Small-Scale Deformational Structures as Significant Shear-Sense Indicators: An example from Almora Crystalline Zone, Kumaun Lesser Himalaya

Size: px
Start display at page:

Download "Small-Scale Deformational Structures as Significant Shear-Sense Indicators: An example from Almora Crystalline Zone, Kumaun Lesser Himalaya"

Transcription

1 e-journal Earth Science India, Vol. I (III), 2008, pp Small-Scale Deformational Structures as Significant Shear-Sense Indicators: An example from Almora Crystalline Zone, Kumaun Lesser Himalaya K. K. Agarwal and R. Bali Centre of Advanced Study in of Geology, University of Lucknow, Lucknow kamalagarwal73@hotmail.com Abstract Small-scale deformational structures e.g. folds, asymmetric boudins, thin veins in an en-echelon pattern, small-scale duplex, shear zones and shear bands are the most common structural elements used as reliable shear-sense indicators in crystalline rocks. Most of these structures are observed in the Almora Crystalline Zone (ACZ) in Kumaun Lesser Himalaya, which is disposed in the form of a huge asymmetric synform. The shear-sense observed on the northern and southern flanks is found to be top to north and top to south respectively. Introduction The study of small-scale structural elements in the recent years has drawn much attention especially to be used as reliable shear-sense indicators (Simpson and Schmid, 1983; Weijermars and Rondeel, 1984; Brunel, 1986; Ildefonse and Caron, 1987; Mawer, 1987; Choukroune et al., 1987; Agarwal, 1994; Passchier and Trouw, 1996; Bali and Agarwal, 1999) in deformed and tectonically transported rocks as thrust sheets. The Almora Crystalline Zone (ACZ) occurs as a thrust-sheet over the Precambrian-Lower Palaeozoic sedimentary sequences of Lesser Himalaya (Heim and Gansser, 1939; Gansser, 1964; Valdiya; 1980). The two tectonic contacts it has with the surrounding sedimentaries are the North Almora Thrust (NAT) and the South Almora Thrust (SAT), which dip to the south and to the north respectively (Fig. 1). The characteristic asymmetric nature of the ACZ and the two thrusts have been discussed by many earlier workers (Misra and Sharma, 1972; Mehdi et al., 1973; Vashi and Merh, 1976; Srikantia, 1988; Agarwal, 1994). The present paper is an attempt to understand the significance of the smallscale deformational features as reliable shear-sense indicators based on the field observations along a complete north-south traverse across the ACZ.

2 Small-Scale Deformational Structures as Significant Shear-Sense Indicators: An Example from Almora Crystalline Zone, Kumaun Lesser Himalaya: K. K. Agarwal and R. Bali Fig.1: Simplified sketch map of the Almora Crystalline Zone (ACZ), Kumaun Lesser Himalaya, showing the location of the ACZ in the map of India (inset) (based on Valdiya, 1980) Deformational structures as shear-sense indicator Several small-scale structures are found to be very good indicators of shearsense in the orogenic belts, as these not only provide the information about the direction of tectonic transport but also help to understand the later tectonic adjustments. In the ACZ, the dominant lithologies are slates, phyllites, various types of schists, gneisses and mylonites (Bhattacharya and Agarwal, 1985). The structural features that have been used as shear sense indicators in the ACZ are: folds, enechelon veins, boudins (also pinch and swell structures), shear band foliation, stretching lineation, small shear zones, small duplex and ramp and flat structures. The sense of shear is deciphered by determining first the direction along which the observation is to made, and the plane along which the shear-sense indicator is observed; this can be referred to as the sense-of-shear plane ( SOS plane, Davis and Reynolds, 1996). A brief description of the shear-sense indicators observed in the ACZ is as follows: Small-scale Folds: Asymmetric folds are observed at many places, which vary in size (ranging from few meters to a few cm in size). The fold vergence is used as shear-sense indicator (cf. Mawer, 1987) as these tend to have rotated towards the dominant lineation present in the rocks. The folds observed on the southern flank essentially verging to the SW to SSW. These folds are normally seen in thin quartzites

3 e-journal Earth Science India, Vol. I (III), pp interbedded with schists and are mainly isoclinal close to tight folds. The folds found on the northern flank commonly show similar geometry but verging mainly to the NE direction. Boudins: These structures are commonly formed due to layer parallel extension or layer perpendicular shortening in the rocks with considerable difference in the viscosity across the layering. In the present area boudins and pinch and swell structures are found developed in the sequences with interbedded character of relatively soft (schists) and hard (quartzites) rocks. The orientations of the boudins at several locations (Fig. 2, 3D) reveal a top to south sense of displacement on the southern flank of the Almora synform. These have developed parallel to S 1, and the S 1 leans over the sense of shear (Davis and Reynolds, 1996). Shear zones: Small-scale shear zones which at places oriented both synthetic and antithetic, especially in the mylonites (Bali and Agarwal, 1999), are used as shearsense indicators (Weijermars and Rondeel, 1984; Mawer, 1987). Shear zones in the present area indicate again a top to south movement on the southern limb of the ACZ and on the northern limb give a top to the north movement (Fig. 3A). Fig.2:Diagrammatic sketch of the structural features as exposed on the southern limb of the ACZ (19 km south of Almora town, on the main highway). Note the development of boudins; the foliation is dipping to the north (to the right) Stretching lineations: Stretching lineations in deformed rocks are most often marked by the development of a new mineral (mostly sericite and chlorite in the present case) on the foliation (XY) plane with gentle plunge down the dip. Though these have not been suitably used to determine the shear sense but are good indicators of the tectonic transport direction in the orogenic areas (Brunel, 1986; Ildefonse and Caron, 1987; Daly, 1988, Jain and Anand, 1988; Agarwal, 1994; Passchier and Trouw, 1996).

4 Small-Scale Deformational Structures as Significant Shear-Sense Indicators: An Example from Almora Crystalline Zone, Kumaun Lesser Himalaya: K. K. Agarwal and R. Bali In the ACZ the stretching lineations are observed throughout the section and also studied on the foot-wall-rocks (the surrounding sedimentaries) in the north as well as in the south. Along the two tectonic contacts viz. NAT and SAT, the stretching lineations are oriented almost perpendicular to the traces of these thrusts, and plunge down the dip. The attitude of the stretching lineations in the southern side varies between NE-ENE to NW-NNW, whereas in the northern side it is SW (cf. Agarwal, 1994). Fig.3: Field photographs of few structural features. (A) Small-scale shear zones on the northern limb (near the NAT, on the Almora-Kausani highway), note the shear movement is top to the north (right side of the photograph); (B) Fine tension veins arranged in en echelon pattern, the shear movement is top to the N (to the left of the photograph); (C) Ramp flat structure within the small duplex on the southern limb, the shear-sense is top to south (to the left); (D) Boudins developed on the southern limb of the ACZ (location as in fig.2) En echelon veins: These veins result from the filling-up of the tension gashes or fractures (Davis and Reynolds, 1996), and are very reliably used as shear-sense indicators. These veins are observed at many places, and give top to north sense of shear consistently for the northern flank (Fig. 3 B). Duplex and ramp and flat structures: These help a great deal in interpreting the bulk shear displacement in the foldthrust belts. Duplex results from the progressive cutting of the foliations by later

5 e-journal Earth Science India, Vol. I (III), pp shear planes. Most often these planes show the development of slickenside striations and fibers. Duplex of varying dimensions (ranging from a few dcm. to a few meters) have been observed throughout the ACZ. The floor thrusts are exposed almost everywhere (Fig. 3 C), while the roof thrusts are rarely seen. The individual horses are not much thick (~ a meter), and are bounded between the s plays of the main basal thrust. Discussion and Conclusions A variety of small-scale deformational structures has been observed in the ACZ and is used as shear-sense indicators. The ACZ occurs as a large thrust sheet with its roots along the Main Central Thrust (MCT, Misra and Sharma, 1972; Mehdi et al., 1973; Vashi and Merh, 1976; Valdiya, 1980; Srikantia, 1988; Agarwal, 1994), and the major tectonic transport direction remains as N-S. The shear-sense as revealed by the field analysis of the structural features indicate that there is a distinct top to the south shear movement and top to the north shear movement on the southern and the northern flanks respectively of the Almora synform. This is due to the late stage tectonic adjustment of this crystalline thrust sheet after it was emplaced over the sedimentaries. There has been a long pending debate over the synformal character of these crystalline thrust sheets occurring in the Lesser Himalaya. The top to south and top to north shear sense observed on the two limbs supports the back thrusting model proposed earlier by Agarwal (1994). Acknowledgements: The authors are grateful to Prof. A. K. Jauhri, Head, Centre of Advanced Study in Geology, Lucknow University, Lucknow, for providing working facilities, and to Prof. A. R. Bhattacharya for fruitful discussions. Thanks are also due to the anonymous referee for suggesting corrections/modifications in the earlier version of the ms. References Agarwal, K. K. (1994) Tectonic Evolution of the Almora Crystalline Zone, Kumaun Lesser Himalaya: A reinterpretation. J. Geological Society of India, v. 43 (1), pp Bali, R. and Agarwal, K. K. (1999) Microstructures of Mylonites in the Almora Crystalline Zone, Kumaun Lesser Himalaya. Gondwana Research Group Memoir, 6, Bali, R. and Bhattacharya, A. R. (1988) Geological and Structural studies of the rocks of the Dwarahat-Chaukhutia area, Kumaun Lesser Himalaya with special reference to the North Almora Fault. Geoscience Journal, v. ix, pp Bhattacharya, A. R. and Agarwal, K. K. (1985) Mylonites from the Kumaun Lesser Himalaya. Neues Jahrbuch fur Mineralogie Abhandlungen, v. 152 (1), pp Brunel, M. (1986) Ductile thrusting in the Himalayas: Shear sense criteria and stretching lineations. Tectonics, v. 5, pp Choukroune, P., Gapais, D. and Merle, O. (1987) Shear criteria and structural symmetry. J. of Structural Geology, v. 9, pp Coward, M. P., Windley, B. F., Broughton, R., Luff, I., Petterson, M. U., Pudsey, C., Rex, D. and Khan, M. A. (1986) Collision Tectonics in NW Himalaya. In: Coward, M. P. & Ries, A. (eds.), Collision Tectonics. Geological Society of London, Special Publication, no. 19, pp Daly, M. C. (1988) Crustal shear zones in Central Asia: A kinematic approach to Proterozoic tectonics. Episodes, v. 11, pp. S-11. Davis, G. H. and Reynolds, S. J. (1996) Structural Geology of rocks and regions. 2 nd edition, John Wiley & Sons, Inc. New York, 776p. Gansser, A. (1964). Geology of the Himalayas. Interscience, London, 289p. Heim, A. and Gansser, A. (1939) Central Himalayas: Geological observations of the Swiss Expedition Mem. Soc. Helv. Sci. Nat., v. 73, pp

6 Small-Scale Deformational Structures as Significant Shear-Sense Indicators: An Example from Almora Crystalline Zone, Kumaun Lesser Himalaya: K. K. Agarwal and R. Bali Ildefonse, B. and Caron, J. M. (1987) The significance of stretching lineations in terms of progressive deformation and finite strain. Geodinamica acta, v. 1 (3), pp Jain, A. K. and Anand, A. (1988) Deformation and strain pattern of intra-continental collision ductile shear zone an example from the Higher Himalayas. J. Structural. Geol., v. 7, pp Mawer, C. K. (1987) Shear criteria in the Grenville Province, Ontario, Canada. J. Structural. Geol., v. 9, pp Mehdi, S. H., Kumar, G. and Prakash, G. (1973) Tectonic evolution of eastern Kumaun Himalaya; A new approach. Him. Geol., v. 2, pp Merh, S. S. and Vashi, N. M. (1976). The problem of the South Almora Thrust. Him. Geol., v. 6, pp Misra, R. C. and Sharma, R. P. (1972). Structure of Almora Crystalline, Lesser Kumaun Himalaya. An interpretation. Him. Geol., v. 2, pp Passchier, C. W. & Trouw, R. A. J. (1996). Microtectonics. Springer-Verlag, Heidelberg. 289p. Simpson, C. and Schmid, S. M. (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Bulletin Geological Society of America, v. 94, Srikantia, S. V. (1988) Himalayan Thrusts and structural belts. J. Geological. Society of India, v. 31, pp Valdiya, K. S. (1980) Geology of the Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehradun, 291p. Weijermars, R. and Rondeel, H. E. (1984) Shear band foliation as an indicator of sense of shear: Field observations in central Spain. Geology, v. 12, pp

MESOSCOPIC STRUCTURES FROM THE AREA AROUND SATENGAL, LESSER GARHWAL HIMALAYA

MESOSCOPIC STRUCTURES FROM THE AREA AROUND SATENGAL, LESSER GARHWAL HIMALAYA Journal of Scientific Research Vol. 55, 2011 : 25-34 Banaras Hindu University, Varanasi ISSN : 0447-9483 MESOSCOPIC STRUCTURES FROM THE AREA AROUND SATENGAL, LESSER GARHWAL HIMALAYA H. B. Srivastava, Lokesh

More information

Basement Rocks of the Kumaun - Garhwal Himalaya: Implications for Himalayan Tectonics

Basement Rocks of the Kumaun - Garhwal Himalaya: Implications for Himalayan Tectonics Basement Rocks of the Kumaun - Garhwal Himalaya: Implications for Himalayan Tectonics A. R. Bhattacharya Centre of Advanced Study in Geology, University of Lucknow, Lucknow, (U.P.), India Email: arb65k@rediffmail.com

More information

CHAPTER Va : CONTINUOUS HETEROGENEOUS DEFORMATION

CHAPTER Va : CONTINUOUS HETEROGENEOUS DEFORMATION Va-1 INTRODUCTION Heterogeneous deformation results from mechanical instabilities (folding and boudinage) within an heterogeneous material or from strain localization in an homogeneous material (shear

More information

Chapter 15 Structures

Chapter 15 Structures Chapter 15 Structures Plummer/McGeary/Carlson (c) The McGraw-Hill Companies, Inc. TECTONIC FORCES AT WORK Stress & Strain Stress Strain Compressive stress Shortening strain Tensional stress stretching

More information

Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting

Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting Crustal Deformation AKA Structural geology (adapted from Brunkel, 2012) Study the architecture and processes responsible for deformation of Earth s crust. Folding and Faulting How Rocks Deform: 4 Controls

More information

Dome formation mechanisms in the southwestern Central Zone of the Damara Orogen, Namibia

Dome formation mechanisms in the southwestern Central Zone of the Damara Orogen, Namibia Trabajos de Geología, Universidad de Oviedo, 29 : 440-444 (2009) Dome formation mechanisms in the southwestern Central Zone of the Damara Orogen, Namibia L. LONGRIDGE 1*, R. L. GIBSON 1 AND J. A. KINNAIRD

More information

Crustal Deformation Earth - Chapter Pearson Education, Inc.

Crustal Deformation Earth - Chapter Pearson Education, Inc. Crustal Deformation Earth - Chapter 10 Structural Geology Structural geologists study the architecture and processes responsible for deformation of Earth s crust. A working knowledge of rock structures

More information

TECTONIC AND STRUCTURAL CONTROLS ON INTRUSION- RELATED DEPOSITS IN THE NORTHERN PART OF SREDNA GORA ZONE, BULGARIA NIKOLAY PETROV & KAMELIA NEDKOVA

TECTONIC AND STRUCTURAL CONTROLS ON INTRUSION- RELATED DEPOSITS IN THE NORTHERN PART OF SREDNA GORA ZONE, BULGARIA NIKOLAY PETROV & KAMELIA NEDKOVA TECTONIC AND STRUCTURAL CONTROLS ON INTRUSION- RELATED DEPOSITS IN THE NORTHERN PART OF SREDNA GORA ZONE, BULGARIA NIKOLAY PETROV & KAMELIA NEDKOVA INVESTIGATED AREA Praveshka Lakavica deposit Elatsite

More information

GSTT Technical Note. September 4, Field Trip - Northern Range. Western (Mid-Crustal) Tectonic Domain. STOP 1: Upper Lady Chancellor Road

GSTT Technical Note. September 4, Field Trip - Northern Range. Western (Mid-Crustal) Tectonic Domain. STOP 1: Upper Lady Chancellor Road GSTT Technical Note September 4, 2001 P.O. Box 3524, La Romain, Trinidad and Tobago W.I Web address: www.gstt.org, Editor: millikm1@bp.com Field Trip - Northern Range Systematic east to west variations

More information

Structural Geology and Geology Maps Lab

Structural Geology and Geology Maps Lab Structural Geology and Geology Maps Lab Mesa College Geology 101 Lab Ray Rector: Instructor Structural Geology Lab Pre-Lab Resources Pre-Lab Internet Links 1) Fundamentals of Structural Geology 2) Visualizing

More information

610 C. DAVIDSON ET AL. thermal structure at a given instant in time. In-sequence thrusting may result in the propagation of top to the south shearing across the MCTZ and into the footwall of the MCT, thereby

More information

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building

Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Crags, Cracks, and Crumples: Crustal Deformation and Mountain Building Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared

More information

Deformation of Rocks. Orientation of Deformed Rocks

Deformation of Rocks. Orientation of Deformed Rocks Deformation of Rocks Folds and faults are geologic structures caused by deformation. Structural geology is the study of the deformation of rocks and its effects. Fig. 7.1 Orientation of Deformed Rocks

More information

1. classic definition = study of deformed rocks in the upper crust

1. classic definition = study of deformed rocks in the upper crust Structural Geology I. Introduction 1. classic definition = study of deformed rocks in the upper crust deformed includes translation, rotation, and strain (change of shape) All rocks are deformed in some

More information

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar

Lecture 6 Folds, Faults and Deformation Dr. Shwan Omar Fold: A fold is a bend or wrinkle of rock layers or foliation; folds form as a sequence of ductile deformation. Folding is the processes by which crustal forces deform an area of crust so that layers of

More information

Folds in Appalachian Mts.

Folds in Appalachian Mts. Pelatnas IESO Geologi Struktur 2013 Deformasi Liat Salahuddin Husein Jurusan Teknik Geologi Fakultas Teknik Universitas Gadjah Mada 2013 1 Folds in Appalachian Mts. Folds in Myanmar, in the Indo-Burma

More information

Some Observations on the Thrust Geometry of the Siwalik Rocks of the Outer Himalaya, India

Some Observations on the Thrust Geometry of the Siwalik Rocks of the Outer Himalaya, India e-journal Earth Science India, Vol. I (II), 2008, pp. 58-65 Some Observations on the Thrust Geometry of the Siwalik Rocks of the Outer Himalaya, India A. R. Bhattacharya and K. K. Agarwal Centre of Advanced

More information

CODA Q estimates for Kumaun Himalaya

CODA Q estimates for Kumaun Himalaya CODA Q estimates for Kumaun Himalaya A Paul, S C Gupta and Charu C Pant Department of Geology, Kumaun University, Nainital 263 002, India. Department of Earthquake Engineering, Indian Institute of Technology

More information

Undergraduate Review. Jessica Sousa. Volume 4 Article 13

Undergraduate Review. Jessica Sousa. Volume 4 Article 13 Undergraduate Review Volume 4 Article 13 2008 Kinematic Analysis of Mylonitic Rocks, Southern Ruby Mountains, SW Montana: Evidence for Proterozoic Orogenic Crustal Thickening and Topographic Collapse Jessica

More information

Regional GIS based exploration targeting studies in data poor environments

Regional GIS based exploration targeting studies in data poor environments Regional GIS based exploration targeting studies in data poor environments A case study of gold prospectivity mapping in Nigeria Matthew Greentree, Mathieu Lacorde and Bert De Waele Acknowledgements Australian

More information

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress

Stress and Strain. Stress is a force per unit area. Strain is a change in size or shape in response to stress Geologic Structures Geologic structures are dynamically-produced patterns or arrangements of rock or sediment that result from, and give information about, forces within the Earth Produced as rocks change

More information

GEOL 321 Structural Geology and Tectonics

GEOL 321 Structural Geology and Tectonics GEOL 321 Structural Geology and Tectonics Geology 321 Structure and Tectonics will be given in Spring 2017. The course provides a general coverage of the structures produced by brittle and ductile rock

More information

UNIVERSITY OF PRETORIA Department of Geology STRUCTURAL GEOLOGY -GLY 254 SEMESTER EXAM

UNIVERSITY OF PRETORIA Department of Geology STRUCTURAL GEOLOGY -GLY 254 SEMESTER EXAM UNIVERSITY OF PRETORIA Department of Geology STRUCTURAL GEOLOGY -GLY 254 SEMESTER EXAM Copyright reserved 6 th June 2006 Time: 3 hours Internal examiner: Dr A.J. Bumby External examiner: Dr R. van der

More information

Answers: Internal Processes and Structures (Isostasy)

Answers: Internal Processes and Structures (Isostasy) Answers: Internal Processes and Structures (Isostasy) 1. Analyse the adjustment of the crust to changes in loads associated with volcanism, mountain building, erosion, and glaciation by using the concept

More information

Crustal Deformation. Earth Systems 3209

Crustal Deformation. Earth Systems 3209 Crustal Deformation Earth Systems 3209 Crustal Deformation pg. 415 Refers to all changes in the original form and/or size of a rock body. May also produce changes in the location and orientation of rocks.

More information

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress

Geologic Structures. Changes in the shape and/or orientation of rocks in response to applied stress Geologic Structures Changes in the shape and/or orientation of rocks in response to applied stress Figure 15.19 Can be as big as a breadbox Or much bigger than a breadbox Three basic types Fractures >>>

More information

Crustal Deformation. (Building Earth s Surface, Part 1) Science 330 Summer Mapping geologic structures

Crustal Deformation. (Building Earth s Surface, Part 1) Science 330 Summer Mapping geologic structures Crustal Deformation (Building Earth s Surface, Part 1) Science 330 Summer 2005 Mapping geologic structures When conducting a study of a region, a geologist identifies and describes the dominant rock structures

More information

Essentials of Geology, 11e

Essentials of Geology, 11e Essentials of Geology, 11e Crustal Deformation and Mountain Building Chapter 17 Instructor Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Jennifer

More information

Part I. PRELAB SECTION To be completed before labs starts:

Part I. PRELAB SECTION To be completed before labs starts: Student Name: Physical Geology 101 Laboratory #13 Structural Geology II Drawing and Analyzing Folds and Faults Grade: Introduction & Purpose: Structural geology is the study of how geologic rock units

More information

LAB 1: ORIENTATION OF LINES AND PLANES

LAB 1: ORIENTATION OF LINES AND PLANES LAB 1: ORIENTATION OF LINES AND PLANES Read the introductory section, chapter 1, pages 1-3, of the manual by Rowland et al (2007) and make sure you understand the concepts of bearing, strike, dip, trend,

More information

Provided by Tasa Graphic Arts, Inc. for An Introduction to Structural Methods DVD-ROM

Provided by Tasa Graphic Arts, Inc. for An Introduction to Structural Methods DVD-ROM Provided by Tasa Graphic Arts, Inc. for An Introduction to Structural Methods DVD-ROM http://www.tasagraphicarts.com/progstruct.html AN INTRODUCTION TO STRUCTURAL METHODS - DETAILED CONTENTS: (Navigate

More information

Evaluation of Structural Geology of Jabal Omar

Evaluation of Structural Geology of Jabal Omar International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 11, Issue 01 (January 2015), PP.67-72 Dafalla Siddig Dafalla * and Ibrahim Abdel

More information

CRUSTAL DEFORMATION. Chapter 10

CRUSTAL DEFORMATION. Chapter 10 CRUSTAL DEFORMATION and dgeologic Structures t Chapter 10 Deformation Df Deformation involves: Stress the amount of force applied to a given area. Types of Stress: Confining Stress stress applied equally

More information

What Causes Rock to Deform?

What Causes Rock to Deform? Crustal Deformation Earth, Chapter 10 Chapter 10 Crustal Deformation What Causes Rock to Deform? Deformation is a general term that refers to all changes in the shape or position of a rock body in response

More information

Learning Objectives (LO) What we ll learn today:!

Learning Objectives (LO) What we ll learn today:! Learning Objectives (LO) Lecture 13: Mountain Building Read: Chapter 10 Homework #11 due Tuesday 12pm What we ll learn today:! 1. Define the types of stress that are present in the crust! 2. Define the

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

Structural Style and Tectonic Evolution of the Nakhon Basin, Gulf of Thailand

Structural Style and Tectonic Evolution of the Nakhon Basin, Gulf of Thailand Structural Style and Tectonic Evolution of the Nakhon Basin, Gulf of Thailand Piyaphong Chenrai Petroleum Geoscience Program, Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok

More information

Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building

Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building TECTONICS AND TECTONIC STRUCTURES Tectonics is a study of the major structural features of the Earth s crust or a broad structure of a region. Tecto- means building The plate theory Different stages are

More information

Faults, folds and mountain building

Faults, folds and mountain building Faults, folds and mountain building Mountain belts Deformation Orogens (Oro = Greek all changes for mountain, in size, shape, genesis orientation, = Greek for or formation) position of a rock mass Structural

More information

An unusual 'crack--seal' vein geometry

An unusual 'crack--seal' vein geometry Journal of Structural Geology, Vol. 6, No. 5, pp. 593 to 597, 1984 0191--8141/84 $3.00 + 0.00 Printed in Great Britain Pergamon Press Ltd. An unusual 'crack--seal' vein geometry BEN A. VAN DER PLUJM Department

More information

GY403 Structural Geology. Tectonite Fabrics

GY403 Structural Geology. Tectonite Fabrics GY403 Structural Geology Tectonite Fabrics Tectonite Fabric A tectonite is a rock that possess a penetrative fabric consisting of cleavage, foliation and/or lineation Tectonite fabrics are associated with

More information

The importance of both geological structures and mining induced stress fractures on the hangingwall stability in a deep level gold mine

The importance of both geological structures and mining induced stress fractures on the hangingwall stability in a deep level gold mine The importance of both geological structures and mining induced stress fractures on the hangingwall stability in a deep level gold mine by G.B. Quaye and G. Guler* Synopsis The deep level gold mining environment

More information

Chapter 10: Deformation and Mountain Building. Fig. 10.1

Chapter 10: Deformation and Mountain Building. Fig. 10.1 Chapter 10: Deformation and Mountain Building Fig. 10.1 OBJECTIVES Describe the processes of rock deformation and compare and contrast ductile and brittle behavior in rocks. Explain how strike and dip

More information

Suusamyr, Kyrgyzstan Structural-geological Report

Suusamyr, Kyrgyzstan Structural-geological Report Suusamyr, Kyrgyzstan Structural-geological Report by David Fossati fossatid@student.ethz.ch Contents 1 Introduction... 2 2 Field work area... 2 3 Field work methods... 5 4 Analysis methods... 7 5 Maps

More information

Table 5.1 Recognised senses of shear from locations in SE NPHM & Dichil/E. Astor

Table 5.1 Recognised senses of shear from locations in SE NPHM & Dichil/E. Astor Table 5.1 Table 5.1 Recognised senses of shear from locations in SE NPHM & Dichil/E. Astor 200 Table 5.1 Recognised senses of shear from locations in SE NPHM & Dichil/E. Astor Area / loction no. Sinistral

More information

Kink bands in thrust regime: Examples from Srinagar Garhwal area, Uttarakhand, India

Kink bands in thrust regime: Examples from Srinagar Garhwal area, Uttarakhand, India Kink bands in thrust regime: Examples from Srinagar Garhwal area, Uttarakhand, India Shashank Shekhar, A M Bhola and P S Saklani Department of Geology, University of Delhi, Delhi 110 007, India. Note:

More information

Mountain Building. Mountain Building

Mountain Building. Mountain Building Mountain Building Mountain building has occurred during the recent geologic past American Cordillera the western margin of the Americas from Cape Horn to Alaska Includes the Andes and Rocky Mountains Alpine

More information

An Overview of Graphite Projects from Asia to Africa. Dr Mike Cunningham SRK Consulting (Australasia) Pty. Ltd.

An Overview of Graphite Projects from Asia to Africa. Dr Mike Cunningham SRK Consulting (Australasia) Pty. Ltd. An Overview of Graphite Projects from Asia to Africa Dr Mike Cunningham SRK Consulting (Australasia) Pty. Ltd. Acknowledgements PT. Granfindo Nusantara RS Mines Pty Ltd Geological Survey and Mining Bureau

More information

VALIDATION OF DIGITAL TERRANE MODELS OF ASTER SENSOR ON THE STUDY OF GEOMETRY AND STRUCTURAL EVOLUTION OF THE NW SIERRAS PAMPEANAS OF ARGENTINA

VALIDATION OF DIGITAL TERRANE MODELS OF ASTER SENSOR ON THE STUDY OF GEOMETRY AND STRUCTURAL EVOLUTION OF THE NW SIERRAS PAMPEANAS OF ARGENTINA VALIDATION OF DIGITAL TERRANE MODELS OF ASTER SENSOR ON THE STUDY OF GEOMETRY AND STRUCTURAL EVOLUTION OF THE NW SIERRAS PAMPEANAS OF ARGENTINA Silvia Beatriz Alves Rolim 1 Luis Alberto D Ávila Fernandes

More information

Satulinmäki Au Prospect Structural Mapping

Satulinmäki Au Prospect Structural Mapping M19/2024/2003/1/10 Juhani Ojala Satulinmäki Au Prospect Structural Mapping V. Juhani Ojala Geological Survey of Finland 1 Table of Contents Introduction...2 Local geology...2 Structures...2 Discussion...2

More information

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B

KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B GEOLOGY 12 KEY CHAPTER 12 TAKE-HOME QUIZ INTERNAL STRUCTURES AND PROCESSES Score Part B = / 55 PART B CHAPTER 12 Isostacy and Structural Geology 1. Using the terms below, label the following diagrams and

More information

A.M. TUESDAY, 12 May hours

A.M. TUESDAY, 12 May hours Candidate Name Centre Number 2 Candidate Number GCE AS/A level 1212/01 New AS GEOLOGY - GL2a Investigative Geology A.M. TUESDAY, 12 May 2009 1 1 2 hours For Examiner s Use Only ADDITIONAL MATERIALS In

More information

Course Title: Discipline: Geology Level: Basic-Intermediate Duration: 5 Days Instructor: Prof. Charles Kluth. About the course: Audience: Agenda:

Course Title: Discipline: Geology Level: Basic-Intermediate Duration: 5 Days Instructor: Prof. Charles Kluth. About the course: Audience: Agenda: Course Title: Structural Geology Discipline: Geology Level: Basic-Intermediate Duration: 5 Days Instructor: Prof. Charles Kluth About the course: This course covers the basic ideas of structural geometry

More information

Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA

Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA Naam Studentnummer... Exam Deformatie en Metamorfose van de Korst Educatorium zaal ALFA Do not forget to put your name and student number on each of the question and answer sheets and to return both of

More information

Folds and Folding. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 3/4/ :15

Folds and Folding. Processes in Structural Geology & Tectonics. Ben van der Pluijm. WW Norton+Authors, unless noted otherwise 3/4/ :15 Folds and Folding Processes in Structural Geology & Tectonics Ben van der Pluijm WW Norton+Authors, unless noted otherwise 3/4/2017 17:15 We Discuss Folds and Folding Fold Description Fold Classification

More information

December 21, Chapter 11 mountain building E.notebook. Feb 19 8:19 AM. Feb 19 9:28 AM

December 21, Chapter 11 mountain building E.notebook. Feb 19 8:19 AM. Feb 19 9:28 AM Mountains form along convergent plate boundaries. Typically (usually) if you look at a mountain range, you know that it is at a plate boundary (active continental margin) or has been some time in the past

More information

The geology of the Vermont Valley and the western flank of the Green Mountains between Dorset Mountain and Wallingford, Vermont

The geology of the Vermont Valley and the western flank of the Green Mountains between Dorset Mountain and Wallingford, Vermont University at Albany, State University of New York Scholars Archive Geology Theses and Dissertations Atmospheric and Environmental Sciences 1992 The geology of the Vermont Valley and the western flank

More information

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials

Name. GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps. I. Properties of Earth Materials I. Properties of Earth Materials GEOL.5220 Structural Geology Faults, Folds, Outcrop Patterns and Geologic Maps Name When rocks are subjected to differential stress the resulting build-up in strain can

More information

shear zones Ductile shear zones can develop as a results of shearing (simple shear strain) or "squeezing" (pure shear strain).

shear zones Ductile shear zones can develop as a results of shearing (simple shear strain) or squeezing (pure shear strain). shear zones Ductile shear zones can develop as a results of shearing (simple shear strain) or "squeezing" (pure shear strain). Shear Zones Mylonite, or mylonitic zone is the central part of the shear zone

More information

Lecture 15. Fold-Thrust Belts, and the NJ Ridge and Valley Thrust System

Lecture 15. Fold-Thrust Belts, and the NJ Ridge and Valley Thrust System Lecture 15 Fold-Thrust Belts, and the NJ Ridge and Valley Thrust System Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton; unless noted otherwise

More information

Development of grabens and associated fault-drags: An experimental study

Development of grabens and associated fault-drags: An experimental study Proc. Indian Acad. Sci. (Earth Planet. Sci.), Vol. 104, No. 3, September 1995, pp. 489-498. 9 Printed in India. Development of grabens and associated fault-drags: An experimental study SUGATA HAZRA Department

More information

TECHNICAL REPORT: REGIONAL GEOLOGY AND TECTONICS Resume. Huachon Project, Cerro de Pasco departments, Peru. By: AFC Logistic SAC

TECHNICAL REPORT: REGIONAL GEOLOGY AND TECTONICS Resume. Huachon Project, Cerro de Pasco departments, Peru. By: AFC Logistic SAC TECHNICAL REPORT: REGIONAL GEOLOGY AND TECTONICS Resume Huachon Project, Cerro de Pasco departments, Peru By: AFC Logistic SAC December 2016 1. INTRODUCTION GPM Metals Peru, in its portfolio of generating

More information

Gondwana Research 24 (2013) Contents lists available at ScienceDirect. Gondwana Research. journal homepage:

Gondwana Research 24 (2013) Contents lists available at ScienceDirect. Gondwana Research. journal homepage: Gondwana Research 24 (2013) 1203 1222 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Cratonic reactivation and orogeny: An example from the northern

More information

Instituto De Ingenieros De Minas Del Peru

Instituto De Ingenieros De Minas Del Peru The Continuity Challenge Dr. Wayne Barnett The Interpretation! Great geological continuity? Huge potential? The Reality Not what it might seem... Not what it might seem... Presentation Objective Highlight

More information

Strike-slip tectonics in arc-continent collision; the Eastern Timor example

Strike-slip tectonics in arc-continent collision; the Eastern Timor example Strike-slip tectonics in arc-continent collision; the Eastern Timor example RUI DIAS Escola de Ciências e Tecnologia da Universidade de Évora; Centro de Geofísica de Évora; Centro Ciência Viva de Estremoz.

More information

Bureau of Mineral Resources, Geology & Geophysics

Bureau of Mineral Resources, Geology & Geophysics Bureau of Mineral Resources, Geology & Geophysics RECORD 1990/59 REPORT ON THE GEOLOGY OF THE LEONORA AREA, WESTERN AUSTRALIA Cees W. Passchier iji' ; ) A publication from the National Geoscience Mapping

More information

1-6 Figure 1.3. View of the field area, looking south-southwest. Left side of the picture shows the steep flank of the Green Mountain massif. The Vermont Valley and the Tinmouth Valley are separated by

More information

GEOLOGIC MAPS PART II

GEOLOGIC MAPS PART II EARTH AND ENVIRONMENT THROUGH TIME LABORATORY - EES 1005 LABORATORY FIVE GEOLOGIC MAPS PART II Introduction Geologic maps of orogenic belts are much more complex than maps of the stable interior. Just

More information

Lecture Outlines PowerPoint. Chapter 10 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 10 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 10 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Metamorphic Rock Origin and Identification

Metamorphic Rock Origin and Identification Metamorphic Rock Origin and Identification Physical Geology GEOL 101 Lab Ray Rector - Instructor http://www.rockhounds.com/rockshop/rockkey/index.html http://earthsci.org/education/teacher/basicgeol/meta/meta.html

More information

lecture 8 Shear zones Kristallingeologie Summary lecture on foliations Faults and shear zones Strength of the crust

lecture 8 Shear zones Kristallingeologie Summary lecture on foliations Faults and shear zones Strength of the crust Kristallingeologie lecture 8 Shear zones Summary lecture on foliations Rocks can contain foliations and lineations Some important foliations Primary foliation (S 0 ), Axial planar & crenulation cleavage

More information

LANDSAT-TM IMAGES IN GEOLOGICAL MAPPING OF SURNAYA GAD AREA, DADELDHURA DISTRICT WEST NEPAL

LANDSAT-TM IMAGES IN GEOLOGICAL MAPPING OF SURNAYA GAD AREA, DADELDHURA DISTRICT WEST NEPAL LANDSAT-TM IMAGES IN GEOLOGICAL MAPPING OF SURNAYA GAD AREA, DADELDHURA DISTRICT WEST NEPAL L. N. Rimal* A. K. Duvadi* S. P. Manandhar* *Department of Mines and Geology Lainchaur, Kathmandu, Nepal E-mail:

More information

Chapter. Mountain Building

Chapter. Mountain Building Chapter Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock type, and

More information

Rock mechanics as a significant supplement for cross-section balancing (an example from the Pavlov Hills, Outer Western Carpathians, Czech Republic)

Rock mechanics as a significant supplement for cross-section balancing (an example from the Pavlov Hills, Outer Western Carpathians, Czech Republic) Trabajos de Geología, Universidad de Oviedo, 30 : 140-144 (2010) Rock mechanics as a significant supplement for cross-section balancing (an example from the Pavlov Hills, Outer Western Carpathians, Czech

More information

STRAIN AND SCALING RELATIONSHIPS OF FAULTS AND VEINS AT KILVE, SOMERSET

STRAIN AND SCALING RELATIONSHIPS OF FAULTS AND VEINS AT KILVE, SOMERSET Read at the Annual Conference of the Ussher Society, January 1995 STRAIN AND SCALING RELATIONSHIPS OF FAULTS AND VEINS AT KILVE, SOMERSET M. O'N. BOWYER AND P. G. KELLY Bowyer, M. O'N. and Kelly, P.G.

More information

Structural Geology of the Mountains

Structural Geology of the Mountains Structural Geology of the Mountains Clinton R. Tippett Shell Canada Limited, Calgary, Alberta clinton.tippett@shell.ca INTRODUCTION The Southern Rocky Mountains of Canada (Figure 1) are made up of several

More information

Mountains and Mountain Building: Chapter 11

Mountains and Mountain Building: Chapter 11 Mountains and Mountain Building: Chapter 11 Objectives: 1)Explain how some of Earth s major mountain belts formed 2) Compare and contrast active and passive continental margins 3) Explain how compression,

More information

Question 1: Examine the following diagram:

Question 1: Examine the following diagram: Question 1: Examine the following diagram: 1a.) Which of the illustrated faults is a left-handed strike-slip fault? = a 1b.) Which of the illustrated faults is a normal-slip fault? = e 1c.) Which of the

More information

Geomorphology Final Exam Study Guide

Geomorphology Final Exam Study Guide Geomorphology Final Exam Study Guide Geologic Structures STRUCTURAL GEOLOGY concerned with shapes, arrangement, interrelationships of bedrock units & endogenic (within) forces that cause them. Tectonic

More information

Metamorphic Rock Origin and Identification

Metamorphic Rock Origin and Identification Metamorphic Rock Origin and Identification Geology Laboratory GEOL 101 Lab Ray Rector - Instructor http://www.rockhounds.com/rockshop/rockkey/index.html http://earthsci.org/education/teacher/basicgeol/meta/meta.html

More information

Preface and Overview. Folded strata in the mountains of Italy (ca AD), Leonardo da Vinci

Preface and Overview. Folded strata in the mountains of Italy (ca AD), Leonardo da Vinci Preface and Overview Folded strata in the mountains of Italy (ca. 1500 AD), Leonardo da Vinci Models of Mountain Building and Associated Deformation as represented by G.P. Scrope Deformation Feature: Scales

More information

Strength variation and deformational behavior in anisotropic granitic mylonites under high-temperature and -pressure conditions An experimental study

Strength variation and deformational behavior in anisotropic granitic mylonites under high-temperature and -pressure conditions An experimental study Strength variation and deformational behavior in anisotropic granitic mylonites under high-temperature and -pressure conditions An experimental study Gui Liu, Yongsheng Zhou, Yaolin Shi, Sheqiang Miao,

More information

Structure and oxygen isotope analysis of Precambrian basement in the Cottonwood Creek Area, Black Mountain Quadrangle, Bighorn Mountains, Wyoming

Structure and oxygen isotope analysis of Precambrian basement in the Cottonwood Creek Area, Black Mountain Quadrangle, Bighorn Mountains, Wyoming Structure and oxygen isotope analysis of Precambrian basement in the Cottonwood Creek Area, Black Mountain Quadrangle, Bighorn Mountains, Wyoming Rashmi L. Becker Department of Forestry and Geology, The

More information

LAB Exercise #10 What controls rheology?

LAB Exercise #10 What controls rheology? LAB Exercise #10 What controls rheology? Based on lab exercise developed by Dyanna Czeck Exercises are in two parts. The Lab exercise is to be completed and submitted today. The Homework Problems are Due

More information

Log Responses of Basement Rocks in Mattur-Pundi Areas, Tanjore Sub Basin, Cauvery Basin, India.

Log Responses of Basement Rocks in Mattur-Pundi Areas, Tanjore Sub Basin, Cauvery Basin, India. 10 th Biennial International Conference & Exposition P 288 Log Responses of Basement Rocks in Mattur-Pundi Areas, Tanjore Sub Basin, Cauvery Basin, India. M.Giridhar*, N.C.Das and B.K.Choudhary Summary

More information

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc.

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc. Chapter 8 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Metamorphism and dmetamorphic Rocks Tarbuck and Lutgens Chapter 8 Metamorphic Rocks What Is Metamorphism? Metamorphism means

More information

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS

Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS Lab 7: STRUCTURAL GEOLOGY FOLDS AND FAULTS This set of labs will focus on the structures that result from deformation in earth s crust, namely folds and faults. By the end of these labs you should be able

More information

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS

UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS UNIT 10 MOUNTAIN BUILDING AND EVOLUTION OF CONTINENTS ROCK DEFORMATION Tectonic forces exert different types of stress on rocks in different geologic environments. STRESS The first, called confining stress

More information

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building

Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building Earth Science, (Tarbuck/Lutgens) Chapter 10: Mountain Building 1) A(n) fault has little or no vertical movements of the two blocks. A) stick slip B) oblique slip C) strike slip D) dip slip 2) In a(n) fault,

More information

Isan deformation, magmatism and extensional kinematics in the Western Fold Belt of the Mount Isa Inlier

Isan deformation, magmatism and extensional kinematics in the Western Fold Belt of the Mount Isa Inlier Isan deformation, magmatism and extensional kinematics in the Western Fold Belt of the Mount Isa Inlier Rick Gordon Department of Earth Sciences University of Queensland A thesis submitted for examination

More information

How mountains are made. We will talk about valleys (erosion and weathering later)

How mountains are made. We will talk about valleys (erosion and weathering later) How mountains are made We will talk about valleys (erosion and weathering later) http://www.ilike2learn.com/ilike2learn/mountainmaps/mountainranges.html Continent-continent plate convergence Less dense,

More information

Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal

Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal Martina Böhme Institute of Geology, University of Mining and Technology, Freiberg, Germany Abstract.

More information

Deformation: Modification of Rocks by Folding and Fracturing

Deformation: Modification of Rocks by Folding and Fracturing CHAPTER 7 Deformation: Modification of Rocks by Folding and Fracturing Chapter Summary A geologic map is a scientific model of rock formations that are exposed on the Earth s surface showing outcrops,

More information

EAS FINAL EXAM

EAS FINAL EXAM EAS 326-03 FINAL EXAM This exam is closed book and closed notes. It is worth 150 points; the value of each question is shown at the end of each question. At the end of the exam, you will find two pages

More information

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Ninth Annual Convention and Exhibition, May 2015

PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Ninth Annual Convention and Exhibition, May 2015 IPA15-SG-089 PROCEEDINGS, INDONESIAN PETROLEUM ASSOCIATION Thirty-Ninth Annual Convention and Exhibition, May 2015 STRUCTURAL INTERPRETATION OF TECTONICALLY ASSOCIATED NORMAL AND REVERSE FAULTS OF BUKIT

More information

11.1 Rock Deformation

11.1 Rock Deformation Tarbuck Lutgens Mountain Building 11.1 Rock Deformation Factors Affecting Deformation Factors that influence the strength of a rock and how it will deform include temperature, confining pressure, rock

More information

Shear Zones and Mylonites

Shear Zones and Mylonites Shear Zones and Mylonites A shear zone is a tabular zone in which strain is notably higher than in the surrounding rock. Simplified model of the connection between faults, which normally form in the upper

More information

12. MYRMEKITE IN THE SANTA ROSA MYLONITE ZONE, PALM SPRINGS, CALIFORNIA

12. MYRMEKITE IN THE SANTA ROSA MYLONITE ZONE, PALM SPRINGS, CALIFORNIA 1 ISSN 1526-5757 12. MYRMEKITE IN THE SANTA ROSA MYLONITE ZONE, PALM SPRINGS, CALIFORNIA Lorence G. Collins email: lorencec@sysmatrix.net February 15, 1997 Introduction Myrmekite, containing tiny quartz

More information

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Geology for Engineers Rock Mechanics and Deformation of Earth Materials 89.325 Geology for Engineers Rock Mechanics and Deformation of Earth Materials Why do rocks break? Rock mechanics experiments a first order understanding. Faults and Fractures Triaxial load machine. a)

More information

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault.

Strike-Slip Faults. ! Fault motion is parallel to the strike of the fault. Strike-Slip Faults! Fault motion is parallel to the strike of the fault.! Usually vertical, no hanging-wall/footwall blocks.! Classified by the relative sense of motion. " Right lateral opposite block

More information