A Study on the Prediction of Long-Period Ground Motions from Intraslab Earthquakes

Size: px
Start display at page:

Download "A Study on the Prediction of Long-Period Ground Motions from Intraslab Earthquakes"

Transcription

1 A Study on the Prediction of Long-Period Ground Motions from Intraslab Earthquakes Yadab Prasad DHAKAL Candidate for the Doctor of Engineering Supervisor: Prof. Tsutomu SASATANI Division of Architectural and Structural Design Introduction Recently, long-period structures, such as high-rise buildings, huge oil storage tanks, and base-isolated structures, which are susceptible to long-period seismic waves, increase the number in urban areas located on deep sedimentary basins. It is very important for planning of urban seismic disaster mitigation to understand long-period ground motion from future large earthquakes. It is well known that disastrous earthquakes are plate boundary earthquakes such as the 23 Tokachi-oki earthquake (Mw.3) at the subduction zone. However, after severe damage due to the 1993 Kushiro-oki intraslab earthquake (Mw 7.6; depth~ km), we have recognized that large intraslab earthquakes are also disastrous ones at the subduction zone. The 1993 Kushiro-oki earthquake caused damage of many facilities in different sectors such as the water supply, roads and railways, commerce and industry, schools and residential buildings etc. An example of damage of a hospital building from this event is illustrated in Fig. 1. The human casualty was relatively small from this event; only two persons died from the earthquake. However, about people were injured and 116 of them were severely wounded (AIJ, 1995).. Fig. 1 Damage of the Obihiro-dai-ichi hospital from the 1993 Kushiro-oki earthquake. Photo courtesy: AIJ(25). More recently the southern Sumatra earthquake that occurred on September 3, 29 in the subduction zone environment with Mw 7.5 at a focal depth of 1 km, similar to the 1993 Kushiro-oki event, killed more than persons and injured more than 2 people (e.g., EERI, 29). This earthquake also caused damage of many residential buildings and other facilities. Similarly few damaging intermediate depth earthquakes have occurred in the different parts of the world in different tectonic environments (e.g., Frohlich, 26). These observations imply that the future large intermediatedepth events may pose a serious threat to the recently growing number of long-period structures in urban areas located on the deep sedimentary basins because the deep sedimentary basins amplify the long-period ground motions and can generate the basin surface waves with long duration. There are empirical and theoretical methods for the strong motion prediction. It has been found that the empirically predicted long-period response spectra from intraslab earthquakes are several times smaller than the observed ones at the basin sites. This is due to difficulty of effectively including the basin site effects in the empirical attenuation relationship. The long-period ground motions are greatly controlled by the deep velocity structure of the basin. This indicates that we have to rely on the theoretical method based on a threedimensional (3-D) velocity structure model of the sedimentary basin for the prediction of long-period ground motion. The construction of the 3-D basin velocity structures is ongoing in many regions of Japan. However, it is difficult to resolve completely the 3-D velocity structure with a single geophysical exploration method. Therefore, combinations of several kinds of exploration datasets are required for sufficiently resolving the 3-D velocity structure (Koketsu et al., 29). Finally, the resultant velocity model should be checked and verified based on the observed features of earthquake ground motions because the velocity models are constructed primarily for the prediction of long-period ground motions from future earthquakes in Japan. Obtaining a reliable 3-D velocity structure has the key to make the successful prediction by the theoretical method. On the one hand, we have to validate the existing 3-D velocity model based on the observed features of long-period ground motions. On the other hand, it is important to develop methodologies for the improvement of the velocity structure. This study aims to resolve these issues related to the prediction of longperiod ground motions from large intraslab earthquakes. The target area in this study is the Tokachi basin located on eastern part of Hokkaido, Japan; the Tokachi basin extends about km in the north-south direction and about 5 km in the east-west direction (see Fig. 5). Empirical prediction of pseudo-velocity response spectra

2 Pseudo-velocity response (cm/s) Pseudo-velocity response (cm/s) Empirical prediction equations have been developed and updated for subduction zone events when strong ground motion data have become more available with the operation of dense strong-motion seismograph networks in Japan (e.g., Kanno et al., 26). The prediction of strong ground motion parameters such as the peak ground acceleration and acceleration response spectra are important for developing seismic hazard maps from future earthquakes. In general, the strong ground motion at a site is estimated as a function of earthquake magnitude, distance and site condition. The site condition beneath the strong-motion observation station is variable from site to site. There is a general practice to fit the observed data by grouping them based on soil type or predominant period of the soil below the recording stations (e.g., Zhao et al., 26). Kanno et al. (26) developed a new attenuation relation using the largest number of strong ground motion data available in Japan. They applied a site correction term in their attenuation relations based on the average S-wave velocity in the upper 3 m (AVS3) of the soil. However, the shallow S-wave velocity information does not improve the prediction of long-period ground motions as shown in Fig. 2. In this figure, observed and predicted pseudo-velocity response spectra from the 1999/5/13 Mw 6.1 event are shown for a deep sedimentary site (HKD95, Obihiro). 1 HKD95, R=119 km, 1999/5/13, Mw 6.1 Pre. 1 S.E Natural period (s) Fig. 2 Comparison of observed and predicted pseudovelocity response spectra at HKD95 from the 1999/5/13 Mw 6.1 event using the attenuation relation of Kanno et al. (26). The black- and dark grey-line with circles show the observed and predicted values with site effect. The light grey-lines show one standard error of estimation without site effect. We can see in Fig. 2 that the predicted spectral values are huge underestimates of the observed ones in the natural periods longer than about 1 s. Zhao et al. (26) proposed an attenuation relation using site classification based on predominant period. The observed and predicted values using the attenuation relation of Zhao et al. are shown in Fig. 3. In this case also, we can see that the predicted spectral values are several times underestimates of the observed ones in the longer periods. This indicates that the prediction of long-period ground motions using empirical prediction equations is not so reliable at deep basin sites. This large difference between the observed and predicted spectral values at long-periods is the motivation for the theoretical prediction of them in this study. 1 HKD95, R=119 km, 1999/5/13, Mw 6.1 Pre. 1 S.E Natural period (s) Fig. 3. Comparison of observed and predicted pseudovelocity response spectra at HKD95 from the 1999/5/13 Mw 6.1 event using the attenuation relation of Zhao et al. (26). The black- and dark grey-line with circles show the observed and predicted values. The light grey-lines show one standard error of estimation. In the above figures, the basin effect or site effect at long-periods is illustrated. The unknown site condition or the inappropriate assignment of the site condition parameter in the empirical prediction equation leads to the large variability between the observed and predicted values using the empirical prediction equation. The assumption of homogeneous path effect throughout the path length between the earthquake source and observation site further adds to the variability in the regions with heterogeneous attenuation structure. There exists a heterogeneous attenuation structure in northern Japan. Therefore, a new attenuation relationship is found by us considering the heterogeneous attenuation structure in northern Japan. For details of the new attenuation relationship, it is recommended to see the paper by Dhakal et al. (29). Here only the results are compared at the HKD95 site for the 1999 event. In Fig., we can see the similar results from all the empirical prediction equations; the predicted spectral values are underestimates of the observed ones in the natural periods longer than about 1 s by a large margin. We can see that our prediction is close to the prediction of Kanno et al. (26) at long-periods and close to the prediction of Zhao et al. (26) at short periods. In Fig., it is also evident that the prediction at short periods is reasonable and improved one with the prediction equation constructed in this study.

3 Pseudo-velocity response (cm/s) HKD95, R=119 km, 1999/5/13, Mw 6.1 Dhakal et al. (Model-2) Kanno et al. Zhao et al Natural period (s) Fig. Comparison of observed and predicted pseudovelocity response spectra at HKD95 from the 1999/5/13 Mw 6.1 event using the empirical prediction equation of Dhakal et al. (29), Kanno et al. (26), and Zhao et al. (26). The black and grey lines (many) with circles show the observed and predicted values. Fig. 5 Index map showing the Tokachi basin and adjoining areas. The black filled stars denote the epicenters of the events used in this study and the beach balls show their focal mechanisms. The white rectangles denote the boundaries of the model regions for the 3-D finite difference simulation. The scale bar shows the depth of seismic basement with S-wave velocity of 3.2 km/s. The white circles denote the strong motion stations used in this study (see Fig. 6). Validation of the Tokachi basin NIED velocity model Here we examine the.5 grade 3-D velocity structure model of the Tokachi basin, constructed by NIED, by 3-D simulation of long-period ground motions for periods longer than 2 s from three nearby earthquakes, which had focal depths of 6 ~ 11 km and Mw of 6.1 ~ 6.7 (Fig. 5). One of the advantages of using these intermediate depth earthquakes for validating the 3-D velocity structure model is that the direct S-wave and the basin-induced surface waves can be easily recognized. The NIED velocity structure model comprises five sedimentary layers with S-wave velocities of m/s, 7 m/s, 1 m/s, 17 m/s, and 22 m/s above the seismic basement with S-wave velocity of 32 m/s. The velocity structure is provided for 1 km mesh size. The velocities of the simplified crustal and upper mantle layers are based on the 1-D velocity structure model of Iwasaki et al. (1991). We use the technique of Graves (1996) to implement the anelastic attenuation in the finite difference method. We apply staggered-grid finite difference method (Graves, 1996), with fourthand second-order accuracy in space and time, respectively, for the 3-D simulation. We consider a horizontal free-surface and apply the zero-stress formulation of Graves (1996) for the free-surface. The absorbing boundary condition of Clayton and Engquist (1977) and non-reflecting boundary condition of Cerjan et al. (195) are applied as boundary conditions for the other sides. Fig. 6 Location of strong motion observation sites used in this study and example of vertical sections of the NIED velocity structure along the selected profiles. Strong motion sites from K-NET, WISE and JMA are denoted by different symbols; the cross symbols denote the microtremor array measurement sites. The white rectangle indicates the area, where we compare the NIED velocity structure model with revised velocity structure. In the cross sections, the velocities are 3.2, 2.2, 1.7, 1.1,.7, and. km/s from the bottom to top. It is not possible to show all the waveforms for the 1999 event in this abstract. The -component records have larger amplitude compared to the other component

4 Velocity (cm/s) Displacement (cm) Displacement (cm) records from this event due to the radiation pattern of S- wave. Therefore, In Fig. 7, we show an example of the observed and synthetic waveforms for only the component at the basin sites, HKD9, HKD95 and HKD96. In Fig. 7, two points are important to consider. The first is not reasonable NIED velocity model just beneath the HKD96 site due to the large difference between the observed and synthetic S-wave amplitudes. The second is the strength of excitation of the later phases. The later phases are more dominant in the synthetic waveforms at the HKD9 and HKD96 sites than the HKD95 site HKD9 HKD95 HKD96 Filter [.5-.5 Hz] Syn Fig. 7 An example of observed (black) and synthetic (grey) waveforms at basin sites from the 1999, Mw 6.1 event. Displacement records from two JMA stations (D7, Hiroo and D59, Obihiro) are available in the Tokachi basin for the 191 and 197 events. Due to the small space, we show the waveforms only for the 191 event. The stations, D7 and D59, are located on stiff and deep sedimentary soil sites, respectively. We show the comparison of the observed and synthetic waveforms at the two sites in Fig.. We can see that the excitation of later phases is very strong at the D59 site, compared with those at the stiff soil site, D7. The synthetic S waveforms have relatively good agreement with the observed ones at both sites. This indicates that the NIED velocity model just beneath the sites is reasonable. However, a strong later phase, about 3s after the S-wave arrival, on the -component of the synthetic waveform at the D59 site, cannot be seen on the observed record. We find from examination of a synthetic record section along the E-W profile including the D59 site that this later phase is surface wave induced at the western edge of the Tokachi basin. This indicates that the western basin edge structure is unreasonable. Tuning the deep velocity structure model We propose an improvement in tuning the deep velocity structure by forward modeling of observed long-period S-waveform. We have found that direct long-period S- wave at a basin site from 3-D simulation for a deep basin structure is essentially the same as that from 1-D simulation for a flat layer structure just beneath the site. Therefore, we can check the velocity structure just beneath the site by comparing the synthetic S-waveform from 1-D simulation with the observed one. In this comparison, it is important to select an appropriate band-width of the bandpass filter based on the S-wave amplification factors. This is a simple principle of the improvement in tuning the velocity structure just beneath the basin site by 1-D simulation. For details, see the paper by Dhakal et al. (29). (a) D S Syn. 2 6 (b) D S BISW Syn. 2 6 Fig. Observed (black) and synthetic (red) waveforms at the D59 and D7 sites from the 191, Mw 6. event. S: S-wave; BISW: basin induced surface waves. Here we try to revise the NIED velocity structure in the western part of the Tokachi basin; the target area is shown in Figure 5 (the rectangular region). The strong motion observation sites are not enough for revision of the NIED velocity structure. Fortunately there are twelve microtremor array measurement sites in the target area as shown in Fig. 6. The phase velicities of Rayleigh waves at the microtremor measurement sites except for the TKCH6 site were estimated by MATSUSHIMA (199). We also conducted the array mesurements of microtremors and applied the spatial autocorrelation method (SPAC-method; OKADA, 23) to estimation of the phase velocities at the TKCH6 site. We use these phase velocity data to estimate the deep velocity structure. In this process, we tentatively assume that the sedimentary layer number and the S-wave velocity of each layer are the same as those of the NIED velocity structure model. The GA (genetic algorithm) inversion method (YAMANAKA and ISHIDA, 1996 ) is applied to estimation of the thickness of each layer. We also revise the deep velocity structure just beneath the HKD96 site using the tuning method mentioned above. We apply a linear interpolation between the three neighbouring 1-D velocity structures to interpolate the velocity structure in the western basin edge. The contour maps of the top of the seismic basement for the NIED and revised velocity structures are shown in Fig. 9a and 9b, respectively. Fig. 9c and 9d show the vertical cross sections of the NIED and revised velocity structures along a profile B-B (a part of the A-A profile in Fig. 6). We can see a change in the thickness and interface geometry of the sedimentary layers between the two models.

5 Velocity (cm/s) Velocity (cm/s) Displacement (cm) revised model is fairly good for the both 191 and 197 events at the D59 site. Fig. 9 Upper panel: depth of seismic basement with S- wave velocity of 3.2 km/s for the NIED (a) and revised (b) velocity models. The white lines (B-B ) denote profiles of the vertical sections shown in the middle and lower figures. Middle and lower: vertical cross section of the velocity structure along the profile B-B of the NIED (c) and revised (d) velocity structure models; the layering corresponds to S-wave velocity of, 7, 1, 17, 22, and 32 m/s, respectively from the top to bottom. 3-D Simulation using the revised velocity structure model D59 NIED. Rev Fig. 11 Comparison of the observed and synthetic waveforms at D59 using the NIED and revised velocity structure for the 191 event. Prediction of long-period ground motions for the 1993 Kushiro-oki earthquake The 1993 Kushiro-oki earthquake (Mw 7.6, Focal depth 3 km) is the largest intermediate depth intraslab earthquake that occurred nearby the Tokachi basin (Fig. ). As a preliminary prediction of long-period ground motions for this event, an image map of peak ground velocity (PGV) from the bandpass filtered (.5-.5 Hz) waveforms is shown in the Tokachi basin (Fig. 13). The source model of Morikawa and Sasatani (2) is used with some modifications for the 3-D simulations. Fig. shows the comparison between the observed and synthetic waveforms for the 1999 event at two sites. At HKD95, the amplitude of the basin-induced surface waves for the revised model show somewhat underestimate in comparison to those for the NIED model although the S-waveforms are essentially the same. On the other hand, at the HKD96 site, we obtain the good agreement between the observed and synthetic S-waveforms for the revised model. The basin-induced surface waves are considerably reduced in amplitudes for the revised model. HKD NIED Rev. 2 6 HKD NIED Rev. 2 6 Fig. Comparison of the observed and synthetic waveforms at HKD95 (left) and HKD96 (right) using the NIED and revised velocity structure. The large amplitude basin-induced surface waves on the synthetic waveforms (for the 191 event) for the NIED model are substantially diminished for the revised model (Fig. 11). Consequently, the agreement between the observed and synthetic waveforms for the Fig. Index map showing the epicenter of the 1993 Kushiro-oki earthquake and the strong-motion observation sites that recorded the event. The white filled star denotes the epicenter, triangles the strongmotion observation sites. Conclusion This study has been made with the aim of resolving current issues related with the prediction of long-period ground motions from intraslab earthquakes. Particularly, this study has focused on simulation of long-period ground motions in a deep sedimentary basin from intraslab earthquakes.

6 It is found that the predicted long-period response spectra from intraslab earthquakes are several times smaller than the observed ones at the central basin site. From the waveform comparisons, it is concluded that the NIED Tokachi basin velocity model is fairly good, but it requires some modification at the basin edges. A method for tuning the deep velocity structure by 1-D simulation of long-period S-wave has been proposed. Revision of the NIED model is carried out for the western basin edge structure. However this is incomplete. As a preliminary prediction of long-period ground motions (2 ~ 2 s), the synthetic PGV values exceed 2 cm/s in wide areas of the Tokachi basin for the 1993 event; the maximum value reaches near 75 cm/s. Fig. 13 Long-period ground motion hazard map showing PGVs in the Tokachi basin for the 1993 Kushiro-oki earthquake. The triangles denote the K- NET and other strong-motion observation sites for reference. The PGVs are derived at frequencies.5-.5 Hz. The vertical scale bar shows the PGVs in cm/s. The contours indicate the PGVs. Acknowledgements NIED, JMA, K-NET, and WISE are acknowledged for data. References AIJ (Architectural Institute of Japan) (1995). Report on the damage investigation of the 1993 off Kushiro earthquake and the south-west off Hokkaido earthquake, pp 97. Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M. (195), A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics 5, Clayton, R. W. and Engquist, B. (1977), Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am. 67, Dhakal, Y. P., N. Takai, T. Sasatani, 2. Empirical Analysis of Path Effects on Prediction Equations of Pseudo-Velocity Response Spectra in Northern Japan. Jour. Earthq. Engg. & Struc. Dyn., 39:3 61. Dhakal, Y., Sasatani, T., and Takai, N. (29), Tuning the deep velocity structure model by 1-D simulation of long-period S-waves, Proc. of the 9th SEGJ Intl. Symp. Imaging and Interpretation -, Sapporo, Japan, Paper ID 1 (CD-ROM). Frohlich, C. (26). Deep Earthquakes, Cambridge University Press, pp 5. Graves, R.W. (1996), Simulating seismic wave propagation in 3D elastic media using staggeredgrid finite differences, Bull. Seismol. Soc. Am. 6, Iwasaki, T., Hirata, N., Kanazawa, T., Urabe, T., Motoya, Y., and H. Shimamura (1991), Earthquake distribution in the subduction zone off eastern Hokkaido, Japan, deduced from oceanbottom seismographic and land observations, Geophys. J. Int., 5, Kanno T, Narita A, Morikawa N, Fujiwara H, Fukushima Y. (26), A new attenuation relation for strong ground motion in Japan based on recorded data, Bull. Seismol. Soc. Am., 96(3), Koketsu, K., Miyake, H., Afnimar, and Tanaka, Y. (29), A proposal for a standard procedure of modeling 3-D velocity structures and its application to the Tokyo Metropolitan area, Japan, Tectonophysics, 72, Matsushima, T., 199, Studies on determination of deep geological structures using long-period microtremors, Ph. D. thesis, Hokkaido University, (in Japanese with English abstract). Morikawa, N. and Sasatani, T. (2), Source models of two large intraslab earthquakes from broadband strong ground motions, Bull. Seismol. Soc. Am., 9, Okada, H. (23), The Microtremor Survey Method, Geophysical Monograph Series, Society of Exploration Geophysicists, 132. Yamanaka, H. and Ishida, H. (1996), Application of genetic algorithms to an inversion of surface-wave dispersion data, Bull. Seism. Soc. Am., 6, 36-. Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y, Fukushima Y. (26), Attenuation relations of strong ground motion in Japan using site classification based on predominant period, Bull. Seismol. Soc. Am., 96(3),

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara TUNING THE DEEP VELOCITY STRUCTURE MODEL OF THE TOKYO

More information

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES

RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES RECIPE FOR PREDICTING STRONG GROUND MOTIONS FROM FUTURE LARGE INTRASLAB EARTHQUAKES T. Sasatani 1, S. Noguchi, T. Maeda 3, and N. Morikawa 4 1 Professor, Graduate School of Engineering, Hokkaido University,

More information

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model

A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model A Prototype of Strong Ground Motion Prediction Procedure for Intraslab Earthquake based on the Characterized Source Model T. Iwata, K. Asano & H. Sekiguchi Disaster Prevention Research Institute, Kyoto

More information

Ground Motion Validation of the +3,- Kanto Earthquake Using the New Geometry of the Philippine Sea Slab and Integrated -D Velocity-Structure Model

Ground Motion Validation of the +3,- Kanto Earthquake Using the New Geometry of the Philippine Sea Slab and Integrated -D Velocity-Structure Model Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2+,**0 pp.,01,1, Ground Motion Validation of the +3,- Kanto Earthquake Using the New Geometry of the Philippine Sea Slab and Integrated -D Velocity-Structure Model

More information

Effects of subsurface structures of source regions on long period ground motions observed in the Tokyo Bay area, Japan

Effects of subsurface structures of source regions on long period ground motions observed in the Tokyo Bay area, Japan Uetake Earth, Planets and Space (27) 69:7 DOI.86/s4623-7-6-x LETTER Open Access Effects of subsurface structures of source regions on long period ground motions observed in the Tokyo Bay area, Japan Tomiichi

More information

NUMERICAL SIMULATION OF STRONG GROUND MOTION ON ADAPAZARI BASIN DURING THE 1999 KOCAELI, TURKEY, EARTHQUAKE

NUMERICAL SIMULATION OF STRONG GROUND MOTION ON ADAPAZARI BASIN DURING THE 1999 KOCAELI, TURKEY, EARTHQUAKE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 720 NUMERICAL SIMULATION OF STRONG GROUND MOTION ON ADAPAZARI BASIN DURING THE 1999 KOCAELI, TURKEY,

More information

3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids

3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids 3D waveform simlation in Kobe of the 1995 Hyogoken-Nanbu earthquake by FDM using with discontinuous grids S. Aoi National Research Institute for Earth Science and Disaster Prevention H. Sekiguchi, T. Iwata

More information

THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF LONG-PERIOD GROUND MOTION IN THE KANTO PLAIN, JAPAN

THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF LONG-PERIOD GROUND MOTION IN THE KANTO PLAIN, JAPAN THREE-DIMENSIONAL FINITE DIFFERENCE SIMULATION OF LONG-PERIOD GROUND MOTION IN THE KANTO PLAIN, JAPAN Nobuyuki YAMADA 1 And Hiroaki YAMANAKA 2 SUMMARY This study tried to simulate the long-period earthquake

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara ESTIMATION OF SITE EFFECTS BASED ON RECORDED DATA AND

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara LONG-PERIOD (3 TO 10 S) GROUND MOTIONS IN AND AROUND THE

More information

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate T. Sasatani, N. Takai, M. Shigefuji, and Y. Miyahara Hokkaido University, Sapporo, Japan W. Kawabata Electric Power Development

More information

Scenario Earthquake Shaking Maps in Japan

Scenario Earthquake Shaking Maps in Japan 1 Scenario Earthquake Shaking Maps in Japan Nobuyuki Morikawa National Research Institute for Earth Science and Disaster Prevention (NIED), JAPAN Scenario Earthquake Shaking Maps (SESMs) The shaking maps

More information

ANALYTICAL STUDY ON RELIABILITY OF SEISMIC SITE-SPECIFIC CHARACTERISTICS ESTIMATED FROM MICROTREMOR MEASUREMENTS

ANALYTICAL STUDY ON RELIABILITY OF SEISMIC SITE-SPECIFIC CHARACTERISTICS ESTIMATED FROM MICROTREMOR MEASUREMENTS ANALYTICAL STUDY ON RELIABILITY OF SEISMIC SITE-SPECIFIC CHARACTERISTICS ESTIMATED FROM MICROTREMOR MEASUREMENTS Boming ZHAO 1, Masanori HORIKE 2 And Yoshihiro TAKEUCHI 3 SUMMARY We have examined the site

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara TOMOGRAPHIC ESTIMATION OF SURFACE-WAVE GROUP VELOCITY

More information

Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 Niigata Chuetsu and the 2011 Fukushima Hamado ri Earthquakes

Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 Niigata Chuetsu and the 2011 Fukushima Hamado ri Earthquakes Comparison of Long-Period Ground Motions in the Kanto Basin during the 2004 and the 2011 Fukushima Hamado ri Earthquakes Yuka Esashi Supervisors: Kazuki Koketsu and Yujia Guo Department of Earth and Planetary

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara PERIOD-DEPENDENT SITE AMPLIFICATION FOR THE 2008 IWATE-MIYAGI

More information

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS

BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA- KEN CHUETSU EARTHQUAKE: SOURCE AND SITE EFFECTS Third International Symposium on the Effects of Surface Geology on Seismic Motion Grenoble, France, 30 August - 1 September 2006 Paper Number: 105 BROADBAND STRONG MOTION SIMULATION OF THE 2004 NIIGATA-

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara VELOCITY STRUCTURE INVERSIONS FROM HORIZONTAL TO VERTICAL

More information

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION Kimiyuki Asano 1 and Tomotaka Iwata 2 1 Assistant Professor, Disaster Prevention

More information

SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA

SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA SOURCE MODELING OF SUBDUCTION-ZONE EARTHQUAKES AND LONG-PERIOD GROUND MOTION VALIDATION IN THE TOKYO METROPOLITAN AREA ABSTRACT : Hiroe Miyake 1, Kazuki Koketsu 2, and Takashi Furumura 3,2 1 Assistant

More information

STRONG GROUND MOTION PREDICTION FOR HUGE SUBDUCTION EARTHQUAKES USING A CHARACTERIZED SOURCE MODEL AND SEVERAL SIMULATION TECHNIQUES

STRONG GROUND MOTION PREDICTION FOR HUGE SUBDUCTION EARTHQUAKES USING A CHARACTERIZED SOURCE MODEL AND SEVERAL SIMULATION TECHNIQUES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 655 STRONG GROUND MOTION PREDICTION FOR HUGE SUBDUCTION EARTHQUAKES USING A CHARACTERIZED SOURCE MODEL

More information

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data

Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data Source Process and Constitutive Relations of the 2011 Tohoku Earthquake Inferred from Near-Field Strong-Motion Data Kunikazu Yoshida, Anatoly Petukhin & Ken Miyakoshi Geo-Research Institute, Japan Koji

More information

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake

Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake Long-period Ground Motion Characteristics of the Osaka Sedimentary Basin during the 2011 Great Tohoku Earthquake K. Sato, K. Asano & T. Iwata Disaster Prevention Research Institute, Kyoto University, Japan

More information

Preliminary Analysis for Characteristics of Strong Ground Motion from Gigantic Earthquakes

Preliminary Analysis for Characteristics of Strong Ground Motion from Gigantic Earthquakes Preliminary Analysis for Characteristics of Strong Ground Motion from Gigantic Earthquakes S. Midorikawa, H. Miura Interdisciplinary Graduate School of Science & Engineering, Tokyo Institute of Technology,

More information

Long-period Ground Motion Simulation in Kinki Area. Nobuyuki YAMADA* and Tomotaka IWATA

Long-period Ground Motion Simulation in Kinki Area. Nobuyuki YAMADA* and Tomotaka IWATA Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 47 C, 2004 Long-period Ground Motion Simulation in Kinki Area Nobuyuki YAMADA* and Tomotaka IWATA * COE Researcher, DPRI, Kyoto University Synopsis

More information

Moment tensor inversion of near source seismograms

Moment tensor inversion of near source seismograms Moment tensor inversion of near source seismograms Yuji Yagi and Naoki Nishimura ABSTRACT We construct a program set for estimating moment tensor solution using near source seismograms. We take the effect

More information

SOURCE, PATH AND SITE EFFECTS ON STRONG GROUND MOTIONS FROM THE 2003 TOKACHI-OKI EARTHQUAKE SEQUENCE

SOURCE, PATH AND SITE EFFECTS ON STRONG GROUND MOTIONS FROM THE 2003 TOKACHI-OKI EARTHQUAKE SEQUENCE 4 th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. ++++ SOURCE, PATH AND SITE EFFECTS ON STRONG GROUND MOTIONS FROM THE 2003 TOKACHI-OKI EARTHQUAKE SEQUENCE

More information

GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN

GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN GROUND MOTION SPECTRAL INTENSITY PREDICTION WITH STOCHASTIC GREEN S FUNCTION METHOD FOR HYPOTHETICAL GREAT EARTHQUAKES ALONG THE NANKAI TROUGH, JAPAN Masayuki YOSHIMI 1, Yasuto KUWAHARA 2, Masayuki YAMADA

More information

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations

Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations K. Somei & K. Miyakoshi Geo-Reserch Institute, Osaka, Japan SUMMARY: A great

More information

RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN

RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN RISKY HIGH-RISE BUILDINGS RESONATING WITH THE LONG-PERIOD STRONG GROUND MOTIONS IN THE OSAKA BASIN, JAPAN K. Miyakoshi 1 and M. Horike 2 ABSTRACT : 1 Earthquake Engineering Group, Geo-Research Institute,

More information

LONG-PERIOD SITE RESPONSE IN THE TOKYO METROPOLITAN AREA

LONG-PERIOD SITE RESPONSE IN THE TOKYO METROPOLITAN AREA Sixth International Conference on Urban Earthquake Engineering March 3-4, 2009, Tokyo Institute of Technology, Tokyo, Japan LONG-PERIOD SITE RESPONSE IN THE TOKYO METROPOLITAN AREA Kenichi Tsuda 1), Takashi

More information

Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the Pseudo Point-Source Model

Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the Pseudo Point-Source Model 6 th International Conference on Earthquake Geotechnical Engineering -4 November 25 Christchurch, New Zealand Simulation of Strong Ground Motions for a Shallow Crustal Earthquake in Japan Based on the

More information

FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK

FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK FEASIBILITY STUDY ON EARTHQUAKE EARLY WARNING SYSTEM FOR THE CITY OF LIMA, PERU, USING A NEWLY DEPLOYED STRONG-MOTION NETWORK Cinthia CALDERON MEE1771 Supervisor: Takumi HAYASHIDA Toshiaki YOKOI ABSTRACT

More information

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes

Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes LETTER Earth Planets Space, 57, 197 202, 2005 Long-period ground motion simulation in the Kinki area during the MJ 7.1 foreshock of the 2004 off the Kii peninsula earthquakes Nobuyuki Yamada and Tomotaka

More information

New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan

New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan New Prediction Formula of Fourier Spectra Based on Separation Method of Source, Path, and Site Effects Applied to the Observed Data in Japan Kenichi Nakano Graduate School of Engineering, Kyoto University,

More information

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

4 Associate Professor, DPRI, Kyoto University, Uji, Japan Proceedings of the International Symposium on Engineering Lessons Learned from the 2 Great East Japan Earthquake, March -4, 22, Tokyo, Japan STRONG MOTION ESTIMATION AT THE ELEVATED BRIDGES OF THE TOHOKU

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara TESTING THREE-DIMENSIONAL BASIN STRUCTURE MODEL OF THE

More information

CONTROLLING FACTORS OF STRONG GROUND MOTION PREDICTION FOR SCENARIO EARTHQUAKES

CONTROLLING FACTORS OF STRONG GROUND MOTION PREDICTION FOR SCENARIO EARTHQUAKES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2801 CONTROLLING FACTORS OF STRONG GROUND MOTION PREDICTION FOR SCENARIO EARTHQUAKES Hiroe MIYAKE 1,

More information

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 016 Mw 7.0 Kumamoto Earthquake Heng-Yi Su 1 *, Aitaro Kato 1 Department of Earth Sciences, National Central University, Taoyuan

More information

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Letter J. Phys. Earth, 41, 319-325, 1993 Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration Yasuo Izutani Faculty of Engineering,

More information

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 1359 RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING Shusaku INOUE 1,

More information

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes

Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes LETTER Earth Planets Space, 58, 1593 1597, 2006 Nonlinear site response from the 2003 and 2005 Miyagi-Oki earthquakes Kenichi Tsuda and Jamison Steidl Department of Earth Science and Institute for Crustal

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara DEEP S-WAVE VELOCITY STRUCTURES IN THE TOKYO METROPOLITAN

More information

Seismic hazard analysis of Tianjin area based on strong ground motion prediction

Seismic hazard analysis of Tianjin area based on strong ground motion prediction Earthq Sci (2010)23: 369 375 369 Doi: 10.1007/s11589-010-0734-6 Seismic hazard analysis of Tianjin area based on strong ground motion prediction Zhao Boming School of Civil Engineering, Beijing Jiaotong

More information

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION

THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3229 THEORETICAL EVALUATION OF EFFECTS OF SEA ON SEISMIC GROUND MOTION Ken HATAYAMA 1 SUMMARY I evaluated

More information

Hazard Feedback using the. current GMPEs for DCPP. Nick Gregor. PG&E DCPP SSHAC Study. SWUS GMC Workshop 2 October 22, 2013

Hazard Feedback using the. current GMPEs for DCPP. Nick Gregor. PG&E DCPP SSHAC Study. SWUS GMC Workshop 2 October 22, 2013 1 Hazard Feedback using the current GMPEs for DCPP Nick Gregor PG&E DCPP SSHAC Study SWUS GMC Workshop 2 October 22, 2013 PGA Hazard By Source 0.5 Hz 2 Deaggregation AEP = 10-4 PGA 0.5 Hz 3 4 Base Case

More information

3D VISCO-ELASTIC WAVE PROPAGATION IN THE BORREGO VALLEY, CALIFORNIA

3D VISCO-ELASTIC WAVE PROPAGATION IN THE BORREGO VALLEY, CALIFORNIA 3D VISCO-ELASTIC WAVE PROPAGATION IN THE BORREGO VALLEY, CALIFORNIA Kim B OLSEN 1, Robert L NIGBOR 2 And Takaaki KONNO 3 SUMMARY We have simulated 2-Hz wave propagation in a three-dimensional model of

More information

Ground Motion Prediction Equation Hazard Sensitivity Results for Palo Verde Nuclear Generating Station Site (PVNGS)

Ground Motion Prediction Equation Hazard Sensitivity Results for Palo Verde Nuclear Generating Station Site (PVNGS) Ground Motion Prediction Equation Hazard Sensitivity Results for Palo Verde Nuclear Generating Station Site (PVNGS) M.Walling SWUS GMC Workshop 3 March 11, 2013 Hazard ground motion prediction equation

More information

A study on the predominant period of long-period ground motions in the Kanto Basin, Japan

A study on the predominant period of long-period ground motions in the Kanto Basin, Japan Yoshimoto and Takemura Earth, Planets and Space 2014, 66:100 LETTER Open Access A study on the predominant period of long-period ground motions in the Kanto Basin, Japan Kazuo Yoshimoto * and Shunsuke

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara SCALING OF SHORT-PERIOD SPECTRAL LEVEL OF ACCELERATION

More information

STRONG GROUND MOTION ATTENUATION IN THE SEA OF JAPAN (OKHOTSK-AMUR PLATES BOUNDARY) REGION

STRONG GROUND MOTION ATTENUATION IN THE SEA OF JAPAN (OKHOTSK-AMUR PLATES BOUNDARY) REGION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 197 STRONG GROUND MOTION ATTENUATION IN THE SEA OF JAPAN (OKHOTSK-AMUR PLATES BOUNDARY) REGION Laxman

More information

High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake

High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake High Acceleration Motions generated from the 2011 Pacific coast off Tohoku, Japan Earthquake K. Irikura Disaster Prevention Research Center, Aichi Institute of Technology, Japan S. Kurahashi Disaster Prevention

More information

Some Problems Related to Empirical Predictions of Strong Motion

Some Problems Related to Empirical Predictions of Strong Motion Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2+,**0 pp.,/-,/2 Some Problems Related to Empirical Predictions of Strong Motion Saburoh Midorikawa + * + Center for Urban Earthquake Engineering, Tokyo Institute

More information

Comparisons of ground motions from the M 9 Tohoku earthquake with ground-motion prediction equations for subduction interface earthquakes

Comparisons of ground motions from the M 9 Tohoku earthquake with ground-motion prediction equations for subduction interface earthquakes Comparisons of ground motions from the M 9 Tohoku earthquake with ground-motion prediction equations for subduction interface earthquakes David M. Boore 8 March 20 Revised: 3 March 20 I used data from

More information

Scenario Earthquake Shaking Maps in Japan

Scenario Earthquake Shaking Maps in Japan Scenario Earthquake Shaking Maps in Japan Nobuyuki Morikawa National Research Institute for Earth Science and Disaster Prevention (NIED), JAPAN Example of SESMs The Kego fault zone (south-east part) The

More information

CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO, JAPAN

CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO, JAPAN 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1861 CHARACTERISTICS OF SOURCE SPECTRA OF SMALL AND LARGE INTERMEDIATE DEPTH EARTHQUAKES AROUND HOKKAIDO,

More information

Scaling of characterized slip models for plate-boundary earthquakes

Scaling of characterized slip models for plate-boundary earthquakes LETTER Earth Planets Space, 6, 987 991, 28 Scaling of characterized slip models for plate-boundary earthquakes Satoko Murotani, Hiroe Miyake, and Kazuki Koketsu Earthquake Research Institute, University

More information

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT Shunroku YAMAMOTO SUMMARY Waveform simulations of the 995 Hyogo-ken Nanbu earthquake were carried out to study

More information

Study on acceleration response spectra for seismic design based on observed records in Hokkaido, JAPAN

Study on acceleration response spectra for seismic design based on observed records in Hokkaido, JAPAN Study on acceleration response spectra for seismic design based on observed records in Hokkaido, JAPAN Takashi SATO 1, Hiroaki Nishi 1, Takaaki IKEDA 2, Noboru KAMIAKITO 2 and Atsushi TAKADA 3 1 Structures

More information

LETTER Earth Planets Space, 57, , 2005

LETTER Earth Planets Space, 57, , 2005 LETTER Earth Planets Space, 57, 345 35, 25 Estimation of the source model for the foreshock of the 24 off the Kii peninsula earthquakes and strong ground motion simulation of the hypothetical Tonankai

More information

Imaging an asperity of the 2003 Tokachi-oki earthquake using a dense strong-motion seismograph network

Imaging an asperity of the 2003 Tokachi-oki earthquake using a dense strong-motion seismograph network Geophys. J. Int. (2008) 172, 1104 1116 doi: 10.1111/j.1365-246X.2007.03702.x Imaging an asperity of the 2003 Tokachi-oki earthquake using a dense strong-motion seismograph network R. Honda 1,S.Aoi 2, H.

More information

Estimation of local site effects in Ojiya city using aftershock records of the 2004 Mid Niigata Prefecture earthquake and microtremors

Estimation of local site effects in Ojiya city using aftershock records of the 2004 Mid Niigata Prefecture earthquake and microtremors LETTER Earth Planets Space, 57, 539 544, 2005 Estimation of local site effects in Ojiya city using aftershock records of the 2004 Mid Niigata Prefecture earthquake and microtremors Hiroaki Yamanaka 1,

More information

CHARACTERISTICS OF STRONG GROUND MOTION FROM THE 2011 GIGANTIC TOHOKU, JAPAN EARTHQUAKE

CHARACTERISTICS OF STRONG GROUND MOTION FROM THE 2011 GIGANTIC TOHOKU, JAPAN EARTHQUAKE Paper No. M-4 CHARACTERISTICS OF STRONG GROUND MOTION FROM THE 2011 GIGANTIC TOHOKU, JAPAN EARTHQUAKE Saburoh MIDORIKAWA 1, Hiroyuki MIURA 2 and Tomohiro ATSUMI 3 SUMMARY The 2011 Tohoku earthquake (Mw9.0)

More information

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS

MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS MODELING OF HIGH-FREQUENCY WAVE RADIATION PROCESS ON THE FAULT PLANE FROM THE ENVELOPE FITTING OF ACCELERATION RECORDS Yasumaro KAKEHI 1 SUMMARY High-frequency (higher than 1 Hz) wave radiation processes

More information

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand

Modelling Strong Ground Motions for Subduction Events in the Wellington Region, New Zealand Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society 14-16 April, 2011, Auckland, New Zealand Modelling Strong Ground Motions for Subduction Events

More information

Strong Ground Motion Evaluation in the Tokyo Metropolitan Area: The 1923 Kanto Earthquake and Future Subduction-Zone Earthquakes

Strong Ground Motion Evaluation in the Tokyo Metropolitan Area: The 1923 Kanto Earthquake and Future Subduction-Zone Earthquakes Strong Ground Motion Evaluation in the Tokyo Metropolitan Area: The 1923 Kanto Earthquake and Future Subduction-Zone Earthquakes Kazuki Koketsu 1) and Hiroe Miyake 2) 1) Earthquake Research Institute,

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

LONG-PERIOD GROUND MOTION CHARACTERISTICS IN OSAKA BASIN, WESTERN JAPAN, FROM STRONG MOTION RECORDS OF LARGE EARTHQUAKES

LONG-PERIOD GROUND MOTION CHARACTERISTICS IN OSAKA BASIN, WESTERN JAPAN, FROM STRONG MOTION RECORDS OF LARGE EARTHQUAKES The 4 th World Conference on Earthquake Engineering October 2-7, 2008, Beijing, China LONG-PERIOD GROUND MOTION CHARACTERISTICS IN OSAKA BASIN, WESTERN JAPAN, FROM STRONG MOTION RECORDS OF LARGE EARTHQUAKES

More information

SITE EFFECTS IN HIROSHIMA PREFECTURE, JAPAN DURING THE 2001 GEIYO EARTHQUAKE OF MARCH 24, 2001

SITE EFFECTS IN HIROSHIMA PREFECTURE, JAPAN DURING THE 2001 GEIYO EARTHQUAKE OF MARCH 24, 2001 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 382 SITE EFFECTS IN HIROSHIMA PREFECTURE, JAPAN DURING THE 2001 GEIYO EARTHQUAKE OF MARCH 24, 2001 Tatsuo

More information

UPPER MANTLE ATTENUATION STRUCTURE BENEATH THE EASTERN HOKKAIDO, JAPAN AND ITS EFFECTS ON STRONG GROUND MOTIONS

UPPER MANTLE ATTENUATION STRUCTURE BENEATH THE EASTERN HOKKAIDO, JAPAN AND ITS EFFECTS ON STRONG GROUND MOTIONS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 914 UPPER MANTLE ATTENUATION STRUCTURE BENEATH THE EASTERN HOKKAIDO, JAPAN AND ITS EFFECTS ON STRONG

More information

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake.

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake. 2.2 Strong Ground Motion 2.2.1 Strong Ground Motion Network The world densest digital strong ground motion network of Taiwan with the station mesh of 3 km in the urban areas (Shin et al., 2) monitored

More information

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes Changjiang Wu 1 and Kazuki Koketsu Earthquake Research Institute, University

More information

Japan Seismic Hazard Information Station

Japan Seismic Hazard Information Station Japan Seismic Hazard Information Station (J-SHIS) Hiroyuki Fujiwara National Research Institute for Earth Science and Disaster Prevention (NIED) Background of the Project Headquarters for Earthquake Research

More information

The Subsurface Soil Effects Study Using the Short and Long Predominant Periods From H/V Spectrum In Yogyakarta City

The Subsurface Soil Effects Study Using the Short and Long Predominant Periods From H/V Spectrum In Yogyakarta City Paper ID 90 The Subsurface Soil Effects Study Using the Short and Long Predominant Periods From H/V Spectrum In Yogyakarta City Z.L. Kyaw 1,2*, S. Pramumijoyo 2, S. Husein 2, T.F. Fathani 3, J. Kiyono

More information

LONG-PERIOD GROUND MOTION SIMULATION OF OSAKA SEDIMENTARY BASIN FOR A HYPOTHETICAL NANKAI SUBDUCTION EARTHQUAKE

LONG-PERIOD GROUND MOTION SIMULATION OF OSAKA SEDIMENTARY BASIN FOR A HYPOTHETICAL NANKAI SUBDUCTION EARTHQUAKE JOINT CONFERENCE PROCEEDINGS 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE) March 3-5, 2010, Tokyo Institute of Technology,

More information

LETTER Earth Planets Space, 56, , 2004

LETTER Earth Planets Space, 56, , 2004 LETTER Earth Planets Space, 56, 353 357, 2004 Deep seismic activities preceding the three large shallow earthquakes off south-east Hokkaido, Japan the 2003 Tokachi-oki earthquake, the 1993 Kushiro-oki

More information

Effects of Surface Geology on Seismic Motion

Effects of Surface Geology on Seismic Motion 4 th IASPEI / IAEE International Symposium: Effects of Surface Geology on Seismic Motion August 23 26, 2011 University of California Santa Barbara A STUDY ON THE ESTIMATION METHOD FOR UNDERGROUND STRUCTURE

More information

MULTI-DIMENSIONAL VS-PROFILING WITH MICROTREMOR H/V AND ARRAY TECHNIQUES

MULTI-DIMENSIONAL VS-PROFILING WITH MICROTREMOR H/V AND ARRAY TECHNIQUES 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1348 MULTI-DIMENSIONAL VS-PROFILING WITH MICROTREMOR H/V AND ARRAY TECHNIQUES Kohji TOKIMATSU 1, Hiroshi

More information

A STRONG MOTION SIMULATION METHOD SUITABLE FOR AREAS WITH LESS INFORMATION ON SUBSURFACE STRUCTURE - KOWADA'S METHOD AND ITS APPLICATION TO SHALLOW CRUSTAL EARTHQUAKES IN JAPAN - A. Nozu 1, T. Nagao 2

More information

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL 1 Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL Hideo AOCHI

More information

GROUND MOTION CHARACTERISTIC IN THE KAOHSIUNG & PINGTUNG AREA, TAIWAN

GROUND MOTION CHARACTERISTIC IN THE KAOHSIUNG & PINGTUNG AREA, TAIWAN GROUND MOTION CHARACTERISTIC IN THE KAOHSIUNG & PINGTUNG AREA, TAIWAN Hsien-Jen Chiang 1, Kuo-Liang Wen 1, Tao-Ming Chang 2 1.Institute of Geophysics, National Central University,ROC 2.Department of Information

More information

Source model of the 2005 Miyagi-Oki, Japan, earthquake estimated from broadband strong motions

Source model of the 2005 Miyagi-Oki, Japan, earthquake estimated from broadband strong motions Earth Planets Space, 59, 1155 1171, 2007 Source model of the 2005 Miyagi-Oki, Japan, earthquake estimated from broadband strong motions Wataru Suzuki and Tomotaka Iwata Disaster Prevention Research Institute,

More information

STUDY ON MICROTREMOR CHARACTERISTICS BASED ON SIMULTANEOUS MEASUREMENTS BETWEEN BASEMENT AND SURFACE USING BOREHOLE

STUDY ON MICROTREMOR CHARACTERISTICS BASED ON SIMULTANEOUS MEASUREMENTS BETWEEN BASEMENT AND SURFACE USING BOREHOLE STUDY ON MICROTREMOR CHARACTERISTICS BASED ON SIMULTANEOUS MEASUREMENTS BETWEEN BASEMENT AND SURFACE USING BOREHOLE Takahisa ENOMOTO 1, Toshio KURIYAMA 2, Norio ABEKI 3, Takahiro IWATATE 4, Manuel NAVARRO

More information

A SPECTRAL ATTENUATION MODEL FOR JAPAN USING DIGITAL STRONG MOTION RECORDS OF JMA87 TYPE

A SPECTRAL ATTENUATION MODEL FOR JAPAN USING DIGITAL STRONG MOTION RECORDS OF JMA87 TYPE A SPECTRAL ATTENUATION MODEL FOR JAPAN USING DIGITAL STRONG MOTION RECORDS OF JMA87 TYPE Shuji KOBAYASHI 1, Tetsuichi TAKAHASHI 2, Shin'ichi MATSUZAKI 3, Masafumi MORI 4, Yoshimitsu FUKUSHIMA 5, John X

More information

Three Dimensional Simulations of Tsunami Generation and Propagation

Three Dimensional Simulations of Tsunami Generation and Propagation Chapter 1 Earth Science Three Dimensional Simulations of Tsunami Generation and Propagation Project Representative Takashi Furumura Authors Tatsuhiko Saito Takashi Furumura Earthquake Research Institute,

More information

PRELIMINARY STUDY OF GROUND MOTION CHARACTERISTICS IN FURUKAWA DISTRICT, JAPAN, BASED ON VERY DENSE SEISMIC-ARRAY-OBSERVATION

PRELIMINARY STUDY OF GROUND MOTION CHARACTERISTICS IN FURUKAWA DISTRICT, JAPAN, BASED ON VERY DENSE SEISMIC-ARRAY-OBSERVATION Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan PRELIMINARY STUDY OF GROUND MOTION CHARACTERISTICS IN

More information

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 414 AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE Shunroku YAMAMOTO 1 Naohito

More information

Investigation of long period amplifications in the Greater Bangkok basin by microtremor observations

Investigation of long period amplifications in the Greater Bangkok basin by microtremor observations Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Investigation of long period amplifications in the Greater

More information

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions

Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions Source modeling of hypothetical Tokai-Tonankai-Nankai, Japan, earthquake and strong ground motion simulation using the empirical Green s functions Y. Ishii & K. Dan Ohsaki Research Institute, Inc., Tokyo

More information

NEW ATTENUATION FORMULA OF EARTHQUAKE GROUND MOTIONS PASSING THROUGH THE VOLCANIC FRONT

NEW ATTENUATION FORMULA OF EARTHQUAKE GROUND MOTIONS PASSING THROUGH THE VOLCANIC FRONT th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 7 NEW ATTENUATION FORMULA OF EARTHQUAKE GROUND MOTIONS PASSING THROUGH THE VOLCANIC FRONT Nobuo TAKAI, Gaku

More information

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms Tadashi Yaginuma 1, Tomomi Okada 1, Yuji Yagi 2, Toru Matsuzawa 1, Norihito

More information

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION Synopses of Master Papers Bulletin of IISEE, 47, 19-24, 2013 SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION Fabricio Moquete Everth* Supervisor:

More information

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data LETTER Earth Planets Space, 56, 311 316, 2004 Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data Yuji Yagi International

More information

DETERMINATION OF BEDROCK STRUCTURE OF TOTTORI PLAIN USING SEISMIC EXPLOSION, MICROTREMOR AND GRAVITY SURVEY

DETERMINATION OF BEDROCK STRUCTURE OF TOTTORI PLAIN USING SEISMIC EXPLOSION, MICROTREMOR AND GRAVITY SURVEY 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1760 DETERMINATION OF BEDROCK STRUCTURE OF TOTTORI PLAIN USING SEISMIC EXPLOSION, MICROTREMOR AND GRAVITY

More information

Identification of engineering bedrock in Jakarta by using array observations of microtremors

Identification of engineering bedrock in Jakarta by using array observations of microtremors Available online at www.sciencedirect.com ScienceDirect Procedia Earth and Planetary Science 12 ( 215 ) 77 83 ISEDM 213 3 rd International Symposium on Earthquake and Disaster Mitigation Identification

More information

NEW ATTENUATION RELATIONS FOR PEAK GROUND ACCELERATION AND VELOCITYCONSIDERING EFFECTS OF FAULT TYPE AND SITE CONDITION

NEW ATTENUATION RELATIONS FOR PEAK GROUND ACCELERATION AND VELOCITYCONSIDERING EFFECTS OF FAULT TYPE AND SITE CONDITION NEW ATTENUATION RELATIONS FOR PEAK GROUND ACCELERATION AND VELOCITYCONSIDERING EFFECTS OF FAULT TYPE AND SITE CONDITION Hongjun SI 1 And Saburoh MIDORIKAWA SUMMARY New attenuation relationships for peak

More information

EARTHQUAKE RELATED PROJECTS IN NIED, JAPAN. Yoshimitsu Okada NIED (National Research Institute for Earth Science and Disaster Prevention), Japan

EARTHQUAKE RELATED PROJECTS IN NIED, JAPAN. Yoshimitsu Okada NIED (National Research Institute for Earth Science and Disaster Prevention), Japan OECD/NEA WS 1/8 EARTHQUAKE RELATED PROJECTS IN NIED, JAPAN Yoshimitsu Okada NIED (National Research Institute for Earth Science and Disaster Prevention), Japan Abstract Earthquake related projects in NIED

More information

GMPEs for Active Crustal Regions: Applicability for Controlling Sources

GMPEs for Active Crustal Regions: Applicability for Controlling Sources GMPEs for Active Crustal Regions: Applicability for Controlling Sources Jonathan P. Stewart University of California, Los Angeles March 19, 2013 Oakland Airport Hilton Outline GMPEs considered GMPE parameter

More information

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data

Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data Inversion Analysis of Historical Interplate Earthquakes Using Seismic Intensity Data Katsuhisa Kanda and Masayuki Takemura Kobori Research Complex, Kajima Corporation, Tokyo 107-8502, Japan Summary An

More information

Simulation of earthquake rupture process and strong ground motion

Simulation of earthquake rupture process and strong ground motion Simulation of earthquake rupture process and strong ground motion Takashi Miyatake (1) and Tomohiro Inoue (2) (1) Earthquake Research Institute, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-0032, Japan

More information