The Effect of Temperature on Hydrocarbon Types in Bara Oilfield, Niger Delta Basin, Gulf Of Guinea West Africa

Size: px
Start display at page:

Download "The Effect of Temperature on Hydrocarbon Types in Bara Oilfield, Niger Delta Basin, Gulf Of Guinea West Africa"

Transcription

1 International Journal of Science and Technology Volume 4 No. 9, September, 2015 The Effect of Temperature on Hydrocarbon Types in Bara Oilfield, Niger Delta Basin, Gulf Of Guinea West Africa Jonathan O. Omoboh, Prince.S. Momta & Francis T. Beka Department of Geology, University of Port Harcourt, Nigeria ABSTRACT This study tries to evaluate the role that temperature plays in the formation of either oil or gas in the Bara oilfield. Resistivity log was used to delineate hydrocarbon-bearing zones, and compared the existence of both liquid and gaseous hydrocarbon with the distribution of temperature and heat flow in the field. Hydrocarbon type refers to either liquid or gaseous hydrocarbon. Nearly all the hydrocarbon intervals in the studied wells have gas capping the oil. Temperature plays a significant role in the transformation of organic matter into the various types of hydrocarbon. The range of temperature that results in the formation of oil and gas or a mixture of the two has been established to be between 50 o C to 200 o C. The highest temperature of 115 o C is recorded in well 4 which occurs towards the centre of the field where there is high geothermal gradient (up to 1.81 o C/100m), whereas the lowest temperature occurred in well 1 which also has the lowest temperature, lowest geothermal gradient with a corresponding low hydrocarbon presence. The occurrence of good quantity of gas in association with oil in the field suggests that the kerogen type is likely of equal proportion of type II and III which favour the formation of both oil and gas in the field. Key words: Catagenesis, Metagenesis, Temperature, Kerogen, Geothermal Gradient 1. INTRODUCTION Many examples show that petroleum originated over a finite temperature range that can be observed in a natural environment. In exploring for oil and gas in wildcat areas, it is important to know whether, or not, the rocks have passed through this generation stage, and if so, at what depth generation started, peaked and terminated. Such data alone, may not pinpoint the location of economic petroleum since they are affected by migration and trapping. However, it does bracket the depth ranges in which mature source beds occur and thus indicate the most likely subsurface zones in which to prospect for oil and gas (Hunt, 1979). The type of hydrocarbon found in a place has some relationship with the geothermal gradient and temperature of the area, because each hydrocarbon type (oil, gas or condensate), has been known to occur or form at a particular temperature from kerogen (Land, 1967). However, it is pertinent to note that the kerogen type also determines the type of hydrocarbon. The generation of petroleum from organic matter is a rate controlled reaction which is principally dependent on temperature according to the Arrhenius equation: K = Ae -(Ea/Rt) (1) Where k is the reaction rate constant related to change in concentration of parent substance and product. A is the frequency factor. T is the temperature in degrees Kelvin. From the above equation, it is obvious that the rate of hydrocarbon generation from organic matter depends mainly on temperature, since the other parameters are constant. At the catagenetic stage, all the hydrocarbons C 1 through C 40 are formed in larger amount than in other stages. Heavy oil fractions are formed first followed by cracking of these fractions to yield light oil and gases as temperature rises. The generation of gases and cracking of heavy hydrocarbon molecules and bitumen already formed from diagenesis creates localized overpressures that force the hydrocarbons out of the source rocks. In the metagenetic stage, only methane is formed in significant amount with eventual formation of graphite-like molecules from the condensation and polymerization of aromatics. Five wells each with gamma ray, resistivity, temperature, sonic, density and neutron logs were used for the study. The resistivity log is used primarily to identify a hydrocarbon bearing zone. High values of resistivity show the presence of oil or gas. Very low resistivity values indicate the presence of highly conductive fluid which in this case should be water. Gas is suspected where we have very high resistivity values which can be confirmed with the balloon effect created by the integration of neutron and density logs. The various contacts separating each of these fluids are easily identified where we have sharp drop in resistivity. E is the activation energy. R is the gas constant. 430

2 2. STUDY LOCATION The BARA oilfield is located in the western part of the Niger Delta sedimentary basin (figure 1). The oilfield is operated by one of the major oil exploration and production company operating in the Niger Delta, Nigeria. The name Bara oilfield is representative of the real name of the field concealed for proprietary reason. 3. GEOLOGIC SETTING OF THE NIGER DELTA The tectonic history and the evolution of the Niger Delta sedimentary basin have been reported by many workers (Weber and Daukoru, 1975; Short and Stauble, 1967; Whiteman, 1982, Doust and Omatsola, 1990). The basin evolved following the separation of African and South American plates during the Early Cretaceous times. This was followed by the opening of the South Atlantic Ocean and several episodes of transgressions and regressions accounted for the sedimentary fills in both the Cretaceous and Tertiary Southern Nigerian sedimentary basins. The sequence of evolution of the delta started with the continent-continent break up, filling and the folding Santonian event in the Benue Trough, the development and filling of the Anambra basin, and the subsequent development of the Niger Delta resulting from the subsidence that occurred down dip of the Anambra Basin. The delta covers an area extent of about 100,000 km 2 and represents the regressive phase of the third cycle of deposition in the southern Nigeria sedimentary basins, which began during the Paleocene and has continued to the present day. 431

3 The subsurface sedimentary sequences are made up of basically lithofacies of three distinct environments of deposition: continental, transitional and marine. The Benin Formation is the continental unit, comprising of massive continental sands with minor shale streaks and lignite, overlying the Agbada Formation, a sequence of interbedded sand/sandstone and shale occurring in almost equal proportion. The Agbada sandstone forms the reservoirs with huge accumulation of hydrocarbon. The basal shale of the Agbada unit forms part of the source rock, whereas the Akata Formation (marine prodelta shale) underlying the Agbada is believed to be the major source rock. 4. MATERIALS AND METHODOLOGY Five wells (figure 2) each with gamma ray, resistivity, temperature, geothermal gradient, sonic, density and neutron logs were used for this study. The sand and shale sequences in the study area were recognized on well log based on the gamma ray signatures. Increasing gamma ray values to the right beyond API show an environment that is made up of majorly fine grained pelitic rocks such as clay or shale. The minimum gamma ray trend signifies sandy intervals. The type of fluid present in the rock was determined from resistivity logs. This was used to identify the various lithologic units in the field. The geothermal gradient calculated for each depth was performed using the relation: Geothermal gradient = T o formation - T o surface. (2) Depth Where T 0 formation is the measured temperature reading from the logs, and T o surface is the ambient temperature which is taken to be 25 o c, since the area lies in the tropics. The depth is the depth of measurement of temperature. The oil kitchen threshold temperature for each well and the depth to top and floor of oil kitchen was determined using the Pigott, 1985 model. Age of the source rock (55.8 million years, Short and Stauble, 1967) was inputted into the model to realize the values for the oil kitchen threshold temperature. The occurrence of gas in the reservoirs was detected from the high resistivity values at the top of the hydrocarbon bearing interval. These intervals also show a wider separation between neutron-density logs (balloon shape). 432

4 Figure 2: Base map of the area showing the locations of the wells 5. RESULTS AND DISCUSSION Hydrocarbon Type Hydrocarbon type here refers to either liquid or gaseous hydrocarbon. Nearly all the hydrocarbon intervals in the wells have gas capping the oil. This implies that there is oil and gas mixture in each of the occurrence; some are even more of gas than oil (figures 4 and 5) except well 1 that shows little or no hydrocarbon presence (figure 3). Gas-Oil-Contact and Oil- Water-Contact are delineated simultaneously at 3690m and 3695 in well 4, and well 2 has most of its hydrocarbonbearing reservoirs capped with gas (figure 4). The gasbearing intervals have the highest resistivity values compared with the oil-bearing portion just below the gas portion. The interpretation is predominantly based on resistivity values especially where the neutron density log is not available. Gaseous hydrocarbons have higher resistivity values than liquid types (the higher the density the lower the resistivity). For a reservoir to have gas capping the oil, the oil column must have been saturated with the gas. The occurrence of good quantity of gas in association with oil in the field, suggests that the kerogen type is likely of equal proportion of type II and type III. 433

5 Fabi 01 [TVD] TVD 0.00 GRN RT GEOTHERM TEMP :15339 Figure 3: Well 1 showing little or no hydrocarbon presence 434

6 Fabi 02 [TVD] TVD 0.00 GRN RT TEMP : GEOTH Fabi 04 [TVD] TVD 0.00 GRN RT TEMP : m, 3483m, 3680m 3945m, 4120m, 4235m Figure 5: Well 4 showing GOC and OWC horizons. Note: GOC is Gas-Oil-Contact; OWC Oil-Water-Contact. Figure 4: Well 2 showing multiple intervals with gas cap. 435

7 Temperature Effects on Hydrocarbon Type The highest temperature in the deepest well of the field is 115 o C (figure 6 and 7). This is below the maximum of 150 to 200 o C in the catagenesis stage, where more gas is expected to be produced from kerogen, and also below the top of the initial oil generative window of the Niger Delta (140 o C) (Ejedawe et al,1984), which now should be producing predominantly gaseous hydrocarbon. Figure 6: Well 5 plot of temperature against depth. 436

8 to 200 o C (392 o F). The generation of petroleum from organic matter is a two-step process involving bitumen as an intermediate, that is, kerogen to bitumen to oil and gas plus residue. The generation of petroleum from organic matter is a rate controlled reaction which is principally dependent on temperature according to the Arrhenius equation. At the catagenesis stage, all the hydrocarbons from C1 through C40 are formed in larger amount than in other stages. Heavy oil fractions are formed first followed by cracking of these fractions to yield light oil and gases as temperature rises. Heavy hydrocarbon fractions are expected to be generated at the onset of catagenesis with lighter ones following as temperature increases. The presence of good proportion of gas in association with oil in this lower temperature range of catagenesis shows that the kerogen type may be dominated by type III. This has potential to generate more gas than oil when subjected to the same temperature with other kerogen types, such as types I and II. Geothermal Gradient and Heat flow within the Field Figure 7: Map of 110 o C temperature for wells 2, 3 and 5. Maps of constant temperature variation with depth for the five wells (figure 7) show that the temperature at 78.8 o C was encountered at shallower depth in wells 2 and 4 than in wells 3, 1 and 5. This indicates a higher heat flow in wells 2 and 4 area within the field. This may have contributed immensely to the repeated presence of gas-capping reservoirs in wells 2 and 4. Well 1 did not yield significant gas sand as in the case of wells 2 and 4 (figure 3). Traditionally, geothermal gradient or temperature increases with depth as a result of mantle heat flow transmitted through earth material to the surface where temperature is lower. The quantity of heat transferred to a particular portion of the earth material lying above the mantle should be the same at a particular level within the earth, if the same quantity of heat is transmitted from the mantle and the earth material is homogenous. The difference in the depth of encountering the 78.8 o C, 90.1 o C, and 110 o C isotherms in the five wells shows that there is additional effect to mantle heat flow that is influencing the vertical heat flow in the field. This may be due to a possible hot spot below the position of wells 2 and 4, more heat generation within the sedimentary succession or possible igneous intrusion, a possible fracture below or a cooling effect of meteoric water at the edges of the field or the difference in the thermal conductivity of earth material in the sedimentary succession within the area (Omoboh et al., 2014). The highest average geothermal gradient is noticed in well 4, followed by well 5, 3 and 2, and lowest in well 1 (table 1, figure 8). This confirms that the thermal conductivities of the lithologies within the field are responsible for the increase in geothermal gradient toward the centre. Well 5 occurs towards the southern part of the field and is thus justified for the high shale percentage been on the more marine part of the field. Table 1: Average geothermal gradients of wells. Well number Field average geothermal gradient Average geothermal gradient( o C/100m) 1.74 Catagenesis is the stage where increasing temperature cause kerogen to be converted to bitumen and then bitumen to oil, condensate and gas. Temperature range is from 50 o C (122 o F) 437

9 International Journal of Science and Technology Volume 4 No. 9, September, 2015 Figure 8: Map of geothermal gradient at m for wells 1-5. The low geothermal gradient at the edge of the field may be attributed to cooling effect of the convectional current of meteoric water from the upper portion of the well. The high geothermal gradient of wells 2 and 4 can also be due to internal heat generated within the sedimentary succession in the area (Omoboh et al., 2014). Heat can be generated through radioactivity when there is disintegration of radioactive elements Makhous et al (1997).Exceptional high pressure can also result in increase in temperature since collision between the molecules of the fluid increases hence resulting in increase in heat (Chilingar et al, 2005). The area might also be closer to a possible intrusion within the position of the two wells or a hot spot occurring within the basement lying below the area occupied by the wells with higher geothermal gradient. Depth of Oil Ceiling and Oil Floor Ekweozor and Okoye (1980) shows that the top of the oil kitchen in the Niger Delta basin was located at an average depth of 3375m and 2900m in onshore and offshore wells respectively through the study of Oleanes. They also show that the kerogen of the source rocks were mainly of humic and mixed varieties and are thus prone to the generation of more gas. However, Aikhiombare et al (1984) shows that type II kerogen is the dominant organic matter in the Niger Delta basin, and thus have potential to generate both oil and gas but with more oil than gas. Combining the above two proposals about the kerogen type in the Niger Delta, we can say that both type II and type III kerogen are abundant in the Niger Delta which has capacity to produce both gas and oil. The average top of oil ceiling (top of oil window) in this study is m and the depth to the oil floor (base of oil window) is m giving the thickness of the oil kitchen to be m (tables 2, 3 and 4) (Omoboh et al., 2014). The top of the initial oil generation window in the Niger Delta was set at 140 o C and has moved upward to shallower depth and temperature of about 95 o C due to time effects on potential source rock which expose them to prolong effects of temperature (Edjedawe et al., 1984). This must have resulted in the maturation of some parts of Agbada Formation. 438

10 Table 2: Oil kitchen top, bottom and thickness for the five wells and average for the field Well number Depth of oil ceiling(m) Depth of oil floor (m) Oil kitchen thickness(m) Average thickness of oil kitchen Table 3: Average geothermal gradients, depths of oil ceiling of wells and average depth of oil ceiling in the field Well Number Temperature difference ( o C) Avg. geoth. Grad. ( o C/100m) Doc (m) Average depth of oil ceiling

11 Table 4: Average geothermal gradients, depths of oil floor of wells and average depth of oil floor in the field Well number Temperature difference ( o C) Avg. Geoth. Grad. ( o C/100m) Dof (m) Average depth of oil floor CONCLUSIONS Temperature and geothermal gradient contribute significantly to the type of hydrocarbon encountered in the Bara oilfield. Hydrocarbon accumulations sometimes have a relationship with relative rise in temperature. Wells located towards the centre of the field experience high temperature and heat flow. This area also contains high accumulation of gas coexisting with oil. The kerogen type in the field is dominated by type II and III which favours the formation of both oil and gas. Well 1 has very low geothermal gradient with little or no hydrocarbon presence. Factors inferred to be responsible may be attributed to subsurface structure, migration and possibly the low temperature and heat flow in the area. REFERENCES Chilingar, G. V. Buryakovsky, L. A. Eremenko, N. A. and Gorfunkei, M. V. (2005): Geology and Geochemistry of Oil and Gas. Development in Petroleum Science 52. Elsevier IGB, UK. 391p. Doust, H and E. Omatsola, (1990): Divergent and passive basin of the Niger Delta. AAPG memoir 48: pp Ejedawe, J. E., Lambert Aikhiombare, D.O., and Okorie, C., (1984): Time of hydrocarbon generation and expulsion in the Niger Delta Basin. Bulletin of NAPE volume 01. Pp Ejedawe, J. E., Coker, S. J. L., Lambert Aikhiombare, D.O., Alofe, K.B. and Adoh, F.O., (1984): Evolution of oil generative window and oil and gas occurrence in the Tertiary Niger Delta Basin. AAPG Bulletin vol. 68 (11) pp Hunt, J. M., (1979): Petroleum Geochemistry and Geology. Freeman and Company publisher, 743p. Lambert Aikhionbare, D. O and Ibe, A. C., (1984): Petroleum source bed evaluation of Tertiary delta. Discussion, AAPG Bulletin, volume 68, pp Land, K. K., (1967): Eometamorphism and Oil and Gas in Time and Space. Bulletin of American society of petroleum Geology vol. 51 (6), pp Makhous, M. Galushkin, Yu. I. and Nikolai, L., (1997): Burial history and kinetic modelling for Hydrocarbon Generation, part 1: the Galo Model. AAPG Bulletin vol. 81, No 10, pp Omoboh, J.O, Momta, P.S and Bamigboye, E.O (2014). The significance of temperature and geothermal gradient to hydrocarbon occurrence: case study of Bara oilfield, western Niger delta, Nigeria. Elixir International Journal, Environ. & Forestry 77 (2014) Pigott, J. D., (1985): Assessing Source Maturity in Frontier Basins: Importance of Time, Temperature and Tectonics. AAPG Bulletin vol.69, No 8, pp Short, K. C and Stauble, A.J., (1967): Outline of geology of Niger Delta. AAPG Bulletin volume 51, pp Weber, K. J and Daukoru, E. N., (1975): Petroleum geology of the Niger Delta. Proceeding of the Ninth World petroleum congress, Tokyo volume, pp Weber, K. J., (1971): Sedimentological aspects of oil fields in the Niger Delta. Geologie En Mijnbouw volume 50 (3), pp Whiteman, A. (1982): Niger Delta, Its Petroleum Geology, Resources and Potential. Vol.1 and 2. London, Graham and Trotman Ltd; 176pg. 440

Determination of Geothermal Gradient in the Eastern Niger Delta Sedimentary Basin from Bottom Hole Temperatures

Determination of Geothermal Gradient in the Eastern Niger Delta Sedimentary Basin from Bottom Hole Temperatures Journal of Earth Sciences and Geotechnical Engineering, vol. 4, no. 3, 2014, 109-114 ISSN: 1792-9040 (print), 1792-9660 (online) Scienpress Ltd, 2014 Determination of Geothermal Gradient in the Eastern

More information

FORMATION EVALUATION OF SIRP FIELD USING WIRELINE LOGS IN WESTERN DEPOBELT OF NIGER DELTA

FORMATION EVALUATION OF SIRP FIELD USING WIRELINE LOGS IN WESTERN DEPOBELT OF NIGER DELTA FORMATION EVALUATION OF SIRP FIELD USING WIRELINE LOGS IN WESTERN DEPOBELT OF NIGER DELTA 1 Obioha C, ²Adiela U. P and ³*Egesi N 1,3 Department of Geology, Faculty of Science, University of Port Harcourt,

More information

STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA

STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA 1 Iwuoma Juliet Onyinyechukwu and 2 Minapuye I. Odigi 1 Department of Geology, University of Port Harcourt,

More information

Estimation of Water Saturation Using a Modeled Equation and Archie s Equation from Wire-Line Logs, Niger Delta Nigeria

Estimation of Water Saturation Using a Modeled Equation and Archie s Equation from Wire-Line Logs, Niger Delta Nigeria IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861. Volume 3, Issue 4 (Mar. - Apr. 2013), PP 66-71 Estimation of Water Saturation Using a Modeled Equation and Archie s Equation from Wire-Line

More information

Lithofacies Characterization of Sedimentary Succession from Oligocene to Early Miocene Age in X2 Well, Greater Ughelli Depo Belt, Niger Delta, Nigeria

Lithofacies Characterization of Sedimentary Succession from Oligocene to Early Miocene Age in X2 Well, Greater Ughelli Depo Belt, Niger Delta, Nigeria Journal of Geosciences and Geomatics, 2018, Vol. 6, No. 2, 77-84 Available online at http://pubs.sciepub.com/jgg/6/2/5 Science and Education Publishing DOI:10.12691/jgg-6-2-5 Lithofacies Characterization

More information

Formation Evaluation of an Onshore Oil Field, Niger Delta Nigeria.

Formation Evaluation of an Onshore Oil Field, Niger Delta Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 4, Issue 6 Ver. II (Nov-Dec. 2016), PP 36-47 www.iosrjournals.org Formation Evaluation of an Onshore

More information

Hydrocarbon Volumetric Analysis Using Seismic and Borehole Data over Umoru Field, Niger Delta-Nigeria

Hydrocarbon Volumetric Analysis Using Seismic and Borehole Data over Umoru Field, Niger Delta-Nigeria International Journal of Geosciences, 2011, 2, 179-183 doi:10.4236/ijg.2011.22019 Published Online May 2011 (http://www.scirp.org/journal/ijg) Hydrocarbon Volumetric Analysis Using Seismic and Borehole

More information

RESERVOIR CHARACTERIZATION USING SEISMIC AND WELL LOGS DATA (A CASE STUDY OF NIGER DELTA)

RESERVOIR CHARACTERIZATION USING SEISMIC AND WELL LOGS DATA (A CASE STUDY OF NIGER DELTA) RESERVOIR CHARACTERIZATION USING SEISMIC AND WELL LOGS DATA (A CASE STUDY OF NIGER DELTA) * ESHIMOKHAI, S. and AKHIREVBULU, O.E. http://dx.doi.org/10.4314/ejesm.v5i4.s20 Received 19th June 2012; accepted

More information

Integration of Well Logs and Seismic Data for Prospects Evaluation of an X Field, Onshore Niger Delta, Nigeria

Integration of Well Logs and Seismic Data for Prospects Evaluation of an X Field, Onshore Niger Delta, Nigeria International Journal of Geosciences, 2012, 3, 872-877 http://dx.doi.org/10.4236/ijg.2012.324088 Published Online September 2012 (http://www.scirp.org/journal/ijg) Integration of Well Logs and Seismic

More information

Overpressure Prediction In The North-West Niger Delta, Using Porosity Data

Overpressure Prediction In The North-West Niger Delta, Using Porosity Data IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 1, Issue 3 (Sep. Oct. 2013), PP 42-50 Overpressure Prediction In The North-West Niger Delta, Using

More information

Evaluation of Hydrocarbon Volume in TRH Field, Onshore Niger Delta, Nigeria

Evaluation of Hydrocarbon Volume in TRH Field, Onshore Niger Delta, Nigeria International Journal of Geophysics and Geochemistry 2015; 2(5): 113-123 Published online October 10, 2015 (http://www.aascit.org/journal/ijgg) ISSN: 2381-1099 (Print); ISSN: 2381-1102 (Online) Evaluation

More information

ONLINE FIRST(NOT Peer-Reviewed)

ONLINE FIRST(NOT Peer-Reviewed) ONLINE FIRST(NOT Peer-Reviewed) Title:Hydrocarbon Reservoir Evaluation: a case study of Tymot field at southwestern offshore Niger Delta Oil Province, Nigeria Author:Victor Cypren Nwaezeapu Institute/Affiliation:Nnamdi

More information

AnalyticalDeterminationofSubsurfaceTemperatureusingTwoLayersModelinPartofNigerDeltaSedimentaryBasinNigeria

AnalyticalDeterminationofSubsurfaceTemperatureusingTwoLayersModelinPartofNigerDeltaSedimentaryBasinNigeria Global Journal of Science Frontier Research: A Physics and Space Science Volume 16 Issue 3 Version 1.0 Year 2016 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Strictly as per the compliance and regulations of :

Strictly as per the compliance and regulations of : Global Journal of Science Frontier Research: Physics and Space Science Volume 16 Issue 1 Version 1.0 Year 2016 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

MODEL COMPACTION EQUATION FOR HYDROSTATIC SANDSTONES OF THE NIGER DELTA.

MODEL COMPACTION EQUATION FOR HYDROSTATIC SANDSTONES OF THE NIGER DELTA. Ife Journal of Science vol. 13, no. 1 (2011) MODEL COMPACTION EQUATION FOR HYDROSTATIC SANDSTONES OF THE NIGER DELTA. Benjamin, U.K and *Nwachukwu, J.I Department of Geology, Obafemi Awolowo University,

More information

Bulletin of Earth Sciences of Thailand. Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand

Bulletin of Earth Sciences of Thailand. Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand Sirajum Munira Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn

More information

Detecting and Predicting Over Pressure Zones in the Niger Delta, Nigeria: A Case Study of Afam Field.

Detecting and Predicting Over Pressure Zones in the Niger Delta, Nigeria: A Case Study of Afam Field. Detecting and Predicting Over Pressure Zones in the Niger Delta, Nigeria: A Case Study of Afam Field. Olatunbosun Alao 1*, William Ofuyah 2 and Ayobami Abegunrin 1 1.Department of Geology, Obafemi Awolowo

More information

International Journal of Petroleum and Geoscience Engineering Volume 04, Issue 01, Pages 58-65, 2016

International Journal of Petroleum and Geoscience Engineering Volume 04, Issue 01, Pages 58-65, 2016 International Journal of Petroleum and Geoscience Engineering Volume 04, Issue 01, Pages 58-65, ISSN: 2289-4713 Pore Pressure Gradient Prediction Using Well Logs; A Case Study on Malcolm Field, Offshore

More information

Estimation of the Heat Flow Variation in the Chad Basin Nigeria NWANKWO, CYRIL N.; EKINE, ANTHONY S.; NWOSU, LEONARD I.

Estimation of the Heat Flow Variation in the Chad Basin Nigeria NWANKWO, CYRIL N.; EKINE, ANTHONY S.; NWOSU, LEONARD I. JASEM ISSN 1119-8362 All rights reserved Full-text Available Online at www.bioline.org.br/ja J. Appl. Sci. Environ. Manage. March, 2009 Vol. 13(1) 73-80 Estimation of the Heat Flow Variation in the Chad

More information

Source Rock Analysis Using Well Logs In Western Niger Delta

Source Rock Analysis Using Well Logs In Western Niger Delta IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 6, Issue 2 Ver. I (Mar. Apr. 2018), PP 70-85 www.iosrjournals.org Source Rock Analysis Using Well

More information

Formation evaluation of an onshore appraisal well KG-5, green field, Niger Delta, Nigeria

Formation evaluation of an onshore appraisal well KG-5, green field, Niger Delta, Nigeria AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2010, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X doi:10.5251/ajsir.2010.1.2.262.270 Formation evaluation of an onshore appraisal well

More information

A comparison of structural styles and prospectivity along the Atlantic margin from Senegal to Benin. Peter Conn*, Ian Deighton* & Dario Chisari*

A comparison of structural styles and prospectivity along the Atlantic margin from Senegal to Benin. Peter Conn*, Ian Deighton* & Dario Chisari* A comparison of structural styles and prospectivity along the Atlantic margin from Senegal to Benin Overview Peter Conn*, Ian Deighton* & Dario Chisari* * TGS, Millbank House, Surbiton, UK, KT6 6AP The

More information

Int. J Sci. Emerging Tech. Vol-2 No. 3 December, 2011

Int. J Sci. Emerging Tech. Vol-2 No. 3 December, 2011 Geochemical Characterization of Agbada Formation, Osioka South Area, Western Niger Delta, Nigeria Omoboriowo A Oluwatoyin# 1, Soronnadi-Ononiwu C Godfrrey* 2 Geology Department, Faculty of Science, University

More information

Oil & Gas. From exploration to distribution. Week 1 V05 Origin of hydrocarbon resources part 1. Jean-Pierre Deflandre

Oil & Gas. From exploration to distribution. Week 1 V05 Origin of hydrocarbon resources part 1. Jean-Pierre Deflandre Oil & Gas From exploration to distribution Week 1 V05 Origin of hydrocarbon resources part 1 Jean-Pierre Deflandre W1V5 Origin of hydrocarbon resources1 p. 1 Introduction to hydrocarbon resources You will

More information

Sedimentology and Depositional Environment of D2 Sand in Part of Greater Ughelli Depobelt, Onshore Niger Delta, Nigeria

Sedimentology and Depositional Environment of D2 Sand in Part of Greater Ughelli Depobelt, Onshore Niger Delta, Nigeria American Journal of Engineering and Applied Sciences Research Articles Sedimentology and Depositional Environment of D2 Sand in Part of Greater Ughelli Depobelt, Onshore Niger Delta, Nigeria Prince Suka

More information

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom

MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON & PETER CONN, TGS Nopec Geological Products and Services, London, United Kingdom Geological and Geophysical Evaluation of Offshore Morondava Frontier Basin based on Satellite Gravity, Well and regional 2D Seismic Data Interpretation MUHAMMAD S TAMANNAI, DOUGLAS WINSTONE, IAN DEIGHTON

More information

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study*

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study* Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study* J.N. Sahu 1, C.H.V. Satya Sai 1, V. Chintamani 1 and C. Vishnu Vardhan 1 Search and Discovery Article #20182 (2012)*

More information

Integration of Well Log Analysis and 3-D Seismic in Reserve Estimation of Hydrocarbon Bearing Sands in Q-Field, Niger-Delta Nigeria

Integration of Well Log Analysis and 3-D Seismic in Reserve Estimation of Hydrocarbon Bearing Sands in Q-Field, Niger-Delta Nigeria Integration of Well Log Analysis and 3-D Seismic in Reserve Estimation of Hydrocarbon Bearing Sands in Q-Field, Niger-Delta Nigeria Bayowa O.G. 1 Mas ud Q.A. 1 Lawal A.W. 2 L.O Ademilua 3* 1.Ladoke Akintola

More information

Petrophysical Charaterization of the Kwale Field Reservoir Sands (OML 60) from Wire-line Logs, Niger Delta, Nigeria. EKINE, A. S.

Petrophysical Charaterization of the Kwale Field Reservoir Sands (OML 60) from Wire-line Logs, Niger Delta, Nigeria. EKINE, A. S. JASEM ISSN 1119-8362 All rights reserved Full-text Available Online at wwwbiolineorgbr/ja J Appl Sci Environ Manage December, 2009 Vol 13(4) 81-85 Petrophysical Charaterization of the Kwale Field Reservoir

More information

Well Logs 3 D Seismic Sequence Stratigraphy Evaluation of Holu Field, Niger Delta, Nigeria

Well Logs 3 D Seismic Sequence Stratigraphy Evaluation of Holu Field, Niger Delta, Nigeria Well Logs 3 D Seismic Sequence Stratigraphy Evaluation of Holu Field, Niger Delta, Nigeria John O. Amigun 1, Olumide Adewoye 1, Temitope Olowolafe 1 and Emmanuel Okwoli 2 1 Department of Applied Geophysics,

More information

RESERVOIR EVALUATION OF T-X FIELD (ONSHORE, NIGER DELTA) FROM WELL LOG PETROPHYSICAL ANALYSIS

RESERVOIR EVALUATION OF T-X FIELD (ONSHORE, NIGER DELTA) FROM WELL LOG PETROPHYSICAL ANALYSIS http://dx.doi.org/10.4314/bajopas.v9i2.25 Bayero Journal of Pure and Applied Sciences, 9(2): 132-140 Received: June, 2016 Accepted: December, 2016 ISSN 2006 6996 RESERVOIR EVALUATION OF T-X FIELD (ONSHORE,

More information

Mike Solt, a WVU GEOL alumnus just sent a message, which might be of interest to those of you looking for an internship this summer:

Mike Solt, a WVU GEOL alumnus just sent a message, which might be of interest to those of you looking for an internship this summer: Mike Solt, a WVU GEOL alumnus just sent a message, which might be of interest to those of you looking for an internship this summer: My company, Langan Engineering, is offering a summer internship in Philadelphia.

More information

Maturity Modeling of Gomin and South Gomin fields Southern Pattani Basin, Gulf of Thailand

Maturity Modeling of Gomin and South Gomin fields Southern Pattani Basin, Gulf of Thailand Maturity Modeling of Gomin and South Gomin fields Southern Pattani Basin, Gulf of Thailand Patinya Jaithan Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn University,

More information

Petrophysical Analysis and Sequence Stratigraphy Appraisal from Well logs of Bobo field, South-Eastern, Niger Delta

Petrophysical Analysis and Sequence Stratigraphy Appraisal from Well logs of Bobo field, South-Eastern, Niger Delta Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 4(2): 219-225 Scholarlink Research Institute Journals, 2013 (ISSN: 2141-7016) jeteas.scholarlinkresearch.org Journal of Emerging

More information

SEISMIC AND PETROPHYSICAL CHARACTERIZATION OF SELECTED WELLS, NIGER DELTA

SEISMIC AND PETROPHYSICAL CHARACTERIZATION OF SELECTED WELLS, NIGER DELTA SEISMIC AND PETROPHYSICAL CHARACTERIZATION OF SELECTED WELLS, NIGER DELTA Oghonyon Rorome 1, Njoku A. Felix 2 and Itiowe Kiamuke 3 1,2,3 Department of Geology, University of Port Harcourt, Port Harcourt,

More information

Porosity- Depth Estimation in Clastic Rocks from Sonic Logs in Chad Basin, Nigeria

Porosity- Depth Estimation in Clastic Rocks from Sonic Logs in Chad Basin, Nigeria Human Journals Research Article February 2017 Vol.:5, Issue:4 All rights are reserved by Leonard Nwosu et al. Porosity- Depth Estimation in Clastic Rocks from Sonic Logs in Chad Basin, Nigeria Keywords:

More information

Hydrocarbon Potentials of Baze Field, Onshore Niger Delta, Nigeria: Petrophysical Analysis and Structural Mapping

Hydrocarbon Potentials of Baze Field, Onshore Niger Delta, Nigeria: Petrophysical Analysis and Structural Mapping Journal of Geosciences and Geomatics, 2018, Vol. 6, No. 2, 55-64 Available online at http://pubs.sciepub.com/jgg/6/2/3 Science and Education Publishing DOI:10.12691/jgg-6-2-3 Hydrocarbon Potentials of

More information

Overpressure/ Depositional Analysis of Parts of Onshore (X-Field) Niger Delta Basin Nigeria, Based on Well Logs Data.

Overpressure/ Depositional Analysis of Parts of Onshore (X-Field) Niger Delta Basin Nigeria, Based on Well Logs Data. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 4, Issue 5 Ver. III (Sep. - Oct. 2016), PP 01-13 www.iosrjournals.org Overpressure/ Depositional Analysis

More information

Trapping Mechanisms along North Similan and Lanta Trends, Pattani Basin, Gulf of Thailand

Trapping Mechanisms along North Similan and Lanta Trends, Pattani Basin, Gulf of Thailand Trapping Mechanisms along North Similan and Lanta Trends, Pattani Basin, Gulf of Thailand Piyaporn Aukkanit Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn University,

More information

Hydrocarbon Processing Techniques

Hydrocarbon Processing Techniques Hydrocarbon Processing Techniques Processes and Techniques Involved in Extracting and Refining Hydrocarbons Key term: Kerogen a mixture of organic matter in sediments from which petroleum is released.

More information

GEOPHYSICAL AND WELL CORELLATION ANALYSIS OF OGO FIELD: A CASE STUDY IN NIGER DELTA BASIN OF NIGERIA

GEOPHYSICAL AND WELL CORELLATION ANALYSIS OF OGO FIELD: A CASE STUDY IN NIGER DELTA BASIN OF NIGERIA Nigerian Journal of Technology (NIJOTECH) Vol. 36, No. 3, July 2017, pp. 729 733 Copyright Faculty of Engineering, University of Nigeria, Nsukka, Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 www.nijotech.com

More information

MODULE PREREQUISITES FOR HYDROCARBON ACCUMULATION

MODULE PREREQUISITES FOR HYDROCARBON ACCUMULATION MODULE 1 1.0 PREREQUISITES FOR HYDROCARBON ACCUMULATION The accumulation of hydrocarbons and formation of oil or gas deposit involve certain prerequisites. These are the following: 1. Source Rock 2. Reservoir

More information

Petroleum geology framework, West Coast offshore region

Petroleum geology framework, West Coast offshore region Petroleum geology framework, West Coast offshore region James W. Haggart* Geological Survey of Canada, Vancouver, BC jhaggart@nrcan.gc.ca James R. Dietrich Geological Survey of Canada, Calgary, AB and

More information

Geol Supplementary Notes 463-RWR-1,2 GEOL RWR-1 GENERAL INTRODUCTION TO PETROLEUM GEOLOGY: OUTLINE OF MATERIAL TO BE COVERED

Geol Supplementary Notes 463-RWR-1,2 GEOL RWR-1 GENERAL INTRODUCTION TO PETROLEUM GEOLOGY: OUTLINE OF MATERIAL TO BE COVERED GEOL 463.3 RWR-1 GENERAL INTRODUCTION TO PETROLEUM GEOLOGY: OUTLINE OF MATERIAL TO BE COVERED Recommended sections to read in the textbook: Chapters 1 and 2 (p. 2-22): Background to development of petroleum

More information

Reservoir Property Distribution and Structural Styles Analysis of OML D Regional Line, Onshore Niger Delta Basin

Reservoir Property Distribution and Structural Styles Analysis of OML D Regional Line, Onshore Niger Delta Basin International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=journalofbasicandapplied ---------------------------------------------------------------------------------------------------------------------------

More information

Evaluation of Hydrocarbon Prospect of Amu Field, Niger-Delta, Nigeria

Evaluation of Hydrocarbon Prospect of Amu Field, Niger-Delta, Nigeria International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 6(1) pp. 001-008, May, 2016 DOI: http://dx.doi.org/10.14303/irjgm.2016.105 Available online http://www.interesjournals.org/irjgm

More information

SEISMIC AND PETROPHYSICAL ATTRIBUTES OF RESERVOIRS IN EBI OIL FIELD, NIGER DELTA

SEISMIC AND PETROPHYSICAL ATTRIBUTES OF RESERVOIRS IN EBI OIL FIELD, NIGER DELTA SEISMIC AND PETROPHYSICAL ATTRIBUTES OF RESERVOIRS IN EBI OIL FIELD, NIGER DELTA Adiela U.P 1, Itiowe K 2 Emudianughe J 3 1Department of Petroleum Engineering, Nigerian Agip Oil Company, Port Harcourt.

More information

An integrated geothermal, gravity and aeromagnetic study for possible structural feature analysis of the Eastern Niger Delta sedimentary basin

An integrated geothermal, gravity and aeromagnetic study for possible structural feature analysis of the Eastern Niger Delta sedimentary basin Vol. 14, 2018 ISSN 2278 5485 EISSN 2278 5477 Science DISCOVERY An integrated geothermal, gravity and aeromagnetic study for possible structural feature analysis of the Eastern Niger Delta sedimentary basin

More information

Petroleum Systems (Part One) Source, Generation, and Migration

Petroleum Systems (Part One) Source, Generation, and Migration Petroleum Systems (Part One) Source, Generation, and Migration GEOL 4233 Class January 2008 Petroleum Systems Elements Source Rock Migration Route Reservoir Rock Seal Rock Trap Processes Generation Migration

More information

Imaging complex structure in seismic reflection data using prestack depth migration: case study of Olua area of the Niger Delta, Nigeria

Imaging complex structure in seismic reflection data using prestack depth migration: case study of Olua area of the Niger Delta, Nigeria International Research Journal of Geology and Mining (IRJGM) (2276-6618) Vol. 2(7) pp. 199-204, September 2012 Available online http://www.interesjournals.org/irjgm Copyright 2012 International Research

More information

International Research Journal of Interdisciplinary & Multidisciplinary Studies (IRJIMS)

International Research Journal of Interdisciplinary & Multidisciplinary Studies (IRJIMS) International Research Journal of Interdisciplinary & Multidisciplinary Studies (IRJIMS) A Peer-Reviewed Monthly Research Journal ISSN: 2394-7969 (Online), ISSN: 2394-7950 (Print) Volume-II, Issue-II,

More information

The Integrated Seismic Reservoir Characterization (ISRC), Study in Amboy Field of Niger Delta Oil Field Nigeria

The Integrated Seismic Reservoir Characterization (ISRC), Study in Amboy Field of Niger Delta Oil Field Nigeria Geosciences 2012, 2(3): 60-65 DOI: 10.5923/j.geo.20120203.04 The Integrated Seismic Reservoir Characterization (ISRC), Study in Amboy Field of Niger Delta Oil Field Nigeria Odoh B. I 1, Onyeji Johnbosco

More information

Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

Available online  Journal of Scientific and Engineering Research, 2016, 3(6): Research Article Available online www.jsaer.com, 2016, 3(6):324-332 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Reservoir Modeling and Hydrocarbon Evaluation of Abi-Field, Niger Delta, Nigeria Adiela UP 1, Omoboriowo

More information

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS

APPENDIX C GEOLOGICAL CHANCE OF SUCCESS RYDER SCOTT COMPANY PETROLEUM CONSULTANTS APPENDIX C GEOLOGICAL CHANCE OF SUCCESS Page 2 The Geological Chance of Success is intended to evaluate the probability that a functioning petroleum system is in place for each prospective reservoir. The

More information

VOL. 3, NO. 8, August 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

VOL. 3, NO. 8, August 2013 ISSN ARPN Journal of Science and Technology All rights reserved. Determination of Organic Matter Richness for Agbada Formation, Osioka South Area, Western Niger Delta, Nigeria E. K. Nyantakyi, 2 T. Li, 3 W. Hu, 4 J. K. Borkloe, 5 P. A. Owusu, 6 R.D. Nagre,2,3,4 School

More information

Uses of Stable Isotopes in Petroleum.

Uses of Stable Isotopes in Petroleum. Uses of Stable Isotopes in Petroleum. Isotopes in Petroleum Isotope- atoms with the same atomic number but different mass number In the past the use of stable isotopes in petroleum was not common. With

More information

Rock-Physics and Seismic-Inversion Based Reservoir Characterization of AKOS FIELD, Coastal Swamp Depobelt, Niger Delta, Nigeria

Rock-Physics and Seismic-Inversion Based Reservoir Characterization of AKOS FIELD, Coastal Swamp Depobelt, Niger Delta, Nigeria IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 5, Issue 4 Ver. III (Jul. Aug. 2017), PP 59-67 www.iosrjournals.org Rock-Physics and Seismic-Inversion

More information

Tu D Understanding the Interplay of Fractures, Stresses & Facies in Unconventional Reservoirs - Case Study from Chad Granites

Tu D Understanding the Interplay of Fractures, Stresses & Facies in Unconventional Reservoirs - Case Study from Chad Granites Tu D201 04 Understanding the Interplay of Fractures, Stresses & Facies in Unconventional Reservoirs - Case Study from Chad Granites D. Lirong (Chinese National Petroleum Company Ltd. (Chad)), C. Shrivastava*

More information

Plane Versus Elastic Wave AVO Anisotropic Synthetic Modeling in Derby Field, Southeastern Niger Delta

Plane Versus Elastic Wave AVO Anisotropic Synthetic Modeling in Derby Field, Southeastern Niger Delta Current Research in Geosciences Original Research Paper Plane Versus Elastic Wave AVO Anisotropic Synthetic Modeling in Derby Field, Southeastern Niger Delta Chukwuemeka Ngozi Ehirim and Nnamdi Ogbonna

More information

Sequence Stratigraphic Analysis from Well Logs of an X- Field, Niger Delta, Nigeria

Sequence Stratigraphic Analysis from Well Logs of an X- Field, Niger Delta, Nigeria Current Research in Geosciences Original Research Paper Sequence Stratigraphic Analysis from Well Logs of an X- Field, Niger Delta, Nigeria Godwin Omokenu Emujakporue and Alphonsus Joseph Eyo Department

More information

Keywords: Exploration; reservoir structure; stratigraphic trap; uncertainty; petrophysical property.

Keywords: Exploration; reservoir structure; stratigraphic trap; uncertainty; petrophysical property. Article Open Access INTEGRATION OF 3D SEISMIC AND WELL LOG DATA FOR THE EXPLORATION OF KINI FIELD, OFF- SHORE NIGER DELTA Adesoji O. Akanji 1, Oluseun A. Sanuade 2, SanLinn I. Kaka 2, Isaac D. Balogun

More information

Kilometre-Scale Uplift of the Early Cretaceous Rift Section, Camamu Basin, Offshore North-East Brazil*

Kilometre-Scale Uplift of the Early Cretaceous Rift Section, Camamu Basin, Offshore North-East Brazil* Kilometre-Scale Uplift of the Early Cretaceous Rift Section, Camamu Basin, Offshore North-East Brazil* Iain Scotchman 1 and Dario Chiossi 2 Search and Discovery Article #50183 (2009) Posted May 20, 2009

More information

Evaluation of Neocomian Shale source rock In Komombo Basin, Upper Egypt

Evaluation of Neocomian Shale source rock In Komombo Basin, Upper Egypt Evaluation of Neocomian Shale source rock In Komombo Basin, Upper Egypt Abdelhady, A. 1, Darwish, M. 2, El Araby, A. 3 and Hassouba, A. 4 1 DEA Egypt, Cairo, Egypt 2 Geology Department, Faculty of Science,

More information

Derived Rock Attributes Analysis for Enhanced Reservoir Fluid and Lithology Discrimination

Derived Rock Attributes Analysis for Enhanced Reservoir Fluid and Lithology Discrimination IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 5, Issue 2 Ver. I (Mar. - Apr. 2017), PP 95-105 www.iosrjournals.org Derived Rock Attributes Analysis

More information

Subsurface Geology and Resource Exploration

Subsurface Geology and Resource Exploration LAB 11. Subsurface Geology and Resource Exploration Locating earth resources such as aluminum, copper, gold and gemstones has been an important job for geologists for a long time. This lab deals with the

More information

An Integrated Approach to Volume of Shale Analysis: Niger Delta Example, Orire Field

An Integrated Approach to Volume of Shale Analysis: Niger Delta Example, Orire Field World Applied Sciences Journal 7 (4): 448-452, 2009 ISSN 1818-4952 IDOSI Publications, 2009 An Integrated Approach to Volume of Shale Analysis: Niger Delta Example, Orire Field 1 1 2 L. Adeoti, E.A. Ayolabi

More information

Journal of Natural Sciences Research ISSN (Paper) ISSN (Online) Vol.2, No.5, 2012

Journal of Natural Sciences Research ISSN (Paper) ISSN (Online) Vol.2, No.5, 2012 Hydrocarbon Generative Windows Determination Using Geomathematical Model: Case Study from Ogbogede Field, Niger Delta, Nigeria Akpunonu, Eliseus O*, Okoro Anthony U. and Onuigbo Evangeline N. Department

More information

Geologic Resources. Geologic Resources and Society. Geologic Resources and Society

Geologic Resources. Geologic Resources and Society. Geologic Resources and Society Geologic Resources Our entire society rests upon - and is dependent upon - our water, our land, our forests, and our minerals. How we use these resources influences our health, security, economy, and well-being.

More information

B.C. s Offshore Oil and Gas: a Guide to the Geology and Resources.

B.C. s Offshore Oil and Gas: a Guide to the Geology and Resources. B.C. s Offshore Oil and Gas: a Guide to the Geology and Resources. Introduction Beneath the offshore regions of British Columbia are four moderately large, geologically young sedimentary basins (Figure

More information

Stephanie B. Gaswirth and Kristen R. Mara

Stephanie B. Gaswirth and Kristen R. Mara U.S. Geological Survey Assessment of Undiscovered Resources in the Bakken and Three Forks Formations, Williston Basin, North Dakota, Montana, and South Dakota, 2013 Stephanie B. Gaswirth and Kristen R.

More information

Lucas F.A, Omodolor Hope E *

Lucas F.A, Omodolor Hope E * Journal of Geosciences and Geomatics, 2018, Vol. 6, No. 2, 85-93 Available online at http://pubs.sciepub.com/jgg/6/2/6 Science and Education Publishing DOI:10.12691/jgg-6-2-6 Palynofacies Analysis, Organic

More information

Continuous Wavelet Transform Based Spectral Decomposition of 3d Seismic Data for Reservoir Characterization in Oyi Field, se Niger Delta

Continuous Wavelet Transform Based Spectral Decomposition of 3d Seismic Data for Reservoir Characterization in Oyi Field, se Niger Delta American Journal of Applied Sciences Original Research Paper Continuous Wavelet Transform Based Spectral Decomposition of 3d Seismic Data for Reservoir Characterization in Oyi Field, se Niger Delta Chukwuemeka

More information

HIGH HYDROCARBON PROSPECT IN NIGER DELTA COMPLEX, NIGERIA

HIGH HYDROCARBON PROSPECT IN NIGER DELTA COMPLEX, NIGERIA The Journal of MacroTrends in Energy and Sustainability MACROJOURNALS HIGH HYDROCARBON PROSPECT IN NIGER DELTA COMPLEX, NIGERIA Abatan O.A*.,Ojo, R.K ** *Physics/Electronics Unit, SLT, Moshood Abiola Polytechnic,

More information

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia*

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia* Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia* Mellinda Arisandy 1 and I Wayan Darma 1 Search and Discovery Article #11008 (2017)** Posted November 6, 2017 *Adapted

More information

Petrophysical evaluation of uzek well using well log and core data, Offshore Depobelt, Niger Delta, Nigeria

Petrophysical evaluation of uzek well using well log and core data, Offshore Depobelt, Niger Delta, Nigeria Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 212, 3 (5):2966-2991 ISSN: 976-861 CODEN (USA): AASRFC Petrophysical evaluation of uzek well using well log and

More information

Overview of Selected Shale Plays in New Mexico*

Overview of Selected Shale Plays in New Mexico* Overview of Selected Shale Plays in New Mexico* Ron Broadhead 1 Search and Discovery Article #10627 (2014)** Posted August 18, 2014 *Adapted from presentation at RMAG luncheon meeting, Denver, Colorado,

More information

EARTH S ENERGY SOURCES

EARTH S ENERGY SOURCES EARTH S ENERGY SOURCES The geological processes that shape the Earth s surface are powered by two major sources of energy; geothermal heat from the Earth s interior and external energy from the sun. The

More information

Geochemical Investigation of Potential Source Rocks for Agbada Formation, Osioka South Area, Western Niger Delta, Nigeria

Geochemical Investigation of Potential Source Rocks for Agbada Formation, Osioka South Area, Western Niger Delta, Nigeria Geosciences 2014, 4(1): 13-22 DOI: 10.5923/j.geo.20140401.02 Geochemical Investigation of Potential Source Rocks for Agbada Formation, Osioka South Area, Western Niger Delta, Nigeria E. K. Nyantakyi 1,2,*,

More information

Source rock maturation studies using vitrinite reflectance and geothermal data from six wells in Gabo and Wabi fields, onshore Niger Delta, Nigeria

Source rock maturation studies using vitrinite reflectance and geothermal data from six wells in Gabo and Wabi fields, onshore Niger Delta, Nigeria International Journal Geology and Mining Vol. 2(2), pp. 064-070, December, 2016. www.premierpublishers.org. ISSN: XXXX-XXXX IJGM Research Article Source rock maturation studies using vitrinite reflectance

More information

Spectral Analysis of Aeromagnetic Anomalies from Parts of Mmaku and its Adjoining Areas in Southeastern, Nigeria

Spectral Analysis of Aeromagnetic Anomalies from Parts of Mmaku and its Adjoining Areas in Southeastern, Nigeria International Journal of Scientific and Research Publications, Volume 5, Issue 10, October 2015 1 Spectral Analysis of Aeromagnetic Anomalies from Parts of Mmaku and its Adjoining Areas in Southeastern,

More information

EVALUATION OF SEISMIC ATTRIBUTES OF APO FIELD, ONSHORE NIGER DELTA, SOUTHERN NIGERIA

EVALUATION OF SEISMIC ATTRIBUTES OF APO FIELD, ONSHORE NIGER DELTA, SOUTHERN NIGERIA EVALUATION OF SEISMIC ATTRIBUTES OF APO FIELD, ONSHORE NIGER DELTA, SOUTHERN NIGERIA Ekpe G. A 1, Emudianughe J. E 2 and Umukoro J 3 1 Department of Geology, University of Port Harcourt, Port Harcourt,

More information

Migration Lag - What is it and how it affects Charge Risk and Fluid Properties*

Migration Lag - What is it and how it affects Charge Risk and Fluid Properties* Migration Lag - What is it and how it affects Charge Risk and Fluid Properties* Zhiyong He 1 Search and Discovery Article #42014 (2017)** Posted February 20, 2017 *Adapted from oral presentation given

More information

Sequence Stratigraphic Framework of the Paradise-Field Niger Delta, Nigeria.

Sequence Stratigraphic Framework of the Paradise-Field Niger Delta, Nigeria. Sequence Stratigraphic Framework of the Paradise-Field Niger Delta, Nigeria. A.O. Anyiam, M.Sc. and A.W. Mode, Ph.D. Department of Geology, University of Nigeria, Nsukka, Enugu State, Nigeria E-mail: okwy_anyiam@yahoo.com

More information

Distribution of Overpressure and its Prediction in Saurashtra Dahanu Block, Western Offshore Basin, India*

Distribution of Overpressure and its Prediction in Saurashtra Dahanu Block, Western Offshore Basin, India* Distribution of Overpressure and its Prediction in Saurashtra Dahanu Block, Western Offshore Basin, India* Kanak R. Nambiar 1, B.K. Singh 2, R.N. Goswami 2, and K.R.K. Singh 2 Search and Discovery Article

More information

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use.

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use. Well 5 Well 4 Well 3 Well 2 Well 1 Vail et al., 1977b AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use. Well 5 Well 4 Well 3 Well 2 Well 1 Vail et al., 1977b

More information

1. Canadian Energy Use

1. Canadian Energy Use 1 Unit 3 Energy 2 1. Canadian Energy Use Why are Canadians the sixth highest energy users in the world? Our major industries are energy intensive, overall industry consumes 31% of all energy in Canada.

More information

Hydrocarbon Potential of Some Afowo Shale Deposits in Part of South Western Nigeria

Hydrocarbon Potential of Some Afowo Shale Deposits in Part of South Western Nigeria International Journal of African and Asian Studies Hydrocarbon Potential of Some Afowo Shale Deposits in Part of South Western Nigeria AKINMOSIN, A 1, OMOSANYA, K.O 2 OLAWALE, A, O 2. *Geosciences Department,

More information

Exploration Significance of Unconformity Structure on Subtle Pools. 1 Vertical structure characteristics of unconformity

Exploration Significance of Unconformity Structure on Subtle Pools. 1 Vertical structure characteristics of unconformity Exploration Significance of Unconformity Structure on Subtle Pools Wu Kongyou (China University of Petroleum,College of Geo-Resources and Information,Shandong Qingdao 266555) Abstract: Vertical structure

More information

Growth Fault History Analysis of an Oil Field, Niger Delta, Nigeria

Growth Fault History Analysis of an Oil Field, Niger Delta, Nigeria International Journal of Geophysics and Geochemistry 2015; 2(5): 105-112 Published online October 10, 2015 (http://www.aascit.org/journal/ijgg) ISSN: 2381-1099 (Print); ISSN: 2381-1102 (Online) Growth

More information

Deepwater Hydrocarbon Potentialof Orange Basin, South Africa: An Untested Oil Play

Deepwater Hydrocarbon Potentialof Orange Basin, South Africa: An Untested Oil Play Deepwater Hydrocarbon Potentialof Orange Basin, South Africa: An Untested Oil Play Soumen Dasgupta*, Moumita Sengupta, Prem Kumar, Biswanath Ghosh, Dr. BNS Naidu anddr. Sudhir Mathur. Cairn India Limited,

More information

Pore Pressure Prediction Using Offset Well Logs: Insight from Onshore Niger Delta, Nigeria

Pore Pressure Prediction Using Offset Well Logs: Insight from Onshore Niger Delta, Nigeria American Journal of Geophysics, Geochemistry and Geosystems Vol. 1, No. 3, 2015, pp. 77-86 http://www.aiscience.org/journal/aj3g Pore Pressure Prediction Using Offset Well Logs: Insight from Onshore Niger

More information

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge? 1. Crustal formation, which may cause the widening of an ocean, is most likely occurring at the boundary between the A) African Plate and the Eurasian Plate B) Pacific Plate and the Philippine Plate C)

More information

Licence P1368: Relinquishment Report (end of 2 nd term) Hurricane Exploration PLC

Licence P1368: Relinquishment Report (end of 2 nd term) Hurricane Exploration PLC Licence P1368: Relinquishment Report (end of 2 nd term) Hurricane Exploration PLC March 2012 1. Header Licence Number: P1368 Licence Round: 23 rd Licence Type: Frontier Block Numbers: 202/4, 202/5, 204/30,

More information

NAPE 2011 Lagos, Nigeria 28 November-2 December 2011 Extended Abstract

NAPE 2011 Lagos, Nigeria 28 November-2 December 2011 Extended Abstract T: +44 191 334 2191 E: info@ikonscience.com W: www.ikonscience.com Pore Pressure Prediction in the Niger Delta NAPE 2011 Lagos, Nigeria 28 November-2 December 2011 Extended Abstract PORE PRESSURE PREDICTION

More information

Evaluation of the petroleum potentials and prospect of the Chad Basin Nigeria from heat flow and gravity data

Evaluation of the petroleum potentials and prospect of the Chad Basin Nigeria from heat flow and gravity data J Petrol Explor Prod Technol (2012) 2:1 6 DOI 10.1007/s13202-011-0015-5 ORIGINAL PAPER - EXPLORATION GEOPHYSICS Evaluation of the petroleum potentials and prospect of the Chad Basin Nigeria from heat flow

More information

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data*

Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data* Case Study of the Structural and Depositional-Evolution Interpretation from Seismic Data* Yun Ling 1, Xiangyu Guo 1, Jixiang Lin 1, and Desheng Sun 1 Search and Discovery Article #20143 (2012) Posted April

More information

Integrated well log and 3-D seismic data interpretation for the Kakinada area of KG PG offshore basin

Integrated well log and 3-D seismic data interpretation for the Kakinada area of KG PG offshore basin IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) e-issn: 2321 0990, p-issn: 2321 0982.Volume 5, Issue 4 Ver. II (Jul. Aug. 2017), PP 01-05 www.iosrjournals.org Integrated well log and 3-D seismic

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(6): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(6): Research Article Available online www.jsaer.com, 2018, 5(6):17-24 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Reservoir Characterization and Structural Mapping of UVO Field, Onshore Niger Delta using Well Logs

More information

Geomagnetic modeling of potential hydrocarbon traps in the lower Niger Delta, Offshore West Africa

Geomagnetic modeling of potential hydrocarbon traps in the lower Niger Delta, Offshore West Africa Available online at www.scholarsresearchlibrary.com Archives of Applied Science Research, 2012, 4 (2):863-874 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Geomagnetic

More information

BALOCHISTAN FOLDBELT BASIN

BALOCHISTAN FOLDBELT BASIN INTRODUCTION BALOCHISTAN FOLDBELT BASIN The Kharan-3 block is located in the Kharan Trough of Balochistan Basin. GEOLOGICAL SETTING The Balochistan Province is an Upper Cretaceous to Recent structurally

More information