% of Earth s History 78.0% 43.0% 9.3% 8.0% 3.8% 0.1%

Size: px
Start display at page:

Download "% of Earth s History 78.0% 43.0% 9.3% 8.0% 3.8% 0.1%"

Transcription

1 S EARTH ORIGIN

2 P * % of Earth s History 78.0% 43.0% 9.3% 8.0% 3.8% 0.1%

3 S Order of Planets from the Sun Sizes are Relative Distances are not Accurate

4 S Order of Planets from the Sun Sizes are Relative Distances are not Accurate

5 S Milky Way Galaxy

6

7

8

9

10

11

12 Inside the Earth

13 This drilling ship samples sediment and rock from the deep ocean floor. It can only sample materials well within the upper crust of the earth, however, barely scratching the surface of the earth's interior

14 The Earth is thought to have formed some 4.6 billion years ago. It is thought to have formed from a disk of particles and grains that condensed and then were pulled together by gravitational attraction until it became massive enough to eventually become planet sized.

15 In the early years the Earth was bombarded by fragments that were left over from the formation of new planets and satellites. This bombardment heated up the Earth s surface, liquefying the surface to hot, molten lava. Eventually this magma cooled and formed igneous rocks.

16 A second heating of the Earth occurred from the inside as uranium, thorium, and other isotopes began to decay. As the rate of nuclear decay began to slow down, the outer layer (the crust) slowly cooled. Today the inside is still molten and the crust is cool and hard.

17 The center of the Earth is an extreme place. Pressure estimates are 3.5 million atmospheres. Temperature estimates are 6,000 O C (11,000 O F)

18 Earth s Interior

19 Indirect Study of the Earth's Interior - Geophysics - Seismic Waves - Gravity - Heat Flow - Magnetic Field

20 Evidence from Seismic Waves

21 Evidence from Seismic Waves Seismic waves or vibrations from a large earthquake (or underground nuclear test) will pass through the entire Earth Seismic reflection - the return of some waves to the surface after bouncing off a rock layer boundary Sharp boundary between two materials of different densities will reflect seismic waves Seismic refraction - bending of seismic waves as they pass from one material to another having different seismic wave velocities

22 Seismic Waves A vibration that moves through the Earth. Body waves Seismic waves that travel through the Earth s interior, spreading outward from a disturbance in all directions.

23 Two types of body waves P-waves A pressure wave where the material vibrates back and forth in the same direction as the wave movement. Can pass through rock. Can pass through a liquid

24 S-waves A sideways wave in which the disturbance vibrates material side to side, perpendicular to the direction to the wave movement. Can pass through rock. Can not pass through a liquid

25 Can we just go there? Deep interior of the Earth must be studied indirectly Direct access only to crustal rocks and small upper mantle fragments brought up by volcanic eruptions or slapped onto continents by subducting oceanic plates Deepest drillhole reached about 12 km, but did not reach the mantle Geophysics is the branch of geology that studies the interior of the Earth SE Germany 10 km drill hole

26 (A)A P-wave is illustrated by a sudden push on a stretched spring. The pushedtogether section (compression) moves in the direction of the wave movement, left to right in the example. (B) An S- wave is illustrated by a sudden shake of a stretched rope. The looped section (sideways) moves perpendicular to the direction of wave movement, again left to right.

27 Surface Waves Seismic waves that travel on the Earth s surface.

28 Seismograph The velocity of both S- and P-waves is determined by the density and rigidity of the material. Waves travel faster in denser more rigid material. Waves are reflected at boundaries where elastic properties differ. If the reflected waves reach the surface, they can be measured by a seismograph. Wave refraction can also be used to determine properties of the interior of the Earth. Waves are refracted (bent) when they pass from a layer with higher density to a layer with lower density.

29 Seismic waves require a certain time period to reflect from a rock boundary below the surface. Knowing the velocity, you can use the time required to calculate the depth of the boundary.

30 (A)A seismic wave moving from a slower-velocity layer to a highervelocity layer is refracted up. (B) The reverse occurs when a wave passes from a highervelocity to a slower-velocity layer.

31 (A)This illustrates the curved path of seismic waves between an explosion and a recording seismograph van. The curved path is caused by increasing seismic velocity with depth in uniform rock. (B) This illustrates increasing seismic velocity with depth in uniform rock. The waves curve out in all directions from a disturbance.

32 Earth s Internal Structure

33 Seismic waves have been used to determine three main layers of the Earth: the crust, mantle and core Earth s Internal Structure The crust is the outer layer of rock that forms a thin skin on Earth s surface (granite, feldspars, quartz) The mantle is a thick shell of dense rock that separates the crust above from the core below (olivine composition) The core is the metallic central zone of the Earth (metallic)

34 The Crust The crust is the thin layer of solid, brittle material that covers the Earth. There are some differences in the crust depending on where on the surface you are. The crust under the ocean is much thinner than the crust under the continents. Seismic waves move faster through the oceanic crust that through the continental crust. The material that makes up the crust is called sial This is due to the fact that it is mostly made up of rocks containing silicon and aluminum. The oceanic crust is called sima as it is made up mostly of rocks containing silicon and magnesium.

35 The structure of the earth's interior.

36 There is a sharp boundary between the crust and the mantle that is called the Mohorovicic discontinuity or Moho for short. This is an area of increased velocity of seismic waves as the material is denser in the mantle (due to higher proportion of ferromagnesium materials and the crust is higher in silicates). There are differences in the material that makes up the continental crust and the oceanic crust. The continental crust is at least 3.8 billion years old, while the oceanic crust is 200 million years in the oldest parts. Continental crust is made mostly of less dense (2.7 g/cm 3 ) granite type rock, while the oceanic crust is made of more dense (3.0g/cm 3 ) basaltic rock.

37 Continental crust is less dense, granite-type rock, while the oceanic crust is more dense, basaltic rock. Both types of crust behave as if they were floating on the mantle, which is more dense than either type of crust.

38 The Crust Seismic wave studies indicate crust is thinner and denser beneath the oceans than on the continents Different seismic wave velocities in oceanic (7 km/sec) vs. continental (~6 km/sec) crustal rocks are indicative of different compositions Oceanic crust is mafic, composed primarily of basalt and gabbro Continental crust is felsic, with an average composition similar to granite

39 The Mantle Seismic wave studies indicate the mantle, like the crust, is made of solid rock with only isolated pockets of magma Higher seismic wave velocity (8 km/sec) of mantle vs. crustal rocks indicative of denser, ultramafic composition

40 The Mantle Lithosphere Crust and upper mantle together form the lithosphere, the brittle outer shell of the Earth that makes up the tectonic plates Lithosphere averages 70 km thick beneath oceans and km thick beneath continents

41 The Asthenosphere Beneath the lithosphere, seismic wave speeds abruptly decrease in a plastic (ductile) low-velocity zone called the asthenosphere Are low seismic velocities caused by partial melt, water, density?

42 The Mantle The mantle is the middle part of the Earth s interior. 2,870 km thick between the crust and the core.

43 At about 400 and 700 km the pressure and temperature of the mantle increase and change the structure of the olivine minerals found. above 400 km the typical tetrahedral silicate olivines are found with one silicon surrounded by 4 oxygen atoms. At 400 km, the increase pressure and temperature result in a structure that collapses on itself and produces a silicate that is more dense than that found in the upper 400 km. At 700 km the structure is changed again, this time to a silicon atom surrounded by 6 oxygen atoms.

44 Seismic wave velocities increase at depths of about 400 km and 700 km (about 250 mi and 430 mi). This finding agrees closely with laboratory studies of changes in the character of mantle materials that would occur at these depths from increases in temperature and pressure.

45 700 km is the boundary between the upper mantle and the lower mantle. No earthquakes occur in the lower mantle.

46 A Different Structure Asthenosphere. A thin zone in the mantle that is from 130 to 160 km deep, where seismic waves undergo a sharp decrease in velocity. This is a layer of hot, elastic semi-fluid material that extends around the entire Earth. Lithosphere. The solid, brittle rock that occurs just above the asthenosphere Includes the crust, the Moho, and the upper part of the mantle. Mesosphere. The material below the asthenosphere.

47 The earth's interior, showing the weak, plastic layer called the asthenosphere. The rigid, solid layer above the asthenosphere is called the lithosphere. The lithosphere is broken into plates that move on the upper mantle like giant tabular ice sheets floating on water. This arrangement is the foundation for plate tectonics, which explains many changes that occur on the earth's surface such as earthquakes, volcanoes, and mountain building.

48 The Core Seismic wave studies have provided primary evidence for existence and nature of Earth s core Specific areas on the opposite side of the Earth from large earthquakes do not receive seismic waves, resulting in seismic shadow zones

49 Seismic Shadow Zones P-wave shadow zone ( from epicenter) explained by refraction of waves encountering coremantle boundary S-wave shadow zone ( 103 from epicenter) suggests outer core is a liquid

50 The Core Core composition inferred from its calculated density, physical and electromagnetic properties, and composition of meteorites Iron metal (liquid in outer core and solid in inner core) best fits observed properties Iron is the only metal common in meteorites Core-mantle boundary (D layer) is marked by great changes in seismic velocity, density and temperature Hot core may melt lowermost mantle or react chemically to form iron silicates in this seismic wave ultralow-velocity zone (ULVZ)

51 Earth s Core An earthquake will send out P-waves over the entire globe, except for an area between 103 O and 142 O of arc from the earthquake. This is called the P-wave shadow zone, as no P-waves are received here. P-waves appear to be refracted by the core, which leaves a shadow.

52 The P-wave shadow zone, caused by refraction of P- waves within the earth's core.

53 There is also an S-wave shadow zone that is larger than the P-wave shadow zone. S-waves are not recorded in the entire region more than 103 O away from the epicenter. There appear to be 2 parts to the core. The inner core with a radius of about 1,200 km (750 mi) The inner core appears to be solid The outer core has a radius of about 3,470 km (2,160 mi) The core begins at a depth of about km (1,800 mi)

54 The S-wave shadow zone. Since S-waves cannot pass through a liquid, at least part of the core is either a liquid or has some of the same physical properties as a liquid.

55 Inner Core Rotation Song and Richards (Columbia U.) later confirmed the rotation rate of the inner core to be 1 o /year faster than the Earth's rotation.

56 Isostasy

57 Isostasy is an equilibrium between adjacent blocks of the crust as they float on the upper mantle. There is an upward buoyant force that is exerted on the crust by the upper mantle. This is because there is greater pressure upward from the upper mantle than there is downward from the crust.

58 Isostatic adjustment. The crustal plates sink to a depth where the pressure is greater than the downward pressure and they are buoyed up by this increased pressure. The crust can be viewed as a tall block with a deep root that extends into the mantle.

59 (A)Isostasy is an equilibrium between the upward buoyant force and the downward force, or weight, of an object in a fluid. (B) The earth's continental crust can be looked upon as blocks of granitelike materials floating on a more dense, liquidlike mantle. The thicker the continental crust, the deeper it extends into the mantle.

60 Earth s Magnetic Field

61 Earth s Magnetic Field A magnetic field (region of magnetic force) surrounds the Earth Field has north and south magnetic poles Earth s magnetic field is what a compass detects Recorded by magnetic minerals (e.g., magnetite) in igneous rocks as they cool below their Curie Point

62 Earth s Magnetic Field Magnetic reversals - times when the poles of Earth s magnetic field switch Recorded in magnetic minerals Occurred many times; timing appears chaotic After next reversal, a compass needle will point toward the south magnetic pole Paleomagnetism - the study of ancient magnetic fields in rocks allows reconstruction of plate motions over time

63 The Earth s magnetic field is produced by the slowly moving liquid part of the iron core. The Earth s magnetic field circulates around the geographic poles. It also undergoes occasional flips of polarity, called Magnetic reversal. The magnetic orientation that we are currently experiencing has persisted for about 700,000 years and is currently about to undergo another reversal. Since the magnetic field also deflects cosmic rays, solar wind, and charged particles, this reversal could represent a major environmental hazard for all life on the Earth.

64 Formation of magnetic strips on the seafloor. As each new section of seafloor forms at the ridge, iron minerals become magnetized in a direction that depends on the orientation of the earth's field at that time. This makes a permanent record of reversals of the earth's magnetic field.

65 There are several lines of evidence for this reversal of field. Iron particles found in Roman artifacts show that the Earth;s magnetic field was 40% stronger then than it is now. At this rate the field strength would be zero in 2,000 years. Iron minerals that are crystallized on igneous rock, point toward the magnetic poles like compasses. These give us evidence of the strength and the direction of the magnetic field in the past.

66 Magnetic Field Reversals - Computer simulations from Los Alamos (Glatzmaier) - Also predicted the inner core must be spinning faster than Earth - These perturbations may initiate reversals

67 The earth's magnetic field. Note that the magnetic north pole and the geographic North Pole are not in the same place. Note also that the magnetic north pole acts as if the south pole of a huge bar magnet were inside the earth. You know that it must be a magnetic south pole, since the north end of a magnetic compass is attracted to it, and opposite poles attract.

68 Magnetite mineral grains align with the earth's magnetic field and are frozen into position as the magma solidifies. This magnetic record shows the earth's magnetic field has reversed itself in the past.

69 Plate Tectonics

70 Introduction When one looks at a globe, it is easy to visualize how the continents at one time in the Earth s history could have been bound together. North and South America seem to fit into Europe and Africa in a slight s-shaped curve. Alfred Wegener proposed that the continents were at one time part of a super continent, called Pangaea Wegener further hypothesized that the continents had moved apart during the history of the Earth by what is called continental drift.

71 (A)Normal position of the continents on a world map. (B) A sketch of South America and Africa, suggesting that they once might have been joined together and subsequently separated by a continental drift.

72 Recall that the crust floats on the more liquid mantle and is buoyed up by its density. Recall also that the mantle is molten, which gives it great pressure and temperature. Given these lines of thought, it is not hard to see how the continents, already floating on the magma which is at great pressures, could be forced apart at certain areas where perhaps the crust was weaker or could be forced to break (fault).

73 Evidence from the Ocean The ocean contains chains of mountains called oceanic ridges. The ocean also contains long, narrow trenches that always run parallel to the continents, called oceanic trenches.

74 Three kinds of observations started scientists to wonder in the direction that allowed an explanation for Wegener s continental drift. All submarine earthquakes that were found and measured were found to occur in a narrow band under the crest of the Mid-Atlantic Ridge There is a long valley that runs along the crest of the Mid-Atlantic Ridge, called a rift. There was a large amount of heat escaping from this rift.

75 The Mid- Atlantic Ridge divides the Atlantic Ocean into two nearly equal parts. Where the ridge reaches above sea level, it makes oceanic islands, such as Iceland.

76 It was thought that the rift might be a crack in the Earth s crust. This lead to the formation of the Seafloor Spreading hypothesis Hot, molten rock moved from the interior of the Earth to emerge alone the rift, flowing out in both directions to create new rocks along the rift.

77 The pattern of seafloor ages on both sides of the Mid- Atlantic Ridge reflects seafloor spreading activity. Younger rocks are found closer to the ridge.

78 Lithosphere Plates and Boundaries Plate tectonics states that the lithosphere is broken into fairly rigid plates that move on the asthenosphere. Some plates contain part of a continent and part of an ocean basin, while others contain only ocean basins. Earthquakes, volcanoes, and the most rapid changes in the Earth s crust occur at these plate boundaries.

79 The major plates of the lithosphere that move on the asthenosphere. Source: After W. Hamilton, U.S. Geological Survey.

80 Three kinds of plate boundaries that describe how one plate moves relative to another. Divergent boundaries. Occur where two plates are moving away from each other. This forms a new crust zone, where the magma flows as the plates separate releasing the pressure on the.» This forms new crust material

81 A divergent boundary is a new crust zone where molten magma from the asthenosphere rises, cools, and adds new crust to the edges of the separating plates. Magma that cools at deeper depths forms a coarse-grained basalt, while surface lava cools to a fine-grained basalt. Note that deposited sediment is deeper farther from the spreading rift.

82 Convergent boundaries. Occurs where two plates are moving toward each other. Old crust is returned to the asthenosphere where the plates collide forming a subduction zone. The lithosphere of one plate is subducted under the other plate.

83 Ocean-continent plate convergence. This type of plate boundary accounts for shallow and deep-seated earthquakes, an oceanic trench, volcanic activity, and mountains along the coast.

84 Ocean-ocean plate convergence. This type of plate convergence accounts for shallow and deep-focused earthquakes, an oceanic trench, and a volcanic arc above the subducted plate.

85 Continent-continent plate convergence. Rocks are deformed, and some lithosphere thickening occurs, but neither plate is subducted to any great extent.

86 Transform boundaries. Occur where two plates are sliding past each other. This produces the vibrations that are commonly felt as earthquakes, such as those felt in California.

87 Present-day Understandings Currently the most commonly accepted theory of plate movement is that slowly turning convective cells in the plastic asthenosphere drive the plates. Hot materials rise at the diverging plate boundaries. Some of this material escapes and forms new crust, but some spreads out under the lithosphere. As it moves it drags the overlying plate with it. Eventually it cools and sinks back inward to the subduction zone.

88 Not to scale. One idea about convection in the mantle has a convection cell circulating from the core to the lithosphere, dragging the overlying lithosphere laterally away from the oceanic ridge.

Earth s Interior and Geophysical Properties. Chapter 13

Earth s Interior and Geophysical Properties. Chapter 13 Earth s Interior and Geophysical Properties Chapter 13 Introduction Can we just go there? Deep interior of the Earth must be studied indirectly Direct access only to crustal rocks and upper mantle fragments

More information

Continental Drift and Plate Tectonics

Continental Drift and Plate Tectonics Continental Drift and Plate Tectonics Continental Drift Wegener s continental drift hypothesis stated that the continents had once been joined to form a single supercontinent. Wegener proposed that the

More information

Chapter 7 Plate Tectonics

Chapter 7 Plate Tectonics Chapter 7 Plate Tectonics Earthquakes Earthquake = vibration of the Earth produced by the rapid release of energy. Seismic Waves Focus = the place within the Earth where the rock breaks, producing an earthquake.

More information

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure.

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure. Standard 2: Students will understand Earth s internal structure and the dynamic nature of the tectonic plates that form its surface. Standard 2, Objective 1: Evaluate the source of Earth s internal heat

More information

sonar seismic wave basalt granite

sonar seismic wave basalt granite geologist sonar crust geology seismic wave mantle constructive force basalt inner core destructive force granite outer core The solid, rocky, surface layer of the earth. an instrument that can find objects

More information

22.4 Plate Tectonics. Africa

22.4 Plate Tectonics. Africa The Red Sea between Africa and the Arabian peninsula in Asia marks a region where two pieces of the lithosphere are slowly moving apart. Over the next 100 million years, the Red Sea could become an ocean.

More information

D) outer core B) 1300 C A) rigid mantle A) 2000 C B) density, temperature, and pressure increase D) stiffer mantle C) outer core

D) outer core B) 1300 C A) rigid mantle A) 2000 C B) density, temperature, and pressure increase D) stiffer mantle C) outer core 1. In which area of Earth's interior is the pressure most likely to be 2.5 million atmospheres? A) asthenosphere B) stiffer mantle C) inner core D) outer core Base your answers to questions 2 and 3 on

More information

The Four Layers The Earth is composed of four different layers. The crust is the layer that you live on, and it is the most widely studied and

The Four Layers The Earth is composed of four different layers. The crust is the layer that you live on, and it is the most widely studied and Earth s Structure The Four Layers The Earth is composed of four different layers. The crust is the layer that you live on, and it is the most widely studied and understood. The mantle is much hotter and

More information

Plate Tectonics: A Scientific Revolution Unfolds

Plate Tectonics: A Scientific Revolution Unfolds Chapter 2 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Plate Tectonics: A Scientific Revolution Unfolds Tarbuck and Lutgens From Continental Drift to Plate Tectonics Prior to the

More information

UNIT 6 PLATE TECTONICS

UNIT 6 PLATE TECTONICS UNIT 6 PLATE TECTONICS CONTINENTAL DRIFT Alfred Wegner proposed the theory that the crustal plates are moving over the mantle. He argued that today s continents once formed a single landmass, called Pangaea

More information

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow sea beds, floats! ii. Oceanic: er; dense rock such as

More information

Geologists are scientists who study Earth. They want to

Geologists are scientists who study Earth. They want to What Is Inside Earth? Figure 1 Over time, the Grand Canyon in Arizona was carved out by the flowing water of the Colorado River. We can see that Earth s surface is constantly changing. But what is happening

More information

Earth Movement and Resultant Landforms

Earth Movement and Resultant Landforms Earth Movement and Resultant Landforms Structure of the Earth Lithosphere : earth s crust Asthenosphere : upper mantle zone where material is near its melting point & acts almost like liquid (appprox.

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 9 Plate Tectonics 9.1 Continental Drift An Idea Before Its Time Wegener s continental drift hypothesis stated that the continents had once been joined

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 9 Plate Tectonics 9.1 Continental Drift An Idea Before Its Time Wegener s continental drift hypothesis stated that the continents had once been joined

More information

UNIT 4: Earth Science Chapter 12: Earth s Internal Processes (pages )

UNIT 4: Earth Science Chapter 12: Earth s Internal Processes (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

Plate Tectonics. Earth has distinctive layers - Like an onion

Plate Tectonics. Earth has distinctive layers - Like an onion Plate Tectonics Earth has distinctive layers - Like an onion Earth s Interior Core: Metallic (Iron, Nickel) Inner (hot, solid, dense, Iron, Nickel) Outer (cooler, liquid, less dense) Crust (outermost layer):

More information

Name Date Class. How have geologists learned about Earth s inner structure? What are the characteristics of Earth s crust, mantle, and core?

Name Date Class. How have geologists learned about Earth s inner structure? What are the characteristics of Earth s crust, mantle, and core? Chapter 4 Plate Tectonics Section 1 Summary Earth s Interior How have geologists learned about Earth s inner structure? What are the characteristics of Earth s crust, mantle, and core? Earth s surface

More information

Directed Reading. Section: The Theory of Plate Tectonics. to the development of plate tectonics, developed? HOW CONTINENTS MOVE

Directed Reading. Section: The Theory of Plate Tectonics. to the development of plate tectonics, developed? HOW CONTINENTS MOVE Skills Worksheet Directed Reading Section: The Theory of Plate Tectonics 1. The theory that explains why and how continents move is called. 2. By what time period was evidence supporting continental drift,

More information

Section 1: Continental Drift

Section 1: Continental Drift Plate Tectonics Section 1 Section 1: Continental Drift Preview Key Ideas Wegener s Hypothesis Sea-Floor Spreading Paleomagnetism Wegener Redeemed Continental Drift (Pangaea) Plate Tectonics Section 1 Key

More information

Deep cracks that form between two tectonic plates that are pulling away from each other

Deep cracks that form between two tectonic plates that are pulling away from each other Also the process by which solid rock flows slowly when under pressure, as in the asthenosphere Deep cracks that form between two tectonic plates that are pulling away from each other Also the process by

More information

THE INTERNAL STRUCTURE OF THE EARTH

THE INTERNAL STRUCTURE OF THE EARTH UNIT 1 THE INTERNAL STRUCTURE OF THE EARTH 1.1.Earth s interior layers The interior of the Earth can be divided into layers according to: -Composition layers ( organized in order of increasing density

More information

Full file at

Full file at Chapter 2 PLATE TECTONICS AND PHYSICAL HAZARDS MULTIPLE-CHOICE QUESTIONS 1. What direction is the Pacific Plate currently moving, based on the chain of Hawaiian Islands with only the easternmost island

More information

10/27/2014. Before We Begin, You Need to Understand These Terms: Earth s Structural Key Elements & the Hazards of Plate Movement

10/27/2014. Before We Begin, You Need to Understand These Terms: Earth s Structural Key Elements & the Hazards of Plate Movement Earth s Structural Key Elements & the Hazards of Plate Movement Before We Begin, You Need to Understand These Terms: Density Convection Currents AICE EM: Lithosphere Key Content 1 & 2 Density: heat rises,

More information

Unit Topics. Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes

Unit Topics. Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes The Dynamic Earth Unit Topics Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes Topic 1: Earth s Interior Essential Question:

More information

Ch. 9 Review. Pgs #1-31 Write Questions and Answers

Ch. 9 Review. Pgs #1-31 Write Questions and Answers Ch. 9 Review Pgs. 356-357 #1-31 Write Questions and Answers 356-357 #1-5 Answers 1. The layer of the upper mantle that can flow is the: A - Asthenosphere 2. Most scientists rejected Wegener s theory of

More information

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by:

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: Topic 5: The Dynamic Crust (workbook p. 65-85) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by: --sedimentary horizontal rock layers (strata) are found

More information

1. In the diagram below, letters A and B represent locations near the edge of a continent.

1. In the diagram below, letters A and B represent locations near the edge of a continent. 1. In the diagram below, letters A and B represent locations near the edge of a continent. A geologist who compares nonsedimentary rock samples from locations A and B would probably find that the samples

More information

Plate Tectonics Tutoiral. Questions. Teacher: Mrs. Zimmerman. Plate Tectonics and Mountains Practice Test

Plate Tectonics Tutoiral. Questions. Teacher: Mrs. Zimmerman. Plate Tectonics and Mountains Practice Test Teacher: Mrs. Zimmerman Print Close Plate Tectonics and Mountains Practice Test Plate Tectonics Tutoiral URL: http://www.hartrao.ac.za/geodesy/tectonics.html Questions 1. Fossils of organisms that lived

More information

Earth s Interior. Use Target Reading Skills. Exploring Inside Earth

Earth s Interior. Use Target Reading Skills. Exploring Inside Earth Plate Tectonics Name Date Class Earth s Interior This section explains how scientists learn about Earth s interior. The section also describes the layers that make up Earth and explains why Earth acts

More information

Continental Drift. & Plate Tectonics

Continental Drift. & Plate Tectonics Continental Drift & Plate Tectonics Alfred Wegener, a German scientist, proposed the hypothesis of CONTINENTAL DRIFT, in 1912. Hypothesis stated: All Earth s continents were once a single landmass (Pangaea)

More information

Ch 17 Plate Tectonics Big Idea: Most geologic activity occurs at the boundaries between plates.

Ch 17 Plate Tectonics Big Idea: Most geologic activity occurs at the boundaries between plates. Ch 17 Plate Tectonics Big Idea: Most geologic activity occurs at the boundaries between plates. 17.1 Drifting Continents 17.2 Seafloor Spreading 17.3 Plate Boundaries 17.4 Causes of Plate Motions Learning

More information

Unit 4 Lesson 6 Plate Tectonics

Unit 4 Lesson 6 Plate Tectonics Unit 4 Lesson 6 Plate Tectonics Indiana Standards 7.2.1 Describe how the earth is a layered structure composed of lithospheric plates, a mantle and a dense core. 7.2.4 Explain how convection currents in

More information

Chapter 5 Notes: Plate Tectonics

Chapter 5 Notes: Plate Tectonics Chapter 5 Notes: Plate Tectonics Earth s Interior Scientists learn about the interior of Earth in 2 ways o Direct Method Rock Samples Drilling Caves o Indirect Method Seismic Waves Speed of waves and paths

More information

Plate Tectonics. entirely rock both and rock

Plate Tectonics. entirely rock both and rock Plate Tectonics I. Tectonics A. Tectonic Forces are forces generated from within Earth causing rock to become. B. 1. The study of the origin and arrangement of Earth surface including mountain belts, continents,

More information

Plate Tectonics. Structure of the Earth

Plate Tectonics. Structure of the Earth Plate Tectonics Structure of the Earth The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties.

More information

Dynamic Crust Practice

Dynamic Crust Practice 1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides

More information

Plate Tectonics Practice Test

Plate Tectonics Practice Test Plate Tectonics Practice Test 1. What is the main idea Alfred Wegner proposed in the Theory of Continental Drift that he published in 1915? a. The continents float on a liquid layer that allows them to

More information

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH UNIT 3.2 An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. USE THESE NOTES: OUR HOME PLANET EARTH: What do you know about our planet? SO.HOW

More information

Outcome C&D Study Guide

Outcome C&D Study Guide Name: Class: Outcome C&D Study Guide Identify the layers of Earth s interior Lithosphere the upper most layer of the earth that includes the crust and the hard outer mantle. It is fractured into tectonic

More information

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge? 1. Crustal formation, which may cause the widening of an ocean, is most likely occurring at the boundary between the A) African Plate and the Eurasian Plate B) Pacific Plate and the Philippine Plate C)

More information

Plate Tectonics. Continental Drift Sea Floor Spreading Plate Boundaries

Plate Tectonics. Continental Drift Sea Floor Spreading Plate Boundaries Plate Tectonics Continental Drift Sea Floor Spreading Plate Boundaries Continental Drift 1915, Alfred Wegener - Pangea hypothesis: suggested Earth s continents were part of a large super-continent 200

More information

PSc 201 Chapter 3 Homework. Critical Thinking Questions

PSc 201 Chapter 3 Homework. Critical Thinking Questions PSc 201 Chapter 3 Homework Critical Thinking Questions 1. (adapted from text) Seawater is denser than fresh water. A ship moving from the Atlantic Ocean into the Great Lakes goes from seawater to fresh

More information

Features of Tectonic Plates

Features of Tectonic Plates Features of Tectonic Plates PowerPoint 12.2 The Earth s Layers Crust Brittle Continental crust composed mainly of granite Oceanic crust composed mainly of basalt Mantle Denser than the crust Upper is molten

More information

DYNAMIC CRUST AND THE EARTH S INTERIOR

DYNAMIC CRUST AND THE EARTH S INTERIOR Name DYNAMIC CRUST AND THE EARTH S INTERIOR Regents Earth Science I EARTHQUAKES Earthquake Any natural shaking of the Earth caused by displacement of rock. Terms: (1) Focus- The point within the crust

More information

TEST NAME:Geology part 1 TEST ID: GRADE:06 - Sixth Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom

TEST NAME:Geology part 1 TEST ID: GRADE:06 - Sixth Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom TEST NAME:Geology part 1 TEST ID:1542715 GRADE:06 - Sixth Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom Geology part 1 Page 1 of 6 Student: Class: Date: 1. The picture below shows

More information

CONTINENTAL DRIFT THEORY

CONTINENTAL DRIFT THEORY CONTINENTAL DRIFT THEORY Proof or crazy idea? CONTINENTAL DRIFT THEORY What is Continental Drift Theory? Continental drift theory (CDT): Alfred Wegener found all the continents were once together called

More information

Plate Tectonics. Chapter 5

Plate Tectonics. Chapter 5 Plate Tectonics Chapter 5 Earth s Interior Scientists learn about the interior of Earth in 2 ways Direct Method Rock Samples Drilling Caves Earth s Interior Indirect Method Seismic Waves Speed of waves

More information

The Earth. Part II: Solar System. The Earth. 1a. Interior. A. Interior of Earth. A. The Interior. B. The Surface. C. Atmosphere

The Earth. Part II: Solar System. The Earth. 1a. Interior. A. Interior of Earth. A. The Interior. B. The Surface. C. Atmosphere Part II: Solar System The Earth The Earth A. The Interior B. The Surface C. Atmosphere 2 Updated: July 14, 2007 A. Interior of Earth 1. Differentiated Structure 2. Seismography 3. Composition of layers

More information

5. Convergent boundaries produce a relatively low number of earthquakes compared to other boundaries. a. True

5. Convergent boundaries produce a relatively low number of earthquakes compared to other boundaries. a. True 1. Earth s crust is thinner than its mantle. ANSWER: True 2. The concept of isostacy states that high-density rock will stand higher than low-density rock, which explains the formation of subduction zones.

More information

Origin of the Oceans II. Earth A Living Planet. Earthquakes and Volcanoes. Plate Tectonics II

Origin of the Oceans II. Earth A Living Planet. Earthquakes and Volcanoes. Plate Tectonics II Origin of the Oceans II Plate Tectonics II Earth A Living Planet Heat of formation of the planet is trapped at center, gradually escaping Center is nickel and iron Earthquakes and Volcanoes 1 Tracing the

More information

In 1912 Alfred Wegener proposed Continental Drift the continents have moved over time the continents were part of one giant landmass named Pangaea.

In 1912 Alfred Wegener proposed Continental Drift the continents have moved over time the continents were part of one giant landmass named Pangaea. Plate Tectonics In 1912 Alfred Wegener proposed Continental Drift the continents have moved over time the continents were part of one giant landmass named Pangaea. Pangaea Landmass movements over millions

More information

Directed Reading. Section: Continental Drift. years ago? WEGENER S HYPOTHESIS

Directed Reading. Section: Continental Drift. years ago? WEGENER S HYPOTHESIS Skills Worksheet Directed Reading Section: Continental Drift 1. Who obtained new information about the continents and their coastlines 400 years ago? 2. What did people notice when they studied new world

More information

Plate Tectonics CHAPTER 17

Plate Tectonics CHAPTER 17 Plate Tectonics CHAPTER 17 Layers of the Earth A. Crust- solid, 5-70 km thick Moho Two Types of Crust: Oceanic- ocean floor, more dense then because of more iron Continental-dry land (mostly silicates

More information

Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion

Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion Key Terms Crust Mantle Core Lithosphere Plate Tectonics

More information

PLATE TECTONICS. SECTION 17.1 Drifting Continents

PLATE TECTONICS. SECTION 17.1 Drifting Continents Date Period Name PLATE TECTONICS SECTION.1 Drifting Continents In your textbook, read about continental drift. Circle the letter of the choice that best completes each statement. 1. Early mapmakers thought

More information

12/3/2014. Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7. Continental drift: an idea before its time

12/3/2014. Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7. Continental drift: an idea before its time Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7 Stanley C. Hatfield Southwestern Illinois College Continental drift: an idea before its time Alfred Wegener First proposed

More information

Earth s Structure and Surface

Earth s Structure and Surface Earth s Structure and Surface Structure of the Earth The earth is thought have originated about 4.5 billion years ago from a cloud or clouds of dust. The dust was the remains of a huge cosmic explosion

More information

Sir Francis Bacon, 1620, noted that the continental coasts on opposites sides of the Atlantic fit together like puzzle pieces.

Sir Francis Bacon, 1620, noted that the continental coasts on opposites sides of the Atlantic fit together like puzzle pieces. Plate Tectonics Sir Francis Bacon, 1620, noted that the continental coasts on opposites sides of the Atlantic fit together like puzzle pieces. Could North and South America once have been joined to Europe

More information

Exploring Inside the Earth

Exploring Inside the Earth Plate Tectonics Exploring Inside the Earth Geologists have used evidence from rock samples and evidence from seismic waves to learn about Earth s interior. Geologists are scientists who study the forces

More information

Marine Science and Oceanography

Marine Science and Oceanography Marine Science and Oceanography Marine geology- study of the ocean floor Physical oceanography- study of waves, currents, and tides Marine biology study of nature and distribution of marine organisms Chemical

More information

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway The Earth is more than a giant ball made up of dirt, rocks, and minerals. The Earth may look like a giant ball from when looking at it from

More information

6. In the diagram below, letters A and B represent locations near the edge of a continent.

6. In the diagram below, letters A and B represent locations near the edge of a continent. 1. Base your answer to the following question on the cross section below and on your knowledge of Earth science. The cross section represents the distance and age of ocean-floor bedrock found on both sides

More information

Yanbu University College. General Studies Department. PHSC001 Course. Chapter9 (Basic Geology: Earthquakes and volcanoes ) Worksheet Solutions

Yanbu University College. General Studies Department. PHSC001 Course. Chapter9 (Basic Geology: Earthquakes and volcanoes ) Worksheet Solutions Yanbu University College General Studies Department PHSC001 Course Chapter9 (Basic Geology: Earthquakes and volcanoes ) Worksheet Solutions Phsc001 worksheet9 solutions, yuc Page 1-6 Chapter 9 worksheet

More information

Earth Systems, Structures and Processes

Earth Systems, Structures and Processes Earth Systems, Structures and Processes Date: 6.E.2 Understand the structure of the earth and how interactions of constructive and destructive forces have resulted in changes in the surface of the Earth

More information

CHAPTER 9. Basics Of geology: earthquakes & volcanoes

CHAPTER 9. Basics Of geology: earthquakes & volcanoes 161 CHAPTER 9 Basics Of geology: earthquakes & volcanoes CHAPTER s Objectives To introduce the theory of one supercontinent To discuss the clues and proofs that support the theory of one supercontinent

More information

EARTH S INTERIOR, EVIDENCE FOR PLATE TECTONICS AND PLATE BOUNDARIES

EARTH S INTERIOR, EVIDENCE FOR PLATE TECTONICS AND PLATE BOUNDARIES EARTH S INTERIOR, EVIDENCE FOR PLATE TECTONICS AND PLATE BOUNDARIES LAYERS OF THE EARTH Crust Inner Core Most Dense Solid Iron & Nickel Mantle Thickest layer Outer Core Liquid Iron & Nickel ANOTHER LOOK

More information

Unit 11: Plate Tectonics

Unit 11: Plate Tectonics Unit 11: Plate Tectonics A. Alfred Wegner 1. Continental drift hypothesis a. single supercontinent called Pangaea b. 200 million years ago Pangaea (all land) began to break up and started drifting to their

More information

12.2 Plate Tectonics

12.2 Plate Tectonics 12.2 Plate Tectonics LAYERS OF THE EARTH Earth is over 1200 km thick and has four distinct layers. These layers are the crust, mantle (upper and lower), outer core, and inner core. Crust outer solid rock

More information

Test on Chapters 7-11 Monday, April 28, 2014 No Calculator Required

Test on Chapters 7-11 Monday, April 28, 2014 No Calculator Required Test on Chapters 7-11 Monday, April 28, 2014 No Calculator Required Chapter Sections: Oceans: 7.1 7.2 7.4 Bathymetry: 8.3 Earth s Interior: 10.1 10.2 10.3 Plate Tectonics: 11.1 11.2 11.3 Study/Review:

More information

Putting Things Together. Plate Tectonics & Earth History

Putting Things Together. Plate Tectonics & Earth History Putting Things Together Plate Tectonics & Earth History Ideas of Importance The Earth is Hot The Heat is released through earthquakes and volcanoes. Earthquakes and volcanoes occur along linear belts.

More information

4 Deforming the Earth s Crust

4 Deforming the Earth s Crust CHAPTER 7 4 Deforming the Earth s Crust SECTION Plate Tectonics BEFORE YOU READ After you read this section, you should be able to answer these questions: What happens when rock is placed under stress?

More information

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. FORCES ON EARTH An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth. GEOLOGY Geologists scientists who study the forces that make and shape the Earth Geologists

More information

Lab 1: Plate Tectonics April 2, 2009

Lab 1: Plate Tectonics April 2, 2009 Name: Lab 1: Plate Tectonics April 2, 2009 Objective: Students will be introduced to the theory of plate tectonics and different styles of plate margins and interactions. Introduction The planet can be

More information

5/24/2018. Plate Tectonics. A Scientific Revolution Unfolds

5/24/2018. Plate Tectonics. A Scientific Revolution Unfolds 1 Plate Tectonics A Scientific Revolution Unfolds 2 3 4 5 6 7 8 9 10 11 12 Chapter 2 Plate Tectonics From Continental Drift to Plate Tectonics Prior to the late 1960s, most geologists believed that the

More information

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle?

Forces That Shape Earth. How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Forces That Shape Earth How do continents move? What forces can change rocks? How does plate motion affect the rock cycle? Plate Motion Mountain ranges are produced by plate tectonics. The theory of plate

More information

Theory of Continental Drift

Theory of Continental Drift Plate Tectonics Theory of Continental Drift Alfred Wegener suggested that continents had once been part of a supercontinent named Pangaea, that later broke up. The pieces moved apart over millions of years

More information

Unit 4 Lesson 2 Plate Tectonics. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 2 Plate Tectonics. Copyright Houghton Mifflin Harcourt Publishing Company Puzzling Evidence What evidence suggests that continents move? In the late 1800s, Alfred Wegener proposed his hypothesis of continental drift. According to this hypothesis, the continents once formed a

More information

UNIT 11 PLATE TECTONICS

UNIT 11 PLATE TECTONICS UNIT 11 PLATE TECTONICS A. ALFRED WEGENER 1. Continental drift hypothesis Single supercontinent called Pangaea 200 million years ago Pangaea (all land) began to break up and started drifting to their present

More information

The Structure of the Earth and Plate Tectonics

The Structure of the Earth and Plate Tectonics The Structure of the Earth and Plate Tectonics Structure of the Earth The Earth is made up of 4 main layers: Inner Core Outer Core Mantle Crust Crust Mantle Outer core Inner core The Crust This is where

More information

In order to study Plate Tectonics, we must first

In order to study Plate Tectonics, we must first TB Chapter 13 In order to study Plate Tectonics, we must first reorganize our layering system for the Earth: Old System 4 layers Crust (rigid) id) (rigid) Mantle (putty like) (semi rigid) Outer core (liquid)

More information

10. Paleomagnetism and Polar Wandering Curves.

10. Paleomagnetism and Polar Wandering Curves. Map of ocean floor Evidence in Support of the Theory of Plate Tectonics 10. Paleomagnetism and Polar Wandering Curves. The Earth's magnetic field behaves as if there were a bar magnet in the center of

More information

PLATE TECTONICS Chapter 4 Notes

PLATE TECTONICS Chapter 4 Notes PLATE TECTONICS Chapter 4 Notes Review Earth s Interior Ch 1. Geologists have used two main types of evidence to learn about Earth s interior: Direct evidence from rocks drilled from deep inside Earth

More information

SAC Geography Form 2 Chapter 3: Plate Tectonics Topic 3: Plate Movement

SAC Geography Form 2 Chapter 3: Plate Tectonics Topic 3: Plate Movement What causes an earthquake? Plate movement causes pressure to build up along faults, or breaks, in the earth's crust. When the rocks cannot take any more pressure, the rock layers shift and an earthquake

More information

Week Five: Earth s Interior/Structure

Week Five: Earth s Interior/Structure Week Five: Earth s Interior/Structure The Earth s Interior/Structure Cut a planet in half See layers Most dense material (metals) at bottom Medium density material (rocks) in middle Even less dense (liquids

More information

4 Layers of the earth 7 main plates of the earth 3 main plate boundaries 2 types of crust 3 main features of plate tectonics 3 main theorists and

4 Layers of the earth 7 main plates of the earth 3 main plate boundaries 2 types of crust 3 main features of plate tectonics 3 main theorists and 4 Layers of the earth 7 main plates of the earth 3 main plate boundaries 2 types of crust 3 main features of plate tectonics 3 main theorists and theories Human interaction The Earth is made up of 3 main

More information

OCN 201 Seafloor Spreading and Plate Tectonics. Question

OCN 201 Seafloor Spreading and Plate Tectonics. Question OCN 201 Seafloor Spreading and Plate Tectonics Question What was wrong from Wegener s theory of continental drift? A. The continents were once all connected in a single supercontinent B. The continents

More information

The oldest rock: 3.96 billion yrs old: Earth was forming continental crust nearly 400 billion years ago!!

The oldest rock: 3.96 billion yrs old: Earth was forming continental crust nearly 400 billion years ago!! Earth s vital statistics Shape: almost spherical Size: 6400km in radius Average density: 5.5gm/cc; surface: 3gm/cc or less; centre may be 10-15gm/cc 15gm/cc Temperature: core: 2200-2750 2750 o c Pressure:

More information

Plate Tectonics. A. Continental Drift Theory 1. Early development 2. Alfred Wegener s mechanism

Plate Tectonics. A. Continental Drift Theory 1. Early development 2. Alfred Wegener s mechanism Plate Tectonics A. Continental Drift Theory 1. Early development 2. Alfred Wegener s mechanism B. Seafloor Spreading 1. Earthquakes and volcanoes 2. Seafloor maps and dates 3. Continental drift revisited

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Plate Tectonics: The Unifying Theory Physical Geology 15/e, Chapter 19 Plate Tectonics Plate Tectonics Earth s surface is composed

More information

Earth s Interior StudyGuide

Earth s Interior StudyGuide Name Date Period Earth s Interior StudyGuide 1. The two main elements that make up the Earth s crust are and. 2. The Earth s inner core is made of solid and. 3. When one plates slides under another plate

More information

The Dynamic Crust 2) 4) Which diagram represents the most probable result of these forces? 1)

The Dynamic Crust 2) 4) Which diagram represents the most probable result of these forces? 1) 1. The diagrams below show cross sections of exposed bedrock. Which cross section shows the least evidence of crustal movement? 1) 3) 4. The diagram below represents a section of the Earth's bedrock. The

More information

Hafeet mountain. Earth structure

Hafeet mountain. Earth structure Hafeet mountain Earth structure What is the earth structure? The earth structure has been classified according to two main criteria's 1- the chemical composition 2- the physical properties Earth structure

More information

TECTONIC PLATES. reflect

TECTONIC PLATES. reflect reflect Has anyone ever told you to sit still? You may do as you re told, but in truth, you can never really sit still. You have probably already learned that Earth is constantly moving through space,

More information

Chapter: Plate Tectonics

Chapter: Plate Tectonics Table of Contents Chapter: Plate Tectonics Section 1: Continental Drift Section 2: Seafloor Spreading Section 3: Theory of Plate Tectonics Continental Drift 1 Evidence for Continental Drift If you look

More information

Theory of Plate Tectonics

Theory of Plate Tectonics Plate Tectonics Theory of Plate Tectonics Lithosphere is made of sections called plates that move around called continental drift Plates move because they float on the asthenosphere Most plates consist

More information

Plate Tectonics. The Theory of Plate Tectonics. The Plate Tectonics Theory. 62 Plate Tectonics Reading Essentials

Plate Tectonics. The Theory of Plate Tectonics. The Plate Tectonics Theory. 62 Plate Tectonics Reading Essentials CHAPTER 4 LESSON 3 Tectonics The Theory of Tectonics Key Concepts What is the theory of plate tectonics? What are the three types of plate boundaries? Why do tectonic plates move? What do you think? Read

More information

PLATE TECTONICS REVIEW GAME!!!!

PLATE TECTONICS REVIEW GAME!!!! PLATE TECTONICS REVIEW GAME!!!! Name the four layers of the earth - crust - mantle - outer core - inner core Which part of Earth s structure contains tectonic plates? LITHOSPHERE Name one reason why the

More information

Nebular Hypothesis (Kant, Laplace 1796) - Earth and the other bodies of our solar system (Sun, moons, etc.) formed from a vast cloud of dust and

Nebular Hypothesis (Kant, Laplace 1796) - Earth and the other bodies of our solar system (Sun, moons, etc.) formed from a vast cloud of dust and Plate Tectonics Origin of Universe Big Bang model (Hubble, 1929) - The universe began with an explosive e expansion of matter, which later became what we know as stars, planets, moons, etc. This event

More information

Earth, the Lively* Planet. * not counting the life on the planet!

Earth, the Lively* Planet. * not counting the life on the planet! Earth, the Lively* Planet * not counting the life on the planet! What We Will Learn Today What are planet Earth s features? What processes shape planetary surfaces? How does Earth s surface move? How did

More information