on the outside is said to be differentiated. Differentiation occurs when the whole planet is molten.

6 Earth s Interior Seismic waves are used to explore the Earth s interior: Earthquakes produce both pressure (P) and shear (S) waves Pressure waves will travel through both liquids and solids Shear waves will not travel through liquid, because liquids do not resist shear forces Wave speed depends on the density of the material and modulus of elasticity

7 We can use the pattern of reflections during earthquakes to deduce the interior structure of Earth. Earth s Interior

8 Earth s Interior Currently accepted model.

9 Earth s Interior The mantle is much less dense than the core The mantle is rocky; the core is metallic iron and nickel The outer core is liquid; the inner core is solid, because of pressure Some volcanic lava comes from the mantle allowing us to analyze the composition of the mantle nearest to the surface (the upper mantle)

10 Earth s Interior History: Earth was probably molten when it formed then the upper layers solidified and later remelted because of bombardment by space debris. Heavier materials sank to the center. Radioactivity provides a continuing source of heat.

11 Crust and Upper Mantle Continental drift or plate tectonics: The entire Earth s surface is covered with crustal plates, which can move independently Earthquakes and volcanoes occur at plate boundaries

12 Plate Tectonics Crustal plates move with respect to each other. Where plates move toward each other, plates can be pushed upward and downward formation of mountain ranges, some with volcanic activity, earthquakes Where plates move away from each other, molten lava can rise up from below forming new crust volcanic activity

13 Plate Tectonics A plate colliding with another can also raise it by folding it, resulting in very high mountains Active Examples: Himalayas Alps Inactive Example: Appalachians

14 Plate Tectonics Plates can also slide along each other, creating faults where many earthquakes occur Example: San Andreas Fault

15 Plate Tectonics Plate motion is driven by convection in the upper mantle. Mantle material in this zone is a very viscous liquid like glass

16 Plate Tectonics The new crust created at rift zones preserves the magnetic field present at the time it solidified. From this, we can tell that magnetic field reversals occur about every 500,000 years.

17 Earth s Tectonic History

18 Volcanism on Earth Volcanism on Earth is commonly found along subduction zones (e.g., Coast Range in California). This type of volcanism is not found on Venus or Mars.

19 Shield Volcanoes Found above hot spots: Fluid magma chamber, from which lava erupts repeatedly through surface layers above. All volcanoes on Venus and Mars are shield volcanoes

20 Shield Volcanoes Tectonic plates moving over hot spots producing shield volcanoes a chain of volcanoes Example: The Hawaiian Islands

21 Radioactive Dating The number of protons (atomic number) in an atom s nucleus determines which element it is. However, there may be different isotopes of the same element, with the same number of protons but different numbers of neutrons. Many of these isotopes are unstable and undergo radioactive decay. This decay is characterized by a half-life T: Fraction of material remaining = (1/2) t/t

22 Radioactive Dating Half-lives have been measured in the laboratory for almost all known isotopes. Knowing these, we can use them to determine the age of samples by looking at isotope ratios. The most useful isotope for dating rock samples is 238 U, which has a half-life of 4.5 billion years, comparable to the age of the Earth. The dating process involves measuring the ratio between the parent nucleus and the daughter nucleus ( 206 Pb in the case of 238 U) The Sun and planets should have about the same age. Dating of rocks on Earth, on the Moon, and meteorites all give ages of ~4.6 billion years.

23 History of Geological Activity Surface formations visible today have emerged only very recently compared to the age of Earth.

24 Hydrosphere About 2/3 of Earth s surface is covered by water. Mountains are relatively rapidly eroded away by the forces of water. Water makes life possible on Earth

25 Surface Heating: Sunlight that is not reflected is absorbed by Earth s surface, warming it Surface reradiates as infrared thermal radiation The atmosphere absorbs some infrared, causing further heating, thus warming the troposphere this is called the greenhouse effect Earth s Atmosphere

26 The blue curve shows the temperature at each altitude The troposphere is where convection takes place responsible for weather Earth s Atmosphere

27 Earth s Atmosphere The ionosphere is ionized by high energy solar radiation. It is a good conductor. It is heated by absorbed X rays The ionosphere reflects radio waves in the AM range, but it is transparent to FM and TV The ozone layer is between the ionosphere and the mesosphere; it absorbs ultraviolet radiation which warms the mesospherestratosphere boundary

28 Earth s Atmosphere Convection depends on the warming of the ground by the Sun Earth s rotation causes a Coriolis force that acts on surface winds Hadley circulation arises because of different latitudinal heating and the Coriolis force

29 The Earth s Coriolis force also causes surface winds to rotate clockwise around high pressure and counterclockwise around low pressure in the northern hemisphere. It is the opposite in the southern hemisphere. This is baroclinic circulation. Earth s Atmosphere

30 Earth s Atmosphere Atmosphere scatters blue light more than red, making the sky appear blue

31 Earth s Atmosphere When the Sun is close to the horizon, light is scattered by dust in the air. The more dust, the more scattering; if there is enough dust, the blue light is greatly diminished, leaving a red glow in the sky.

32 How Planets Keep an Atmosphere Atmospheric molecules have high speeds due to thermal motion. If the average molecular speed is well below the escape velocity, few molecules will escape. Escape becomes more probable: For lighter molecules (higher speed for same kinetic energy) At higher temperatures For smaller planets (escape speed is less) Molecules in a gas have a range of speeds; the fastest (and those that are headed in the right direction) will escape

33 How Planets Keep an Atmosphere Loss of gases from a planet s atmosphere: Compare escape velocity (red dots) to typical velocity of gas molecules (blue lines) The planet was probably hotter in the past which would shift the red dots to the right Escape velocity less than gas molecule velocity gas escapes into space.

34 History of the Earth s Atmosphere First atmosphere: hydrogen (H 2 ) and helium (He); this escaped Earth s gravity Second atmosphere: from volcanic activity, mostly nitrogen (N 2 ), carbon dioxide (CO 2 ) and sulfur oxides (SO n ) Third atmosphere: Oceans dissolved all the sulfur oxides and some CO 2 which may have formed some carbonate rocks Plant life appeared, absorbing more CO 2 and creating atmospheric oxygen (O 2 ) Bones and shells of sea animals absorbed more CO 2 and their decaying bodies made sedimentary rocks and completed the absorption of CO 2 from the atmosphere Nitrogen remained from the second atmosphere

35 The Greenhouse Effect and Global Warming One result of modern society has been to increase CO 2 levels in the atmosphere. A corresponding increase in global average temperature has been seen as well. Exactly how much the temperature will continue to increase is not known.

36 Magnetic Field Lines Magnetic North Pole Magnetic South Pole Magnetic Field Lines

37 Earth s Magnetic Field

38 Magnetohydrodynamic Model of Planetary Magnetic Fields Three conditions: 1. Conducting core 2. Rapid rotation 3. Liquid core Convection

39 Earth s Magnetosphere The magnetosphere is a magnetic field region around the Earth where charged particles from the solar wind are trapped. The solar wind distorts the magnetosphere in a long tail that extends beyond the orbit of the Moon.

40 Earth s Magnetosphere Charged particles are trapped in areas called the Van Allen belts, where they spiral around the magnetic field lines.

41 Earth s Magnetosphere Near the poles, the Van Allen belts intersect the atmosphere. The charged particles can escape; when they do, they create glowing light called an aurora (pl. aurorae).

42 The Tides Caused by the Moon s differential gravitational attraction of the water on the Earth Forces are balanced at the center of the Earth Excess gravity pulls water towards the Moon on the near side Excess centrifugal force pushes water away from the Moon on the far side 2 tidal maxima 12-hour cycle

43 Spring and Neap Tides Spring tides The Sun also produces tidal forces, about half as strong as the Moon. Near full and new Moon, those two forces add up to cause spring tides Neap tides Near first and third quarter, the two forces work at a right angle, causing neap tides.

44 Tidal (differential) forces have important roles for many astronomical situations, including the rings of giant planets The Tides

Chapter 7 Earth Pearson Education, Inc.

Chapter 7 Earth Pearson Education, Inc. Chapter 7 Earth Units of Chapter 7 7.1 Overall Structure of Planet Earth 7.2 Earth s Atmosphere Why Is the Sky Blue? The Greenhouse Effect and Global Warming 7.3 Earth s Interior Radioactive Dating Units

More information

Earth. Properties of Earth. Earth's Interior. Earth is the planet that we know best

Earth. Properties of Earth. Earth's Interior. Earth is the planet that we know best Earth Earth is the planet that we know best Our observations of the other planets are all compared to the conditions and properties of Earth Properties of Earth Semimajor Axis Orbital Eccentricity Orbital

More information

10/11/2010. Acceleration due to gravity, a. Bulk Properties Mass = 6 x kg Diameter = 12,756 km Density = 5515 kg/m 3 (mix of rock and iron)

10/11/2010. Acceleration due to gravity, a. Bulk Properties Mass = 6 x kg Diameter = 12,756 km Density = 5515 kg/m 3 (mix of rock and iron) Acceleration due to gravity, a Bulk Properties Mass = 6 x 10 24 kg Diameter = 12,756 km Density = 5515 kg/m 3 (mix of rock and iron) Escape Velocity, v e Albedo Amount of sunlight reflected back into space

More information

Chapter 20 Earth: The Standard of Comparative Planetology

Chapter 20 Earth: The Standard of Comparative Planetology Chapter 20 Earth: The Standard of Comparative Planetology Guidepost In the preceding chapter, you learned how our solar system formed as a by-product of the formation of the sun. You also saw how distance

More information

The Earth. Overall Structure of Earth

The Earth. Overall Structure of Earth The Earth Why Study The Earth??? It s our home! Where did life come from, where is it going. To understand the other planets. Study of other planets will, in turn, help us understand the Earth. Overall

More information

Chapter 5 Review. 1) Our Earth is about four times larger than the Moon in diameter. 1)

Chapter 5 Review. 1) Our Earth is about four times larger than the Moon in diameter. 1) Chapter 5 Review Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Our Earth is about four times larger than the Moon in diameter. 1) 2) The Earth's hotter, inner

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

Shape and Size of the Earth

Shape and Size of the Earth Planet Earth Shape and Size of the Earth Gravity is what gives Earth its spherical shape Only effective if the body is of a critical size Critical radius is about 350 km Shape and Size of the Earth Earth

More information

Earth as Planet. Earth s s Magnetic Field. The Earth s s Crust. Earth s s Interior

Earth as Planet. Earth s s Magnetic Field. The Earth s s Crust. Earth s s Interior Earth as Planet Earth s s Interior The Earth is a medium size planet with a diameter of 12,756 kilometers (7926 miles) Composed primarily of iron, silicon, and oxygen Nearly circular orbit and just the

More information

Planet Earth. Our Home APOD

Planet Earth. Our Home APOD Planet Earth Our Home APOD 1 Earth a highly evolved planet = altered dramatically since formation, due to flow of energy from interior to surface 2 Planet Earth Facts diameter (equator) 12,756 km radius

More information

The Earth Fast Facts. Outline. The Solar System is Ours! Astronomy 210. Section 1 MWF Astronomy Building

The Earth Fast Facts. Outline. The Solar System is Ours! Astronomy 210. Section 1 MWF Astronomy Building Astronomy 210 Section 1 MWF 1500-1550 134 Astronomy Building This Class (Lecture 19): The Earth Night Observations! Next Class: The Earth-Moon System Music: Amy Hit the Atmosphere Counting Crows The Solar

More information

Astro 1010 Planetary Astronomy Sample Questions for Exam 4

Astro 1010 Planetary Astronomy Sample Questions for Exam 4 Astro 1010 Planetary Astronomy Sample Questions for Exam 4 Chapter 8 1. Which of the following processes is not important in shaping the surface of terrestrial planets? a) Impact cratering b) Tectonism

More information

ASTR-101 Section 004 Lecture 9 Rare Earth? John T. McGraw, Professor

ASTR-101 Section 004 Lecture 9 Rare Earth? John T. McGraw, Professor ASTR-101 Section 004 Lecture 9 Rare Earth? John T. McGraw, Professor Rare Earth Long-lived sun Rocky world C, O, Si, materials for soil, tools and subsistence Near circular orbit Not too warm not too cold

More information

Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect

Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect Earth Fun Facts 1. Only body with liquid water on the surface. 2. Most massive terrestrial body in solar system 3. Only

More information

TEST NAME:Geology part 1 TEST ID: GRADE:06 - Sixth Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom

TEST NAME:Geology part 1 TEST ID: GRADE:06 - Sixth Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom TEST NAME:Geology part 1 TEST ID:1542715 GRADE:06 - Sixth Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom Geology part 1 Page 1 of 6 Student: Class: Date: 1. The picture below shows

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Terrestrial Planets: The Earth as a Planet

Terrestrial Planets: The Earth as a Planet Terrestrial Planets: The Earth as a Planet In today s class, we want to look at those characteristics of the Earth that are also important in our understanding of the other terrestrial planets. This is

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

The Sun and Planets Lecture Notes 6.

The Sun and Planets Lecture Notes 6. The Sun and Planets Lecture Notes 6. Lecture 6 Venus 1 Spring Semester 2017 Prof Dr Ravit Helled Cover photo: Venus in true color (Courtesy of NASA) Venus Properties Venus is the second brightest natural

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics

More information

Name. Physical Science Astronomy Exam II. Questions 1-18 have to do with the terrestrial planets, choose your answer from the list below:

Name. Physical Science Astronomy Exam II. Questions 1-18 have to do with the terrestrial planets, choose your answer from the list below: Name Physical Science 113 - Astronomy Exam II Questions 1-18 have to do with the terrestrial planets, choose your answer from the list below: 1. The smallest terrestrial planet. A) Mercury B) Venus C)

More information

Today. Events Homework DUE next time. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres

Today. Events Homework DUE next time. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres Today Terrestrial Planet Geology - Earth Terrestrial Planet Atmospheres Events Homework DUE next time Venus Surface mapped with radar by Magellan orbtier https://www.youtube.com/watch?v=ub_bbs_oh_c Continental

More information

9. Moon, Mercury, Venus

9. Moon, Mercury, Venus 9. Moon, Mercury, Venus All the heavier elements were manufactured by stars later, either by thermonuclear fusion reactions deep in their interiors or by the violent explosions that mark the end of massive

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

The Solar System. Earth as a Planet

The Solar System. Earth as a Planet The Solar System Earth as a Planet Earth s Interior Core: Highest density; nickel and iron Mantle: Moderate density; silicon, oxygen, etc. Crust: Lowest density; granite, basalt, etc. Differentiation Gravity

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Formation of the Earth and Solar System

Formation of the Earth and Solar System Formation of the Earth and Solar System a. Supernova and formation of primordial dust cloud. NEBULAR HYPOTHESIS b. Condensation of primordial dust. Forms disk-shaped nubular cloud rotating counterclockwise.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version E of the exam. Please fill in (E). A) This

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version B of the exam. Please fill in (B). A) This

More information

Chapter 17: Mercury, Venus and Mars

Chapter 17: Mercury, Venus and Mars Chapter 17: Mercury, Venus and Mars Mercury Very similar to Earth s moon in several ways: Small; no atmosphere lowlands flooded by ancient lava flows heavily cratered surfaces Most of our knowledge based

More information

LIGO sees binary neutron star merger on August 17, 2017

LIGO sees binary neutron star merger on August 17, 2017 LIGO sees binary neutron star merger on August 17, 2017 Laser Interferometer Gravitational-Wave Observatory (LIGO) Laser Interferometer Gravitational-Wave Observatory (LIGO) Multi-Messenger Astronomy This

More information

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17.

2. Terrestrial Planet G 9. Coulomb Force C 16. Babcock model Q. 3. Continuous Spectrum K 10. Large-impact hypothesis I 17. Astronomy 1 S 16 Exam 1 Name Identify terms Label each term with the appropriate letter of a definition listed 1. Spectral line R 8. Albedo H 15. helioseismology E 2. Terrestrial Planet G 9. Coulomb Force

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 26, 2016 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

The History of the Earth

The History of the Earth The History of the Earth We have talked about how the universe and sun formed, but what about the planets and moons? Review: Origin of the Universe The universe began about 13.7 billion years ago The Big

More information

Planetary Temperatures

Planetary Temperatures Planetary Temperatures How does Sunlight heat a planet with no atmosphere? This is similar to our dust grain heating problem First pass: Consider a planet of radius a at a distance R from a star of luminosity

More information

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time Today Terrestrial Planet Geology - Earth Terrestrial Planet Atmospheres Events Homework DUE next time Ring of Fire Boundaries of plates traced by Earthquakes and Volcanos Plate Motions Measurements of

More information

Astronomy 1140 Quiz 3 Review

Astronomy 1140 Quiz 3 Review Astronomy 1140 Quiz 3 Review Anil Pradhan October 27, 2017 I The Inner Planets 1. What are the terrestrial planets? What do they have in common? Terrestrial planets: Mercury, Venus, Earth, Mars. Theses

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The Arecibo radio telescope is laid out like which optical telescope design? 1) A) prime

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Mars, Venus, Earth What is an atmosphere? An atmosphere is a (usually very thin) layer of gas that surrounds a world. How does the greenhouse effect warm a planet? No

More information

Important information from Chapter 1

Important information from Chapter 1 Important information from Chapter 1 Distinguish between: Natural hazard // Disaster // Catastrophe What role does human population play in these categories? Know how to read a Hazard Map, such as Figure

More information

Chapter 6. The Earth. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 6. The Earth. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 The Earth Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Planet Profile Mass: 5,972,190,000,000,000 billion kg Equatorial Diameter: 12,756 km Polar

More information

1 Characteristics of the Atmosphere

1 Characteristics of the Atmosphere CHAPTER 15 1 Characteristics of the Atmosphere SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What is Earth s atmosphere made of? How

More information

Earth, the Lively* Planet. * not counting the life on the planet!

Earth, the Lively* Planet. * not counting the life on the planet! Earth, the Lively* Planet * not counting the life on the planet! What We Will Learn Today What are planet Earth s features? What processes shape planetary surfaces? How does Earth s surface move? How did

More information

Earth s Atmosphere About 10 km thick

Earth s Atmosphere About 10 km thick 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties vary with altitude? Earth s Atmosphere About 10 km thick

More information

Mercury and Venus 3/20/07

Mercury and Venus 3/20/07 Announcements Reading Assignment Chapter 13 4 th Homework due today Quiz on Thursday (3/22) Will cover all material since the last exam. This is Chapters 9-12 and the part of 13 covered in the lecture

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves.

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves. Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds What are terrestrial planets like on the inside? Seismic Waves Vibrations that travel through Earth s interior tell us what Earth is

More information

TAKE HOME EXAM 8R - Geology

TAKE HOME EXAM 8R - Geology Name Period Date TAKE HOME EXAM 8R - Geology PART 1 - Multiple Choice 1. A volcanic cone made up of alternating layers of lava and rock particles is a cone. a. cinder b. lava c. shield d. composite 2.

More information

Grades 9-12: Earth Sciences

Grades 9-12: Earth Sciences Grades 9-12: Earth Sciences Earth Sciences...1 Earth s Place in the Universe...1 Dynamic Earth Processes...2 Energy in the Earth System...2 Biogeochemical cycles...4 Structure and Composition of the Atmosphere...4

More information

ASTRO 120 Sample Exam

ASTRO 120 Sample Exam ASTRO 120 Sample Exam 1) If a planet has a reasonably strong magnetic field, we know that a. It is made entirely of iron b. There is liquid nitrogen below the surface c. It can harbor life d. It has a

More information

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH UNIT 3.2 An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. USE THESE NOTES: OUR HOME PLANET EARTH: What do you know about our planet? SO.HOW

More information

Structure of the Earth

Structure of the Earth Structure of the Earth Compositional (Chemical) Layers Crust: Low density Moho: Density boundary between crust and mantle Mantle: Higher density High in Magnesium (Mg) and Iron (Fe) Core: High in Nickel

More information

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties

More information

AT 350 EXAM #1 February 21, 2008

AT 350 EXAM #1 February 21, 2008 This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1 Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere

More information

Origin of Earth s Water When Earth first formed it was so hot that the original water would be lost to space Water added later by comets and/or

Origin of Earth s Water When Earth first formed it was so hot that the original water would be lost to space Water added later by comets and/or Origin of Earth s Water When Earth first formed it was so hot that the original water would be lost to space Water added later by comets and/or asteroids?? Some water (H 2 +O) formed in Protoplanetary

More information

Physics Homework 2 Fall 2015

Physics Homework 2 Fall 2015 1) The Kuiper Belt is found where in the solar system? 1) A) among the orbits of the terrestrial planets B) between the orbits of Mars and Jupiter C) sixty degrees ahead or behind Jupiter D) between the

More information

Next opportunity to observe the Moon and Venus close together: Dec. 31, Announcements

Next opportunity to observe the Moon and Venus close together: Dec. 31, Announcements Announcements Last OWL homework: due 12/15 before midnight Study guide for final exam is up on the class webpage Practice exam up Thursday afternoon Final exam: Monday, Dec. 15, 10:30 AM, Hasbrouck 20

More information

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

More information

Chapter 7 Earth and the Terrestrial Worlds

Chapter 7 Earth and the Terrestrial Worlds Chapter 7 Earth and the Terrestrial Worlds Guest Lecture by Chris Kelso Please pick up one notecard of each color (5 total) Outline The Earth s Interior The Earth s Surface The Earth s Atmosphere Concept

More information

The Earth - Surface and Interior

The Earth - Surface and Interior Earth's Interior The Earth - Surface and Interior Basic Data Diameter 12,756 km (equator) Mass 6 x 10 24 kg Density 5.5 g/cm 3 5500 kg/m 3 Escape velocity 11.2 km/s Temp -130 F to 140 F 183K to 333K Albedo

More information

Chapter 2 Geography. Getting to know Earth

Chapter 2 Geography. Getting to know Earth Chapter 2 Geography Getting to know Earth Our Solar System Sun is at the center of our solar system Contains a lot of Mass» Mass gives the Sun gravitational pull» This keeps the planets in our solar system

More information

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets Importance of Solar System Objects discussed thus far Interiors of Terrestrial Planets Chapter 9 Sun: Major source of heat for the surfaces of planets Asteroids: Provide possible insight to the composition

More information

D) outer core B) 1300 C A) rigid mantle A) 2000 C B) density, temperature, and pressure increase D) stiffer mantle C) outer core

D) outer core B) 1300 C A) rigid mantle A) 2000 C B) density, temperature, and pressure increase D) stiffer mantle C) outer core 1. In which area of Earth's interior is the pressure most likely to be 2.5 million atmospheres? A) asthenosphere B) stiffer mantle C) inner core D) outer core Base your answers to questions 2 and 3 on

More information

Can t t wait to take Exam 4!

Can t t wait to take Exam 4! Can t t wait to take Exam 4! Really can t wait to study for the final exam! 1 2 Housekeeping Exam 4: study glossaries, chapter questions TA lab closed after Tues. How to study for exam 4 Make lists for

More information

12.2 Plate Tectonics

12.2 Plate Tectonics 12.2 Plate Tectonics LAYERS OF THE EARTH Earth is over 1200 km thick and has four distinct layers. These layers are the crust, mantle (upper and lower), outer core, and inner core. Crust outer solid rock

More information

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics

ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics ASTR 1050: Survey of Astronomy Fall 2012 PRACTICE Exam #2 Instructor: Michael Brotherton Covers Solar System and Exoplanet Topics Instructions This exam is closed book and closed notes, although you may

More information

Plate Tectonics Practice Test

Plate Tectonics Practice Test Plate Tectonics Practice Test 1. What is the main idea Alfred Wegner proposed in the Theory of Continental Drift that he published in 1915? a. The continents float on a liquid layer that allows them to

More information

Unit 1: The Earth in the Universe

Unit 1: The Earth in the Universe Unit 1: The Earth in the Universe 1. The Universe 1.1. First ideas about the Universe 1.2. Components and origin 1.3. Sizes and distances 2. The Solar System 3. The planet Earth 3.1. Movements of the Earth

More information

The Earth. February 26, 2013

The Earth. February 26, 2013 The Earth February 26, 2013 The Planets 2 How long ago did the solar system form? Definition: Cosmic Rays High-energy particles that constantly bombard objects in space Mostly they are hydrogen nuclei

More information

Section 2: The Atmosphere

Section 2: The Atmosphere Section 2: The Atmosphere Preview Classroom Catalyst Objectives The Atmosphere Composition of the Atmosphere Air Pressure Layers of the Atmosphere The Troposphere Section 2: The Atmosphere Preview, continued

More information

Earth Science Review Ch 1 & 2. Chapter 1 - Introduction to Earth Science

Earth Science Review Ch 1 & 2. Chapter 1 - Introduction to Earth Science Earth Science Review Ch 1 & 2 Chapter 1 - Introduction to Earth Science Lesson I - What is Earth Science Topic 1- Branches of Earth Science Earth Science - the study of Earth, its oceans, atmosphere, and

More information

Descriptive Astronomy (ASTR 108) Exam 2A March 29, 2010

Descriptive Astronomy (ASTR 108) Exam 2A March 29, 2010 Descriptive Astronomy (ASTR 108) Exam 2A March 29, 2010 Name: In each of the following multiple choice questions, select the best possible answer. First circle the answer on this exam, then in the line

More information

Inner Planets (Part II)

Inner Planets (Part II) Inner Planets (Part II) Sept. 18, 2002 1) Atmospheres 2) Greenhouse Effect 3) Mercury 4) Venus 5) Mars 6) Moon Announcements Due to technical difficulties, Monday s quiz doesn t count An extra credit problem

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds 2014 Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial

More information

Earth is over 1200 km thick and has four distinct layers.

Earth is over 1200 km thick and has four distinct layers. 1 2.2 F e a ture s o f P la te T e c to nic s Earth is over 1200 km thick and has four distinct layers. These layers are the crust, mantle (upper and lower), outer core, and inner core. Crust outer solid

More information

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?

Learning Objectives. they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field? Mercury and Venus Learning Objectives! Contrast the Earth, the Moon, Venus and Mercury. Do they differ in density (composition, core), atmosphere, surface age, size, geological activity, magnetic field?!

More information

The Terrestrial Planets

The Terrestrial Planets The Terrestrial Planets Large Bodies: Earth (1 R E, 1 M E ) Venus (0.95 R E, 0.82 M E ) Small Bodies: Mars (0.53 R E, 0.11 M E ) Mercury (0.38 R E, 0.055 M E ) Moon (0.27 R E, 0.012 M E ) The surfaces

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

EARTH S ENERGY SOURCES

EARTH S ENERGY SOURCES EARTH S ENERGY SOURCES The geological processes that shape the Earth s surface are powered by two major sources of energy; geothermal heat from the Earth s interior and external energy from the sun. The

More information

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds

Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds 9.1 Connecting Planetary Interiors and Surfaces Our goals for learning What are terrestrial planets like on the inside? What causes geological

More information

Jupiter and its Moons

Jupiter and its Moons Jupiter and its Moons Summary 1. At an average distance of over 5 AU, Jupiter takes nearly 12 years to orbit the Sun 2. Jupiter is by far the largest and most massive planet in the solar system being over

More information

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday Today Terrestrial Planet Geology Events Fall break next week - no class Tuesday When did the planets form? We cannot find the age of a planet, but we can find the ages of the rocks that make it up. We

More information

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Chapter 4 Lesson 1: Describing Earth s Atmosphere Chapter 4 Lesson 1: Describing Earth s Atmosphere Vocabulary Importance of Earth s Atmosphere The atmosphere is a thin layer of gases surrounding Earth. o Contains the oxygen and water needed for life.

More information

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of 2. The dark, cooler areas on the sun s surface are 3. When hydrogen nuclei fuse they form 4. Einstein s equation is 5. The

More information

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 The Terrestrial Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.5 Analyze the methods used to develop a scientific explanation as seen in different fields of science. SC.8.E.5.3 Distinguish the hierarchical relationships between planets

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 10. Geology and life. Part 1 (Page 99-123)

More information

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. GEOLOGY Geologists scientists who study the forces that make and shape the Earth Geologists

More information

The oldest rock: 3.96 billion yrs old: Earth was forming continental crust nearly 400 billion years ago!!

The oldest rock: 3.96 billion yrs old: Earth was forming continental crust nearly 400 billion years ago!! Earth s vital statistics Shape: almost spherical Size: 6400km in radius Average density: 5.5gm/cc; surface: 3gm/cc or less; centre may be 10-15gm/cc 15gm/cc Temperature: core: 2200-2750 2750 o c Pressure:

More information

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements.

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements. ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 26: Planetary Geology [3/23/07] Announcements Planetary Geology Planetary

More information

The Main Point. Other Properties Earth has one large Moon. Earth has a strong Magnetic Field. Lecture #11: Earth: Geology and Interior

The Main Point. Other Properties Earth has one large Moon. Earth has a strong Magnetic Field. Lecture #11: Earth: Geology and Interior Lecture #11: Earth: Geology and Interior Overview of Earth's basic properties. Earth's Interior and Surface: Composition and Structure. Surface Geologic Processes. Evolution of the Surface. Reading: Chapters

More information

1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as

1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as Sample questions 1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as b. continental drift c. subduction d. conduction 2. The transfer of thermal

More information

FCAT Review Space Science

FCAT Review Space Science FCAT Review Space Science The Law of Universal Gravitation The law of universal gravitation states that ALL matter in the universe attracts each other. Gravity is greatly impacted by both mass and distance

More information

Jovian Planet Systems

Jovian Planet Systems Jovian Planet Systems Reading: Chapter 14.1-14.5 Jovian Planet Systems Voyager 1 and 2 explored the outer planets in the 1970s and 1980s. The Galileo spacecraft circled Jupiter dozens of times in the late

More information

Venus. Venus Properties. Interior of Venus. Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet

Venus. Venus Properties. Interior of Venus. Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet Venus Due to similarities in size, mass, and composition, Venus is often referred to as Earth's sister planet Modern measurements and probes that have visited the planet have revealed one of the most uninhabitable

More information

Unit 3 Review Guide: Atmosphere

Unit 3 Review Guide: Atmosphere Unit 3 Review Guide: Atmosphere Atmosphere: A thin layer of gases that forms a protective covering around the Earth. Photosynthesis: Process where plants take in carbon dioxide and release oxygen. Trace

More information

The Jovian Planets (Gas Giants)

The Jovian Planets (Gas Giants) The Jovian Planets (Gas Giants) Discoveries and known to ancient astronomers. discovered in 1781 by Sir William Herschel (England). discovered in 1845 by Johann Galle (Germany). Predicted to exist by John

More information