Erosion and solid matter transport in inland waters with reference to the Nile basin

Size: px
Start display at page:

Download "Erosion and solid matter transport in inland waters with reference to the Nile basin"

Transcription

1 Erosion and solid matter transport in inland waters with reference to the Nile basin M. Salah E. Shalash Abstract. The River Nile is one of the most remarkable geographical features of North Africa. Its catchment covers an area of km 2, extends from latitude 4 S to latitude N, and experiences a great variety of climate. The vegetation within the Nile basin is varied, it includes alpine flora in the higher parts, dense tropical forest, tall elephant grass, thin savanna forest, thick vegetation of tropical swamps, thorny forest and scanty vegetation of desert country. Also, there are dense crops grown on irrigated lands. In general, the Nile basin may be divided into four main subbasins: (1) The White Nile whose head waters rise south of the equator. Its runoff is 29 per cent of the total Nile runoff and its water is clear. (2) The Atbara River which rises in north Ethiopia. This is a flashy river and is dry for half the year. Its runoff is muddy and constitutes 14 per cent of the total Nile runoff. (3) The Blue Nile which also rises in north Ethiopia. Its runoff equals 57 per cent of the total runoff of the Nile. The flow is muddy during the rainy season. (4) The Main Nile which flows northwards to the sea. There is no additional runoff apart from a few desert streams which carry mud during winter rainstorms only. Therefore, within the Nile basin there are only two main catchment areas; the Blue Nile and Atbara River, which erode and supply the Main Nile with suspended sediment. The average annual suspended sediment load measured in the Main Nile is 134 million tons. The total sediment derived from rainstorms over the Eastern Desert of Egypt amounts to 1 million tons. As there are no direct measurements of the sediment load for the individual basins, it is difficult to estimate the eroded land in each basin separately. Mechanical analyses show that there is some difference between the sediment derived from the south and that coming from the north. The rate of annual soil erosion in the Blue Nile and Atbara River basins is about 0.1 mm, and less than that within the main river basin. Erosion et transport solide des eaux continentales dans le cas plus particulieur du bassin du Nil Résumé. Le Nil constitue une entité géographique remarquable de l'afrique Septentrionale et son bassin couvre une superficie de km 2. Ce bassin s'étend entre les latitudes 4 S et N, et il englobe une grande variété de climats. La végétation du bassin du Nil est diversifiée: flore alpine dans les secteurs les plus élevés, forêt tropicale dense, prairies à grandes graminées type Pennisetum, savane forestière claire, végétation dense des zones marécageuses tropicales, forêt à épineux, végétation très clairsemée des zones désertiques. En outre, il existe des zones de cultures denses sur les terrains irrigués. D'une façon générale, le bassin du Nil se divise en quatre sousbassins principaux: le Nil Blanc, l'atbara, le Nil Bleu et le Nil principal. Il n'existe en fait que deux grands bassins versants, le Nil Bleu et l'atbara, qui provoquent une érosion et alimentent le Nil proprement dit en éléments en suspension. Le transport solide annuel moyen en suspension mesuré dans le Nil proprement dit est de 134 millions de tonnes. Les transports solides totaux au cours des orages d'hiver qui s'abattent sur le Désert Oriental d'egypte s'élèvent à 1 million de tonnes. Faute de mesures directes des transports solides dans les deux bassins, il est difficile d'estimer les pertes en terre respectives de chacun d'entre eux. Les analyses granulométriques montrent qu'il existe des différences entre les éléments solides provenant du sud et du nord. Le taux d'ablation annuelle du sol dans les bassins du Nil Bleu et de l'atbara se situe au voisinage de 0.1 mm, et il est inférieur à cette valeur dans le bassin du fleuve principal. 278

2 INTRODUCTION Erosion and solid matter transport in the Nile basin 279 Water and climate are the most important controls of erosion, transportation and deposition of sediment. Runoff entrains sediment from the soils over and through which it flows and is thus an agent of erosion. The transported load consists of material in solution and suspension, of colloidal particles, and of material rolled and pushed along the floor of the river channel. The rolled material is commonly designated the tractional load and is affected by traction. The dissolved load is largely acquired by solution of material in the soil and rock over and through which the water flows. The colloidal load is acquired by contact of water with soil and rock. Suspended load is also acquired by abrasion, impact, grinding or hydraulic action and is transported by turbulence, whereby upward directed side currents prevent deposition of sediment. Transportation of material in suspension, over long distances, depends upon the dimensions, specific gravities and shape of the particles and upon the velocities and turbulence of the main flow. The rate of soil erosion and sediment transportation are controlled by so many factors that generalizations are very difficult. Important parameters are the physical, chemical and mineral character of the soil and rocks, the structure of the rocks, climate, plant growth and slope or relief. A brief account of the Nile basin and the variables which affect soil erosion in its subbasins is given below. THE NILE BASIN AND ITS SUBBASINS AFFECTED BY SOIL EROSION AND SEDIMENT TRANSPORTATION The Nile basin is one of the most important geographical features within northern Africa. The basin covers an area of km 2, which is roughly about one tenth of the area of the African continent. The river is the longest in the world, and its basin extends from latitude 4 S to latitude N and includes greater variety than that of any other river. Its source is at an altitude greater than 5120 m above m.s.l. in central Africa while its mouth is in the Mediterranean Sea. Because the basin extends over such a range of latitude and altitude it is subject to a great variety of climate. Also, the vegetation varies widely along the river basin. The vegetation included alpine flora on the higher parts which are covered with snow, dense tropical forest, tall elephant grass, thin savanna forest, thick vegetation of tropical swamps, thorny forest and finally desert which occupies the northern part of the basin, where intensive crops are grown on the narrow strip of irrigated land along the main Nile valley. In general, the Nile basin may be divided into four main subbasins with respect to climate, topography, vegetation and sedimentation, (see Fig. 1). ( 1) The White Nile whose head waters rise south of the equator and whose average runoff equals 29 per cent of the total Nile runoff. The White Nile water is clear throughout the year. All the tributaries of the White Nile contribute clear water except for one main tributary called the Sobat River. The area of the Sobat basin is km 2. During rainstorms some of the surface sous of the basin are eroded and contribute as much as ppm of suspended sediment to the flow. This amount of sediment deposits in the swamps at its junction with the Main White Nile. (2) The Atbara River basin which rises in northern Ethiopia (Fig. 1). This river is flashy and is dry for almost half the year. The Atbara River contributes 14 per cent of the total runoff of the Nile and also contributes suspended load to the Main Nile during the flood season between August and October. (3) The Blue Nile basin; its head waters rise on the Ethiopian Plateau (see Fig. 1) and it contributes an average annual runoff equal to 57 per cent of the total Nile annual runoff. This river also contributes a considerable amount of suspended sediment

3 M 6 O / T R RA /V A /v S A ^.ALcXAMtmAt THE NILE 3c*/# 1:ia>.o«eooo BAS/N Qlrvr^p E G Y P T nyrtnnxr O FIGURE 1. The Nile basin

4 Erosion and solid matter transport in the Nile basin 281 to the Nile during the flood season. (4) The Main Nile which carries the flow and the sediment northwards to the sea. In this part of the basin there is no addition of runoff apart from some springs and desert streams which carry sediment only during winter rainstorms. CLIMATE OF THE BASIN Within the White Nile basin which extends from the Lake Plateau to southern Sudan, the climate varies with altitude and exposure, and rain falls for nearly the whole year. The rainfall curve has two maxima; one in April and the other in October. The magnitude of the average rainfall varies between 800 and 2000 mm. The mean air temperature does not vary much throughout the year. On the Ethiopian Plateau, in the Blue Nile and Atbara^River basins, the climate, as in all mountainous tropical areas, varies with latitude, altitude and slope. There is a well marked rainy season from June to September, with maximum rainfall occurring at the end of July. The average rainfall varies between 200 mm near the mouth of the Atbara River to 2000 mm at its source. The main source of the Nile flood is the rainfall on the Ethiopian Plateau. Within the Main Nile catchment the rainfall is almost nil, except in the northern strip near the Mediterranean Sea where rain falls during the winter. SURFACE SOIL OF THE BASIN The description of surface soils is limited to the two main subbasins of the Blue Nile and Atbara River since they are the main sources of the sediment load in the Main Nile. The surface soils of the Ethiopian Plateau are derived from the in situ weathering of the volcanic rocks. The reddish colour of the soil in the undulating area of the plateau is a highly characteristic feature of the landscape. Two samples of soil gave the following mechanical analyses [in per cent] : Particle size grouping Stones and \ gravel Coarse sand Fine sand Silt Clay Sample Sample The Main Nile from the confluence of the Atbara River to the sea acts primarily as a carrier of water and sediment. The fertile land on either side of the River Nile in this reach is the result of the suspended load in the flood flow being deposited as alluvial soil. This silt phenomenon attracted the attention of soil scientists and hydrologists in very early times. They estimated, in their early studies of the sediment in the Nile, that the average rate of deposition amounted to 1.0 mm/year along the narrow strip of the Nile Valley beside the river. Recent studies confirmed this figure and the general acceptance was that the mean annual rate of sediment deposition was equal to 0.90 mm. This figure sharply decreased to zero during the construction of the High Dam at Aswan and the suspended load carried by the flood flow of the Nile is now deposited in the reservoir at an average rate of 132 million tons per year. SUSPENDED SEDIMENT MEASUREMENTS Measurements of the concentration of suspended sediment in the Nile flow have been 10

5 282 M.Salah E. Shalash TABLE 1 Period August end September end October end Sediment concentration [ppm] Total load [million tons] Total million tons carried out since 1929 by the Hydrological Department of Egypt. The sediment concentration was measured at several gauging stations along the Main Nile from north of Atbara to Cairo, but for the purpose of this study the first gauging station was at Kajnarty, (see Fig. 1) 399 km upstream of the Aswan Dam. Measurements of sediment concentration in the Blue Nile and the Atbara River also showed the same results as the Kajnarty station. Several methods have been used to determine the distribution of the sediment concentration across the section and for estimation of load quantities. Table 1 shows the average sediment concentration and total load at Kajnarty for the period during the flood period of August, September and October. The mean annual total discharge passing Kajnarty for the period 1912^1957 during the months August, September and October is 53.6 billion m 3. The Blue Nile contributes 71.5 per cent of the total average flood runoff and the Atbara River contributes 18.7 per cent of the flood. The rest of the flow is contributed by the clear water of the White Nile. MECHANICAL ANALYSIS OF SEDIMENT The mechanical analysis of the suspended sediment based on the international specifications is summarized as follows: Coarse sand Fine sand Silt Clay 0.2 mm mm mm <0.002 mm Table 2 shows the mechanical analyses of the suspended load passing Kajnarty during the flood season in DESERT WADIS There are several desert wadis on the eastern bank of the northern reaches of the Main Nile. Their catchment areas vary between 400 and km 2. These natural wadis function only when thunderstorms occur during winter and their flow carries fine suspended sediment to the Nile. These occurrences are remarkable as the flow in the Main Nile at this time is fairly clear. The sediment concentrations during these

6 TABLE 2 Erosion and solid matter transport in the Nile basin 283 Date August September October Sediment concentration [ppm] Coarse sand Fine sand Silt Clay storms were measured in the Nile whenever they occurred and values ranged between 3000 and 5000 ppm, but they lasted only for a few weeks. The grain sizes of this sediment are finer than that carried during the normal flood and consist of silt and clay. ESTIMATION OF SOIL EROSION It is easy to come to conclusions concerning the total amount of erosion occurring within the basin. Such estimates can be easily obtained from the suspended sediment load carried by the river, but it is extremely difficult to estimate the erosion rates occurring in different areas of the basin. From the sediment measurements mentioned previously the total mean annual sediment load for the subbasins of the Blue Nile and the Atbara, has been calculated as 128 million tons. Of this figure the Blue Nile contributes 75 per cent and the Atbara River contributes 21 per cent. It is known that soil erosion is mainly associated with heavy rain or thunder storms within the basin, but rainfall of this type never totally covers such large basins as the Atbara or Blue Nile. No doubt, there is a relation between the amount of erosion in a basin and its drainage density. Investigations are at present in progress and, as a rough estimate, it would seem that only 10^50 per cent of the total basin area is liable to erosion. Until this relation is confirmed, estimates of soil erosion refer to the total area. In the Atbara basin the mean annual erosion is equal to 0.24 mm, and in the Blue Nile area the annual erosion is equal to 0.2 mm. CONCLUSION The mechanical analysis of the deposited sediment within the main Nile Valley confirms its origin in the eroded surface soil of the Atbara and Blue Nile subbasins. Also the annual rate of deposition is slightly greater than the annual rate of erosion.

Summary. Streams and Drainage Systems

Summary. Streams and Drainage Systems Streams and Drainage Systems Summary Streams are part of the hydrologic cycle and the chief means by which water returns from the land to the sea. They help shape the Earth s surface and transport sediment

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement Surface Water SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. 1. An excessive amount of water flowing downslope

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Sedimentation in the Nile River

Sedimentation in the Nile River Advanced Training Workshop on Reservoir Sedimentation Sedimentation in the Nile River Prof. Dr. Abdalla Abdelsalam Ahmed 10-16 Oct. 2007, IRTCES, Beijing, China CWR,Sudan 1 Water is essential for mankind

More information

Chapter 2. Denudation: Rivers and Ice

Chapter 2. Denudation: Rivers and Ice Chapter 2. Denudation: Rivers and Ice DENUDATION: process that lowers level of land - caused by rivers, glaciers, waves & wind - involves processes of WEATHERING & EROSION Weathering Def: breakdown of

More information

Earth Science Chapter 6 Section 2 Review

Earth Science Chapter 6 Section 2 Review Name: Class: Date: Earth Science Chapter 6 Section Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most streams carry the largest part of their

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes

Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes Laboratory Exercise #3 The Hydrologic Cycle and Running Water Processes page - 1 Section A - The Hydrologic Cycle Figure 1 illustrates the hydrologic cycle which quantifies how water is cycled throughout

More information

every continent has an extensive dry region! " deserts are as much as 1/3 of Earth s surface!

every continent has an extensive dry region!  deserts are as much as 1/3 of Earth s surface! deserts! deserts! every continent has an extensive dry region! " deserts are as much as 1/3 of Earth s surface! Hollywood portrayal of vast stretches of sand dune! " Sahara has only 10% covered by sand!

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material River Processes Learning Objective: Discover how a river erodes, transports and deposits material Learning Outcomes: Compare vertical and lateral erosion Describe how a river erodes, transports and deposits

More information

Floods Lecture #21 20

Floods Lecture #21 20 Floods 20 Lecture #21 What Is a Flood? Def: high discharge event along a river! Due to heavy rain or snow-melt During a flood, a river:! Erodes channel o Deeper & wider! Overflows channel o Deposits sediment

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

The Effect of Weather, Erosion, and Deposition in Texas Ecoregions

The Effect of Weather, Erosion, and Deposition in Texas Ecoregions The Effect of Weather, Erosion, and Deposition in Texas Ecoregions 7.8B: I can analyze the effects of weathering, erosion, and deposition on the environment in ecoregions of Texas Weathering The breakdown

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation.

River Response. Sediment Water Wood. Confinement. Bank material. Channel morphology. Valley slope. Riparian vegetation. River Response River Response Sediment Water Wood Confinement Valley slope Channel morphology Bank material Flow obstructions Riparian vegetation climate catchment vegetation hydrological regime channel

More information

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow.

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow. 1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow. Which cross section best represents the shape of the river bottom at

More information

CASE STUDY NATHPA JHAKRI, INDIA

CASE STUDY NATHPA JHAKRI, INDIA SEDIMENT MANAGEMENT CASE STUDY NATHPA JHAKRI, INDIA Key project features Name: Nathpa Jhakri Country: India Category: reduce sediment production (watershed management); upstream sediment trapping; bypass

More information

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle STREAM SYSTEMS Earth Science: Chapter 5 Reading pages 114-124 The Hydrologic Cycle Oceans not filling up Evaporation = precipitation System is balanced Earth s Water and the Hydrologic Cycle Earth s Water

More information

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s Skills Worksheet Concept Review In the space provided, write the letter of the description that best matches the term or phrase. 1. condensation 2. floodplain 3. watershed 4. tributary 5. evapotranspiration

More information

CASE STUDY NATHPA JHAKRI, INDIA

CASE STUDY NATHPA JHAKRI, INDIA SEDIMENT MANAGEMENT CASE STUDY NATHPA JHAKRI, INDIA Key project features Name: Nathpa Jhakri Country: India Category: reforestation/revegetation; upstream sediment trapping; bypass channel/tunnel; reservoir

More information

EROSION AND DEPOSITION

EROSION AND DEPOSITION CHAPTER 8 EROSION AND DEPOSITION SECTION 8 1 Changing Earth s Surface (pages 252-255) This section explains how sediment is carried away and deposited elsewhere to wear down and build up Earth s surface.

More information

Year 6. Geography. Revision

Year 6. Geography. Revision Year 6 Geography Revision November 2017 Rivers and World knowledge How the water cycle works and the meaning of the terms evaporation, condensation, precipitation, transpiration, surface run-off, groundwater

More information

Weathering, Erosion and Deposition

Weathering, Erosion and Deposition Weathering, Erosion and Deposition Shaping the Earth s Surface Weathering the process of breaking down rocks into smaller fragments Erosion the transport of rock fragments from one location to another

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Deserts & Wind Action Physical Geology 15/e, Chapter 13 Deserts Desert any arid region that receives less than 25 cm of precipitation

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Erosion Sediment natural forces move rock/soil from one place to another. gravity, water, wind, glaciers, waves are causes material moved by erosion Deposition when erosion lays

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

Suspended sediment yields of rivers in Turkey

Suspended sediment yields of rivers in Turkey Erosion and Sediment Yield: Global and Regional Perspectives (Proceedings of the Exeter Symposium, July 1996). IAHS Publ. no. 236, 1996. 65 Suspended sediment yields of rivers in Turkey FAZLI OZTURK Department

More information

Sediment Deposition LET THE RIVER RUN T E A C H E R. Activity Overview. Activity at a Glance. Time Required. Level of Complexity.

Sediment Deposition LET THE RIVER RUN T E A C H E R. Activity Overview. Activity at a Glance. Time Required. Level of Complexity. Activity at a Glance Grade: 6 9 Subject: Science Category: Physical Science, Earth Science Topic: Deposition, River Systems Time Required Two 45-minute periods Level of Complexity Medium Materials* TI-73

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown.

Name. 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different soil horizons, A, B, C, and D, are shown. Name 1. In the cross section of the hill shown below, which rock units are probably most resistant to weathering? 4. The diagram below shows a soil profile formed in an area of granite bedrock. Four different

More information

netw rks Guided Reading Activity Essential Question: How does geography influence the way people live? Earth's Physical Geography

netw rks Guided Reading Activity Essential Question: How does geography influence the way people live? Earth's Physical Geography Guided Reading Activity Lesson 1 Earth and the Sun Essential Question: How does geography influence the way people live? Looking at Earth Directions: What are the layers that make up Earth? Use your textbook

More information

Chapter 2. Wearing Down Landforms: Rivers and Ice. Physical Weathering

Chapter 2. Wearing Down Landforms: Rivers and Ice. Physical Weathering Chapter 2 Wearing Down Landforms: Rivers and Ice Physical Weathering Weathering vs. Erosion Weathering is the breakdown of rock and minerals. Erosion is a two fold process that starts with 1) breakdown

More information

Chapter 3 Erosion and Deposition. The Big Question:

Chapter 3 Erosion and Deposition. The Big Question: Chapter 3 Erosion and Deposition The Big Question: 1 Design a way to represent and describe the 4 types of mass movement. You may use pictures, diagrams, list, web, chart, etc 2 Chapter 3: Erosion and

More information

Surface Water Short Study Guide

Surface Water Short Study Guide Name: Class: Date: Surface Water Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The three ways in which a stream carries

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

GEL 109 Midterm W01, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!

GEL 109 Midterm W01, Page points total (1 point per minute is a good pace, but it is good to have time to recheck your answers! GEL 109 Midterm W01, Page 1 50 points total (1 point per minute is a good pace, but it is good to have time to recheck your answers!) 1. Where in a water flow is there usually a zone of laminar flow even

More information

Practice 3rd Quarter Exam Page 1

Practice 3rd Quarter Exam Page 1 Name 1. Which characteristic would most likely remain constant when a limestone cobble is subjected to extensive abrasion? A) shape B) mass C) volume D) composition 2. Which activity demonstrates chemical

More information

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants.

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants. Bell Ringer Are soil and dirt the same material? In your explanation be sure to talk about plants. 5.3 Mass Movements Triggers of Mass Movements The transfer of rock and soil downslope due to gravity is

More information

What do you need for a Marathon?

What do you need for a Marathon? What do you need for a Marathon? Water and a snack? What about just a normal day? 1 flush = 3.5 gallons 1 flush = 3.5 gallons 10 minute shower = 20 gal 1 flush = 3.5 gallons 10 minute shower = 20 gal Jeans

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition The Erosion-Deposition Process What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with

More information

Changing Earth s Surface

Changing Earth s Surface Name Date Class Changing Earth s Surface What processes wear down and build up Earth s surface? What causes the different types of mass movement? Erosion is the process by which natural forces move weathered

More information

EARTH S CHANGING SURFACE

EARTH S CHANGING SURFACE EARTH S CHANGING SURFACE Weathering Together, weathering and erosion work continuously to wear down the material on Earth s surface. weathering process that breaks down rock and other substances of Earth

More information

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water Final Exam Running Water Erosion and Deposition Earth Science Chapter 5 Pages 120-135 Scheduled for 8 AM, March 21, 2006 Bring A scantron form A calculator Your 3 x 5 paper card of formulas Review questions

More information

Land and Water Study Guide

Land and Water Study Guide Land and Water Study Guide Answer Key Part 1 States of Matter 1. What are the three states of matter for water? Give several examples for each. Solid Ice cube (non water examples = candy bar and a log).

More information

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Gutta cavat lapidem (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Fixed channel boundaries (bedrock banks and bed) High transport

More information

Day 3 Weathering and Erosion.notebook. October 02, Section 7.2. Erosion and Deposition. Objectives

Day 3 Weathering and Erosion.notebook. October 02, Section 7.2. Erosion and Deposition. Objectives Objectives Describe the relationship of gravity to all agents of erosion. Contrast the features left from different types of erosion. Analyze the impact of living and nonliving things on the processes

More information

Lecture Outlines PowerPoint. Chapter 6 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 6 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 6 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

What is weathering and how does it change Earth s surface? Answer the question using

What is weathering and how does it change Earth s surface? Answer the question using 7 th Grade Lesson What is weathering and how does it change Earth s surface? Answer the question using the sentence frame. You have 4 minutes. Weathering is. This changes the Earth s surface because. 1

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Our Environment Class 7 Questions on Give Reasons for quick revision for Competitive Exams

Our Environment Class 7 Questions on Give Reasons for quick revision for Competitive Exams Questions on Give reasons at the end of each Chapter Chapter 1 1. Man modifies his environment Man has tried to make life more comfortable for his own species on a continuous basis. For this he has learnt

More information

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement)

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement) Lesson 1 (Mass Movement) 7 th Grade Earth s Surface Chapter 3: Erosion and Deposition Weathering the chemical and physical processes that break down rock at Earth s surface Mechanical weathering when rock

More information

Landscape Development

Landscape Development Landscape Development Slopes Dominate Natural Landscapes Created by the interplay of tectonic and igneous activity and gradation Deformation and uplift Volcanic activity Agents of gradation Mass wasting

More information

10/27/2014. Surface Processes. Surface Processes. Surface Processes. Surface Processes. Surface Processes

10/27/2014. Surface Processes. Surface Processes. Surface Processes. Surface Processes. Surface Processes Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 25 Surface or surficial processes originate at Earth's surface and reshape its contours. Surface processes include: Weathering Erosion Deposition

More information

6.1 Water. The Water Cycle

6.1 Water. The Water Cycle 6.1 Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This unending circulation of Earth s water supply is the water cycle. The Water Cycle

More information

World Geography Chapter 3

World Geography Chapter 3 World Geography Chapter 3 Section 1 A. Introduction a. Weather b. Climate c. Both weather and climate are influenced by i. direct sunlight. ii. iii. iv. the features of the earth s surface. B. The Greenhouse

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Running Water and Groundwater Running Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Page - 1 Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Section A Overview of Lands with Dry Climates The definition of a dry climate is tied to an understanding of the hydrologic cycle

More information

Chapter 10. Running Water aka Rivers. BFRB Pages

Chapter 10. Running Water aka Rivers. BFRB Pages Chapter 10 Running Water aka Rivers BFRB Pages 101-116 Stream Erosion and Transportation Running water is all precipitation (rain, snow, etc) that falls on Earth and is pulled downhill by gravity. Running

More information

Chapter 1 Section 2. Land, Water, and Climate

Chapter 1 Section 2. Land, Water, and Climate Chapter 1 Section 2 Land, Water, and Climate Vocabulary 1. Landforms- natural features of the Earth s land surface 2. Elevation- height above sea level 3. Relief- changes in height 4. Core- most inner

More information

Tropical Moist Rainforest

Tropical Moist Rainforest Tropical or Lowlatitude Climates: Controlled by equatorial tropical air masses Tropical Moist Rainforest Rainfall is heavy in all months - more than 250 cm. (100 in.). Common temperatures of 27 C (80 F)

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 7 Glaciers, Desert, and Wind 7.1 Glaciers Types of Glaciers A glacier is a thick ice mass that forms above the snowline over hundreds or thousands of

More information

Chapter 5: Glaciers and Deserts

Chapter 5: Glaciers and Deserts I. Glaciers and Glaciation Chapter 5: Glaciers and Deserts A. A thick mass of ice that forms over land from the compaction and recrystallization of snow and shows evidence of past or present flow B. Types

More information

What are the different ways rocks can be weathered?

What are the different ways rocks can be weathered? Romano - 223 What are the different ways rocks can be weathered? Weathering - the breakdown of rocks and minerals at the Earth s surface 1. 2. PHYSICAL WEATHERING Rock is broken into smaller pieces with

More information

STUDY AREA AND METHODOLOGY

STUDY AREA AND METHODOLOGY . CHAPTER 2 STUDY AREA AND METHODOLOGY 26 CHAPTER 2 STUDY AREA AND METHODOLOGY Kundalika is a major river in konkan region of Maharashtra. River originates in Western Ghats at an altitude of 820 m ASL

More information

FOREST RESEARCH INSTITUTE, DEHRADUN

FOREST RESEARCH INSTITUTE, DEHRADUN PROJECT REPORT DRAINAGE AND REPLENISHMENT STUDY OF MINED AREA OF GANGA SHYAMPUR RIVER HARIDWAR Submitted to UTTARAKHAND FOREST DEVELOPMENT CORPORATION (UFDC) 73, Nehru Road, Deharadun Prepared&Submitted

More information

NCM COMPUTER & BUSINESS ACADEMY ASSIGNMENT TERM

NCM COMPUTER & BUSINESS ACADEMY ASSIGNMENT TERM NCM COMPUTER & BUSINESS ACADEMY SUBJECT: GEOGRAPHY GRADE 12 ASSIGNMENT TERM 1-2016 TOTAL: 150 MARKS LECTURER: ANSWER ALL QUESTIONS CLIMATE, WEATHER AND GEOMORPHOLOGY Answer at least ONE question in this

More information

Chapter 11. Rivers: Shaping our landscape

Chapter 11. Rivers: Shaping our landscape Chapter 11 Rivers: Shaping our landscape Learning outcomes In this presentation you will learn: Common terms associated with rivers About the three stages of a river About the processes of river erosion

More information

Tarbela Dam in Pakistan. Case study of reservoir sedimentation

Tarbela Dam in Pakistan. Case study of reservoir sedimentation Tarbela Dam in Pakistan. HR Wallingford, Wallingford, UK Published in the proceedings of River Flow 2012, 5-7 September 2012 Abstract Reservoir sedimentation is a main concern in the Tarbela reservoir

More information

Flash flood disaster in Bayangol district, Ulaanbaatar

Flash flood disaster in Bayangol district, Ulaanbaatar Flash flood disaster in Bayangol district, Ulaanbaatar Advanced Training Workshop on Reservoir Sedimentation Management 10-16 October 2007. IRTCES, Beijing China Janchivdorj.L, Institute of Geoecology,MAS

More information

low turbidity high turbidity

low turbidity high turbidity What is Turbidity? Turbidity refers to how clear the water is. The greater the amount of total suspended solids (TSS) in the water, the murkier it appears and the higher the measured turbidity. Excessive

More information

Geography Class XI Fundamentals of Physical Geography Section A Total Periods : 140 Total Marks : 70. Periods Topic Subject Matter Geographical Skills

Geography Class XI Fundamentals of Physical Geography Section A Total Periods : 140 Total Marks : 70. Periods Topic Subject Matter Geographical Skills Geography Class XI Fundamentals of Physical Geography Section A Total Periods : 140 Total Marks : 70 Sr. No. 01 Periods Topic Subject Matter Geographical Skills Nature and Scope Definition, nature, i)

More information

Class Notes: Surface Processes

Class Notes: Surface Processes Name: Date: Period: Surface Processes The Physical Setting: Earth Science Class Notes: Surface Processes I. Weathering and Soils Weathering -! Sediments -! Weathering occurs when rocks are exposed to:

More information

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p. 95-125) Workbook Chapter 4, 5 THE BIG PICTURE: Weathering, erosion and deposition are processes that cause changes to rock material

More information

Changes in Texas Ecoregions Copy the questions and answers

Changes in Texas Ecoregions Copy the questions and answers Changes in Texas Ecoregions Copy the questions and answers 1. What are some kinds of damage that hurricanes cause? Roads and bridges might be washed away. Trees and power lines can be knocked down. Area

More information

Influence of the timing of flood events on sediment yield in the north-western Algeria

Influence of the timing of flood events on sediment yield in the north-western Algeria Calabria, 5-7 Septembre 2 4th International Workshop on Hydrological Extremes Session A : Modelling and forecast of hydrological extreme event Influence of the timing of flood events on sediment yield

More information

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life

Landscape evolution. An Anthropic landscape is the landscape modified by humans for their activities and life Landforms Landscape evolution A Natural landscape is the original landscape that exists before it is acted upon by human culture. An Anthropic landscape is the landscape modified by humans for their activities

More information

(version 3) I. HumAN -Environment Interaction

(version 3) I. HumAN -Environment Interaction (version 3) I. HumAN -Environment Interaction A. Landforms 1. Earth s topography is made up of many different types of landforms. 2. While the planet is covered primarily with water, the four major types

More information

Rivers and Streams. Streams. Hydrologic Cycle. Drainage Basins and Divides. Colorado River Drainage Basin. Colorado Drainage Basins.

Rivers and Streams. Streams. Hydrologic Cycle. Drainage Basins and Divides. Colorado River Drainage Basin. Colorado Drainage Basins. Chapter 14 Hydrologic Cycle Rivers and Streams Streams A stream is a body of water that is confined in a channel and moves downhill under the influence of gravity. This definition includes all sizes of

More information

forest tropical jungle swamp marsh prairie savanna pampas Different Ecosystems (rainforest)

forest tropical jungle swamp marsh prairie savanna pampas Different Ecosystems (rainforest) Different Ecosystems forest A region of land that is covered with many trees and shrubs. tropical jungle (rainforest) swamp A region with dense trees and a variety of plant life. It has a tropical climate.

More information

RIVERS, GROUNDWATER, AND GLACIERS

RIVERS, GROUNDWATER, AND GLACIERS RIVERS, GROUNDWATER, AND GLACIERS Delta A fan-shaped deposit that forms when a river flows into a quiet or large body of water, such as a lake, an ocean, or an inland sea. Alluvial Fan A sloping triangle

More information

Which particle of quartz shows evidence of being transported the farthest distance by the stream? A) B) C) D)

Which particle of quartz shows evidence of being transported the farthest distance by the stream? A) B) C) D) 1. Base your answer to the following question on the block diagram below, which represents the landscape features associated with a meandering stream. WX is the location of a cross section. Location A

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

Chapter 2 Planet Earth

Chapter 2 Planet Earth Chapter 2 Planet Earth Section Notes Earth and the Sun s Energy Water on Earth The Land Close-up The Water Cycle World Almanac Major Eruptions in the Ring of Fire Quick Facts Chapter 2 Visual Summary Video

More information

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant?

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant? 1. In which type of climate does chemical weathering usually occur most rapidly? 1. hot and dry 3. cold and dry 2. hot and wet 4. cold and wet 2. Figure 1 The map shows the top view of a meandering stream

More information

Essential Questions. What is erosion? What is mass wasting?

Essential Questions. What is erosion? What is mass wasting? Erosion Essential Questions What is erosion? What is mass wasting? What is Erosion? Erosion The transportation of sediment from one area to another Caused mainly by running water but also caused by glaciers,

More information

WHAT CAN MAPS TELL US ABOUT THE GEOGRAPHY OF ANCIENT GREECE? MAP TYPE 1: CLIMATE MAPS

WHAT CAN MAPS TELL US ABOUT THE GEOGRAPHY OF ANCIENT GREECE? MAP TYPE 1: CLIMATE MAPS WHAT CAN MAPS TELL US ABOUT THE GEOGRAPHY OF ANCIENT GREECE? MAP TYPE 1: CLIMATE MAPS MAP TYPE 2: PHYSICAL AND/OR TOPOGRAPHICAL MAPS MAP TYPE 3: POLITICAL MAPS TYPE 4: RESOURCE & TRADE MAPS Descriptions

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

How does erosion happen?

How does erosion happen? How does erosion happen? By National Geographic, adapted by Newsela staff on 10.03.17 Word Count 682 Level 830L These rock formations, in Bryce Canyon National Park, Utah, are called hoodoos. Although

More information

Lectures Hydrology & Fluvial Geomorphology. Gauley River Images. Ancients' (= Biblical) Model of Water (Hydrologic) Cycle

Lectures Hydrology & Fluvial Geomorphology. Gauley River Images. Ancients' (= Biblical) Model of Water (Hydrologic) Cycle Lectures 11-13 13 Hydrology & Fluvial Geomorphology Gauley River Images http://www.youtube.com/watch?v=eulmuyegtz4&feature=related Ancients' (= Biblical) Model of Water (Hydrologic) Cycle Stream Water

More information

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 5 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. Water erosion begins when runoff from rainfall flows in a thin layer over the land

More information

Unit 4: Landscapes Practice Problems

Unit 4: Landscapes Practice Problems Name: Date: 1. Soil with the greatest porosity has particles that are A. poorly sorted and densely packed B. poorly sorted and loosely packed C. well sorted and densely packed D. well sorted and loosely

More information