Did a submarine landslide contribute to the 2011 Tohoku tsunami?

Size: px
Start display at page:

Download "Did a submarine landslide contribute to the 2011 Tohoku tsunami?"

Transcription

1 Press Release Did a submarine landslide contribute to the 2011 Tohoku tsunami? 1. Key points Large tsunami amplitudes in Northern Tohoku (Sanriku) suggest that a secondary tsunami source lies offshore this region. The best candidate for the secondary tsunami source is a submarine landslide near the trench. The earthquake source alone cannot explain the tsunami waveforms and amplitudes, but the earthquake plus landslide source can. 2. Summary The source of the exceptionally high tsunami runups of up to 40 m recorded along the central Sanriku coast between 39.2 N and 40.2 N on March 11, 2011 has not previously been satisfactorily explained. Based on an analysis of seismic and geodetic data, together with recorded tsunami waveforms, we propose that, while the primary source of the tsunami was the vertical displacement of the seafloor due to the earthquake, an additional tsunami source is also required. An analysis of the travel times of higher frequency tsunami waves suggests that the additional source is located near the trench at about latitude 39.4 o N and longitude 144 o E. We propose that the additional tsunami source was a submarine mass failure (SMF i.e., a submarine landslide). We find that: (1) A comparison of pre- and posttsunami bathymetric surveys reveals that there were tens of meters of vertical seafloor movement at the proposed SMF location, and a slope stability analysis confirms that the horizontal acceleration from the earthquake was sufficient to trigger an SMF. (2) Forward modelling of the tsunami generated by a combination of the earthquake and the SMF reproduces the recorded on-, near- and offshore tsunami observations well, particularly the high frequency component of the tsunami waves off Sanriku, which were not well simulated by previous models. The conclusion that a significant part of the 2011 Tohoku tsunami was generated by an SMF source has important implications for estimates of tsunami hazard in the Tohoku region as well in other tectonically similar regions. 3. Details Fig. 1 shows the general setting of this study. Particularly important tsunami waveform data were recorded at the buoys in the near offshore of Iwate Prefecture (nos. 4, 5, and 6) and at the far offshore buoy DART# A backward travel-time analysis of the high frequency component of the waveforms recorded at these buoys identified the most likely SMF tsunami source as being located at about latitude 39.4 o N and longitude 144 o E, and a slope stability analysis confirmed that the SMF could have failed due to earthquake loading.

2 A comparison of bathymetric data before and after the earthquake validated the presence of a large SMF at this location, with post-earthquake vertical motions on the order of 100 m. This is consistent with an SMF failing as a rigid slump with a short runout. Our research demonstrates that the high runups in Sanriku can be accounted for by the combination of the earthquake source and an SMF located almost directly east of the central Sanriku coast (Fig. 2), but cannot be accounted for by the earthquake source alone. Our modeling of tsunami waveform data at offshore buoys 4, 5, and 6, and the DART#21418 buoy shows that the observed higher frequency waves can be best explained by a combination of high-frequency waves generated by an SMF located off the Sanriku coast (triggered with a 135 s delay, consistent with the propagation time of seismic waves from the main rupture area), and long-period waves generated by the earthquake (Figs. 3 and 4). Comparison of our simulations for the combined earthquake plus SMF source with those for other studies demonstrates that our source model is more successful in reproducing the high frequency components of the observed waveforms. 4. Publication Journal: Marine Geology Title: Did a submarine landslide contribute to the 2011 Tohoku tsunami? Authors: David R. Tappin, Stephan T. Grilli, Jeffrey C. Harris, Robert J. Geller, Timothy Masterlark, James T. Kirby, Fengyan Shi, Gangfeng Ma, K.K.S. Thingbaijam, P.M. Mai doi: /j.margeo

3 5.Figures Figure 1. (a) Seismotectonic setting of the March 11, 2011 Tohoku earthquake. Small black dots are aftershocks (from March 11, 2011 to May 6, 2011), which approximate the surface projection of the main rupture. Green and blue circles are locations of centroids for solutions derived from seismic inversions and tsunami inversions, respectively, and the black dot is the USGS centroid. White star is the Global GCMT Project centroid, and red star is the average of the centroids obtained by the tsunami waveform inversions. Purple square is DART Buoy #21418, and purple diamonds labeled 4, 5, and 6 respectively are North Iwate, Central Iwate, and South Iwate buoys, respectively. Other offshore GPS buoys are shown as black diamonds. The brown polygon approximates an area whose bathymetry we studied in detail. The black rectangle show the region shown in panel b. (b) Enlarged view of the rectangle in panel a. 3

4 Figure 2. Tsunami runup and flow depth measured by Mori et al. (Coastal Engineering Journal, 2012) in field surveys (black dots) (a) runup. (b) inundation/flow depth at the shoreline. Simulations using the earthquake source alone (blue line) cannot explain data between about 39 N and 41 N, while the dual earthquake plus SMF source (red dots) fits the observations better. 4

5 Figure 3. Observed and calculated tsunami waveforms (surface elevations). Horizontal axis is time after the origin time of the earthquake, in minutes. Panels (a) to (i) are for buoys numbered 1 through 9 in Fig. 1, respectively, and panel (j) is the DART#21418 buoy. The observed data (black trace) is compared to calculated waveforms for the earthquake-only source (light blue). The red trace is the residual (the difference between the observed and calculated waveforms). 5

6 Figure 4. Observed and calculated tsunami waveforms (surface elevations). Horizontal axis is time after the origin time of the earthquake, in minutes. Panels (a) to (i) are for buoys numbered 1 through 9 in Fig. 1, respectively, and panel (j) is the DART#21418 buoy. The observed data (black trace) is compared to calculated waveforms for the earthquake-only source (light blue), and for the dual earthquake plus SMF source (green). The calculated waveforms for the dual source fit the data better than the earthquake-only data in panels d, e, f, and j (i.e., for buoys 4, 5, 6, and the DART#21418 buoy). 6

Differentiating earthquake tsunamis from other sources; how do we tell the difference?

Differentiating earthquake tsunamis from other sources; how do we tell the difference? Differentiating earthquake tsunamis from other sources; how do we tell the difference? David Tappin (1), Stephan Grilli (2), Jeffrey Harris (2), Timothy Masterlark (3), James Kirby (4), Fengyan Shi Shi

More information

MODELING OF THE TOHOKU-OKI 2011 TSUNAMI GENERATION, FAR-FIELD AND COASTAL IMPACT: A MIXED CO-SEISMIC AND SMF SOURCE. Abstract

MODELING OF THE TOHOKU-OKI 2011 TSUNAMI GENERATION, FAR-FIELD AND COASTAL IMPACT: A MIXED CO-SEISMIC AND SMF SOURCE. Abstract MODELING OF THE TOHOKU-OKI 2011 TSUNAMI GENERATION, FAR-FIELD AND COASTAL IMPACT: A MIXED CO-SEISMIC AND SMF SOURCE Stephan Grilli 1, Jeffrey C. Harris 1,2, James T. Kirby 3, Fengyan Shi 3, Gangfeng Ma

More information

Coseismic slip model

Coseismic slip model Figure 3 - Preliminary highly smoothed model of coseismic slip for the 11 March UCL Institute for Risk & Disaster Reduction Magnitude 9.0 (JMA scale) earthquake Occurred at 02:46:23 pm local time near

More information

Preliminary Study of Possible Tsunami Hazards in Taiwan Region

Preliminary Study of Possible Tsunami Hazards in Taiwan Region Preliminary Study of Possible Tsunami Hazards in Taiwan Region Xiaoming Wang and Philip L.-F. Liu Cornell University (First Draft on May 25 2006) (Second Draft on June 1 2006) (Final Update on June 8 2006)

More information

Earthquakes and Tsunamis

Earthquakes and Tsunamis Earthquakes and Tsunamis Kenji Satake Earthquake Research Institute University of Tokyo 1 Part I 2011 Tohoku earthquake and tsunami 2 Fukushima Dai ichi NPP accident Earthquake ground motion Reactors automatically

More information

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground.

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground. Japan was struck by a magnitude 8.9 earthquake off its northeastern coast Friday. This is one of the largest earthquakes that Japan has ever experienced. In downtown Tokyo, large buildings shook violently

More information

Tsunami potential and modeling

Tsunami potential and modeling Tsunami potential and modeling GEORGE PRIEST OREGON DEPT. OF GEOLOGY AND MINERAL INDUSTRIES NEWPORT COASTAL FIELD OFFICE April 7, 2012 GeoPRISMS Cascadia Workshop, Portland, Oregon What creates most uncertainty

More information

NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS

NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS Setyoajie Prayoedhie Supervisor: Yushiro FUJII MEE10518 Bunichiro SHIBAZAKI ABSTRACT We conducted numerical simulations

More information

W phase inversion and tsunami inundation modeling for tsunami. early warning: case study for the 2011 Tohoku event

W phase inversion and tsunami inundation modeling for tsunami. early warning: case study for the 2011 Tohoku event Title W Phase Inversion and Tsunami Inundation Modeling fo Event Author(s)Gusman, Aditya Riadi; Tanioka, Yuichiro CitationPure and Applied Geophysics, 171(7): 149-1422 Issue Date 214-7-1 Doc URL http://hdl.handle.net/2115/59428

More information

PUBLICATIONS. Geophysical Research Letters

PUBLICATIONS. Geophysical Research Letters PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Key Points: Comparison of the source models from tsunami and seismic data suggests a possible submarine mass failure during the earthquake The

More information

Overview of field work and issues. (The geology of submarine landslide tsunami) Dave Tappin

Overview of field work and issues. (The geology of submarine landslide tsunami) Dave Tappin Overview of field work and issues (The geology of submarine landslide tsunami) Dave Tappin Tsunamigenic landslide model benchmarking and validation workshop Galveston, Texas (USA), Jan. 9-11, 2017 Why

More information

Lab 9: Satellite Geodesy (35 points)

Lab 9: Satellite Geodesy (35 points) Lab 9: Satellite Geodesy (35 points) Here you will work with GPS Time Series data to explore plate motion and deformation in California. This lab modifies an exercise found here: http://www.unavco.org:8080/cws/pbonucleus/draftresources/sanandreas/

More information

SOURCE INVERSION AND INUNDATION MODELING TECHNOLOGIES FOR TSUNAMI HAZARD ASSESSMENT, CASE STUDY: 2001 PERU TSUNAMI

SOURCE INVERSION AND INUNDATION MODELING TECHNOLOGIES FOR TSUNAMI HAZARD ASSESSMENT, CASE STUDY: 2001 PERU TSUNAMI Paper No. TS-4-1 SOURCE INVERSION AND INUNDATION MODELING TECHNOLOGIES FOR TSUNAMI HAZARD ASSESSMENT, CASE STUDY: 2001 PERU TSUNAMI Bruno Adriano 1, Shunichi Koshimura 2 and Yushiro Fujii 3 ABSTRACT The

More information

Probabilistic SMF Tsunami Hazard Assessment for the upper East Coast of the United States

Probabilistic SMF Tsunami Hazard Assessment for the upper East Coast of the United States Probabilistic SMF Tsunami Hazard Assessment for the upper East Coast of the United States S. MARETZKI, S. GRILLI, C. D. P. BAXTER Departments of Ocean and Civil and Environmental Engineering, University

More information

Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD

Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD Nat Hazards (2015) 76:705 746 DOI 10.1007/s11069-014-1522-8 ORIGINAL PAPER Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD Stephan T. Grilli Christopher

More information

Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations

Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations LETTER Earth Planets Space, 63, 809 813, 2011 Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations Yutaka Hayashi,

More information

LANDSLIDE TSUNAMI HAZARD ALONG THE UPPER US EAST COAST: EFFECTS OF SLIDE RHEOLOGY AND BOTTOM FRICTION. Research Report No.

LANDSLIDE TSUNAMI HAZARD ALONG THE UPPER US EAST COAST: EFFECTS OF SLIDE RHEOLOGY AND BOTTOM FRICTION. Research Report No. LANDSLIDE TSUNAMI HAZARD ALONG THE UPPER US EAST COAST: EFFECTS OF SLIDE RHEOLOGY AND BOTTOM FRICTION Research Report No. CACR-17-04 Lauren Schambach 1, Stephan T. Grilli 1, Jim T. Kirby 2, Fengyan Shi

More information

Tohoku-oki event: Tectonic setting

Tohoku-oki event: Tectonic setting Tohoku-oki event: Tectonic setting This earthquake was the result of thrust faulting along or near the convergent plate boundary where the Pacific Plate subducts beneath Japan. This map also shows the

More information

REAL-TIME TSUNAMI INUNDATION FORECAST STUDY IN CHIMBOTE CITY, PERU

REAL-TIME TSUNAMI INUNDATION FORECAST STUDY IN CHIMBOTE CITY, PERU REAL-TIME TSUNAMI INUNDATION FORECAST STUDY IN CHIMBOTE CITY, PERU Nabilt Moggiano Supervisor: Kenji SATAKE MEE16720 ABSTRACT For rapid forecast of tsunami inundation during a tsunamigenic event, we constructed

More information

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake J-RAPID Symposium March 6-7, 2013 Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake Y. Honkura Tokyo Institute of Technology Japan Science and Technology

More information

PoS(ISGC 2011 & OGF 31)078

PoS(ISGC 2011 & OGF 31)078 Modeling scenarios of earthquake-generated tsunamis for Vietnam coasts Davide Bisignano Università degli Studi di Trieste, Department of Geosciences Via E. Weiss 4, Trieste, Italy E-mail: davide.bisignano@gmail.com

More information

Inversion of tsunami data. A. Sladen CNRS, Géoazur 1/35

Inversion of tsunami data. A. Sladen CNRS, Géoazur 1/35 Inversion of tsunami data A. Sladen CNRS, Géoazur 1/35 DEFINITION Tsunami waves are gravity wave with a long period need a BIG source! 2/35 DEFINITION Krakatoa, 1883 Summer 2015, E.T. pers. comm. Lituya

More information

2. Tsunami Source Details

2. Tsunami Source Details 2. Tsunami Source Details The Northland area faces a range of potential tsunamigenic sources that include several local and distant fault systems and underwater landslides. A NIWA study (Goff et al. 2006)

More information

4. Regions Northland Region Distant Eastern source: South America (Chile/Peru)

4. Regions Northland Region Distant Eastern source: South America (Chile/Peru) 4. Regions Maximum water surface elevation images are presented below for tsunamis generated from the sources discussed above; Distant Eastern source: South America (Chile/Peru), Regional Eastern source:

More information

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo 2012/9/24 17:20-17:35 WCEE SS24.4 Special Session: Great East Japan (Tohoku) Earthquake Earthquake Source Kazuki Koketsu Earthquake Research Institute, University of Tokyo 1 Names and features of the earthquake

More information

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE An 8.2-magnitude earthquake struck off the coast of northern Chile, generating a local tsunami. The USGS reported the earthquake was centered 95 km (59 miles) northwest of Iquique at a depth of 20.1km

More information

THE 2011 OFF THE PACIFIC COAST OF TOHOKU-OKI EARTHQUAKE AND TSUNAMI: INFLUENCE OF THE SOURCE CHARACTERISTICS ON THE MAXIMUM TSUNAMI HEIGHTS

THE 2011 OFF THE PACIFIC COAST OF TOHOKU-OKI EARTHQUAKE AND TSUNAMI: INFLUENCE OF THE SOURCE CHARACTERISTICS ON THE MAXIMUM TSUNAMI HEIGHTS Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan THE 2011 OFF THE PACIFIC COAST OF TOHOKU-OKI EARTHQUAKE

More information

Seismogeodesy for rapid earthquake and tsunami characterization

Seismogeodesy for rapid earthquake and tsunami characterization Seismogeodesy for rapid earthquake and tsunami characterization Yehuda Bock Scripps Orbit and Permanent Array Center Scripps Institution of Oceanography READI & NOAA-NASA Tsunami Early Warning Projects

More information

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand Polina Berezina 1 Institute of Geology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Supervisor: Prof. Kenji Satake Earthquake

More information

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L02611, doi:10.1029/2007gl032129, 2008 Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami S. Koshimura, 1 Y.

More information

The Bottom of the Ocean

The Bottom of the Ocean The Bottom of the Ocean Overview: In this lesson, students study bathymetric features of the ocean, predict how bathymetric features influence propagation and runup, then analyze an animation of a tsunami

More information

Tsunami. Harry Yeh Oregon State University. Eastern Japan Earthquake Disaster Briefing at PEER: April 28, 2011

Tsunami. Harry Yeh Oregon State University. Eastern Japan Earthquake Disaster Briefing at PEER: April 28, 2011 Tsunami by Harry Yeh Oregon State University Eastern Japan Earthquake Disaster Briefing at PEER: April 28, 2011 Seismic Characteristics Rupture Model (Harvard Seismology) The fault rupture process was

More information

caused displacement of ocean water resulting in a massive tsunami. II. Purpose

caused displacement of ocean water resulting in a massive tsunami. II. Purpose I. Introduction The Great Sumatra Earthquake event took place on December 26, 2004, and was one of the most notable and devastating natural disasters of the decade. The event consisted of a major initial

More information

NUMERICAL SIMULATION OF TSUNAMI PROPAGATION AND INUNDATION ALONG THE RAKHINE COAST AREAS IN MYANMAR

NUMERICAL SIMULATION OF TSUNAMI PROPAGATION AND INUNDATION ALONG THE RAKHINE COAST AREAS IN MYANMAR NUMERICAL SIMULATION OF TSUNAMI PROPAGATION AND INUNDATION ALONG THE RAKHINE COAST AREAS IN MYANMAR Su Hninn Htwe Supervisor: Bunichiro SHIBAZAKI MEE12619 Yushiro FUJII ABSTRACT This study aimed to assess

More information

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA Dun Wang ( ) In collaboration with: Hitoshi Kawakatsu, Jim Mori, Kazuki Koketsu, Takuto Maeda, Hiroshi Tsuroka, Jiancang Zhunag, Lihua Fang, and Qiang Yao School of Geosciences, China University of Geosciences

More information

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN Japan was rattled by a strong aftershock and tsunami warning Thursday night nearly a month after a devastating earthquake and tsunami flattened the northeastern coast. This earthquake can be considered

More information

Mechanism of tsunami generation,propagation and runup -sharing experiences with Japanese

Mechanism of tsunami generation,propagation and runup -sharing experiences with Japanese Mechanism of tsunami generation,propagation and runup -sharing experiences with Japanese Mechanism of tsunami generation Predicting the propagation, runup and inundation of tsunamis Near and far-field

More information

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling

The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling The March 11, 2011, Tohoku-oki earthquake (Japan): surface displacement and source modelling Salvatore Stramondo Bignami C., Borgstrom S., Chini M., Guglielmino F., Melini D., Puglisi G., Siniscalchi V.,

More information

THE 2011 TOHOKU EARTHQUAKE IN JAPAN. VSU Lyuben Karavelov, Sofia, Bulgaria. Key words: Tohoku earthquake, strong ground motion, damage

THE 2011 TOHOKU EARTHQUAKE IN JAPAN. VSU Lyuben Karavelov, Sofia, Bulgaria. Key words: Tohoku earthquake, strong ground motion, damage THE 2011 TOHOKU EARTHQUAKE IN JAPAN Radan Ivanov 1 VSU Lyuben Karavelov, Sofia, Bulgaria Abstract: This earthquake which occurred on March 11, 2011, had a magnitude of 9.0, which places it as the fourth

More information

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE

REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE REPORT ON THE TOHOKU AREA PASIFIC OFFSHORE EARTHQUAKE GENERAL PERSPECTIVE The Highest Magnitude Ever Recorded The 2011 off the Pacific Coast of Tohoku Earthquake (hereafter, the 2011 Tohoku- Pacific Earthquake

More information

Simulation of Potentially Catastrophic Landslide Tsunami in North West Borneo Trough

Simulation of Potentially Catastrophic Landslide Tsunami in North West Borneo Trough International Journal of Environmental Science and Development, Vol. 7, No. 1, December 16 Simulation of Potentially Catastrophic Landslide Tsunami in North West Borneo Trough Hock Lye Koh, Wai Kiat Tan,

More information

NUMERICAL SIMULATION AS GUIDANCE IN MAKING TSUNAMI HAZARD MAP FOR LABUAN ISLAND

NUMERICAL SIMULATION AS GUIDANCE IN MAKING TSUNAMI HAZARD MAP FOR LABUAN ISLAND NUMERICAL SIMULATION AS GUIDANCE IN MAKING TSUNAMI HAZARD MAP FOR LABUAN ISLAND MOHD RIDZUAN bin Adam Supervisor: Fumihiko IMAMURA MEE09199 ABSTRACT At the northeast end of the South China Sea, tsunamis

More information

Numerical simulation of the 2011 Tohoku tsunami: Comparison with field observations and sensitivity to model parameters

Numerical simulation of the 2011 Tohoku tsunami: Comparison with field observations and sensitivity to model parameters Proceedings of the Twenty-second (2012) International Offshore and Polar Engineering Conference Rhodes, Greece, June 17 22, 2012 Copyright 2012 by the International Society of Offshore and Polar Engineers

More information

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION A major 7.7 magnitude earthquake struck at 8:04 PM local time in western British Columbia, Canada. The epicenter is located on Moresby Island, the southern large island in the Queen Charlotte Islands region.

More information

Stéphan Grilli 2, Annette R. Grilli 2, Babak Tehranirad 3 and James T. Kirby 3

Stéphan Grilli 2, Annette R. Grilli 2, Babak Tehranirad 3 and James T. Kirby 3 MODELING TSUNAMI SOURCES AND THEIR PROPAGATION IN THE ATLANTIC OCEAN FOR COASTAL TSUNAMI HAZARD ASSESSMENT AND INUNDATION MAPPING ALONG THE US EAST COAST 1 Stéphan Grilli 2, Annette R. Grilli 2, Babak

More information

Source of the July 2006 West Java tsunami estimated from tide gauge records

Source of the July 2006 West Java tsunami estimated from tide gauge records GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L24317, doi:10.1029/2006gl028049, 2006 Source of the July 2006 West Java tsunami estimated from tide gauge records Yushiro Fujii 1 and Kenji Satake 2 Received 13

More information

S e i s m i c W a v e s

S e i s m i c W a v e s Project Report S e i s m i c W a v e s PORTLAND STATE UNIVERSITY PHYSICS 213 SPRING TERM 2005 Instructor: Dr. Andres La Rosa Student Name: Prisciliano Peralta-Ramirez Table Of Contents 1. Cover Sheet 2.

More information

Low-Latency Earthquake Displacement Fields for Tsunami Early Warning and Rapid Response Support

Low-Latency Earthquake Displacement Fields for Tsunami Early Warning and Rapid Response Support Low-Latency Earthquake Displacement Fields for Tsunami Early Warning and Rapid Response Support Hans-Peter Plag, Geoffrey Blewitt Nevada Bureau of Mines and Geology and Seismological Laboratory University

More information

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT-

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT- TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT- Amilcar Cabrera Supervisor: Yuichiro TANIOKA MEE16718 ABSTRACT Nicaragua

More information

Modeling Tsunami Inundation and Assessing Tsunami Hazards for the U. S. East Coast (Phase 3) NTHMP Semi-Annual Report May 21, 2015

Modeling Tsunami Inundation and Assessing Tsunami Hazards for the U. S. East Coast (Phase 3) NTHMP Semi-Annual Report May 21, 2015 Modeling Tsunami Inundation and Assessing Tsunami Hazards for the U. S. East Coast (Phase 3) NTHMP Semi-Annual Report May 21, 2015 Project Progress Report Award Number: NA14NWS4670041 National Weather

More information

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes!

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes! 51-100-21 Environmental Geology Summer 2006 Tuesday & Thursday 6-9:20 p.m. Dr. Beyer Earthquakes Ch. 5 I. Locations of Earthquakes II. Earthquake Processes III. Effects of Earthquakes IV. Earthquake Risk

More information

Evaluation of Height of Tsunami Induced by Submarine Landslide

Evaluation of Height of Tsunami Induced by Submarine Landslide Journal of Energy and Power Engineering 12 (2018) 35-43 doi: 10.17265/1934-8975/2018.01.005 D DAVID PUBLISHING Evaluation of Height of Tsunami Induced by Submarine Landslide Yoshikane Murakami 1, Takemi

More information

Peter Sammonds Professor of Geophysics

Peter Sammonds Professor of Geophysics Peter Sammonds Professor of Geophysics Director, UCL Institute for Risk & Disaster Reduction NERC Strategic Advisor The precautionary principle: Natural hazards and critical infrastructure Acknowledge

More information

TSUNAMI PROPAGATION AND INUNDATION MODELINGS ALONG SOUTH-EAST COAST OF PAPUA NEW GUINEA

TSUNAMI PROPAGATION AND INUNDATION MODELINGS ALONG SOUTH-EAST COAST OF PAPUA NEW GUINEA TSUNAMI PROPAGATION AND INUNDATION MODELINGS ALONG SOUTH-EAST COAST OF PAPUA NEW GUINEA Martin WAREK Supervisor: Yushiro FUJII MEE12620 Bunichiro SHIBAZAKI ABSTRACT This study covers tsunami generation,

More information

The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions

The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions LETTER Earth Planets Space, 63, 797 801, 2011 The 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions Thorne Lay

More information

Predicting of Tsunami Inundation Area based on Propagation and Runup Numerical Model in Pacitan City

Predicting of Tsunami Inundation Area based on Propagation and Runup Numerical Model in Pacitan City Predicting of Tsunami Inundation Area based on Propagation and Runup Numerical Model in Pacitan City 1 Agus Suharyanto, 1 Alwafi Pujiraharjo, 2 Adipandang Yudono, 3 Keisuke Murakami, and 3 Chikashi Deguchi

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/eaao4915/dc1 Supplementary Materials for Global variations of large megathrust earthquake rupture characteristics This PDF file includes: Lingling Ye, Hiroo

More information

Lessons from the 2004 Sumatra earthquake and the Asian tsunami

Lessons from the 2004 Sumatra earthquake and the Asian tsunami Lessons from the 2004 Sumatra earthquake and the Asian tsunami Kenji Satake National Institute of Advanced Industrial Science and Technology Outline 1. The largest earthquake in the last 40 years 2. Tsunami

More information

Source region of the earthquake

Source region of the earthquake Disasters of port facilities due to 2011 Great East Japan Earthquake Yoshiaki Kikuchi Port & Airport Research Institute Contents Outline of the earthquake Measured Tsunami height Breakwater disasters by

More information

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy.

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Earthquake Machine Stick-slip: Elastic Rebound Theory Jerky motions on faults produce EQs Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy. Three

More information

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0)

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0) Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0) Yuichi Kitagawa Senior Research Scientist, AIST, GSJ, Active Fault and Earthquake Research Cente Naoji Koizumi

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Review: What is an earthquake? Earthquake is the vibration (shaking) and/or displacement of the ground produced by the sudden release of energy. The point inside the Earth where

More information

Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan -

Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan - Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan - 1 Subduction zones around the world Haiti Italy Turkey Tohoku Sichuan Taiwan Sumatra

More information

Earthquake Hazards. Tsunami

Earthquake Hazards. Tsunami Earthquake Hazards Tsunami Measuring Earthquakes Two measurements that describe the power or strength of an earthquake are: Intensity a measure of the degree of earthquake shaking at a given locale based

More information

Originally published as:

Originally published as: Originally published as: Brune, S., Ladage, S., Babeyko, A. Y., Müller, C., Kopp, H., Sobolev, S. V. (2010): Submarine slope failures at the eastern Sunda Arc : bathymetry analysis and tsunami modeling.

More information

Crustal deformation by the Southeast-off Kii Peninsula Earthquake

Crustal deformation by the Southeast-off Kii Peninsula Earthquake Crustal deformation by the Southeast-off Kii Peninsula Earthquake 51 Crustal deformation by the Southeast-off Kii Peninsula Earthquake Tetsuro IMAKIIRE, Shinzaburo OZAWA, Hiroshi YARAI, Takuya NISHIMURA

More information

TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES

TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES Sheila Yauri Supervisor: Yushiro FUJII MEE10521 Bunichiro SHIBAZAKI ABSTRACT

More information

VALIDATION OF TSUNAMI INUNDATION MODELING FOR THE 2004 SUMATRA-ANDAMAN EARTHQUAKE FOR MAKING HAZARD MAPS IN PENANG AND LANGKAWI, MALAYSIA

VALIDATION OF TSUNAMI INUNDATION MODELING FOR THE 2004 SUMATRA-ANDAMAN EARTHQUAKE FOR MAKING HAZARD MAPS IN PENANG AND LANGKAWI, MALAYSIA Synopses of Master Papers Bulletin of IISEE, 47, 11-16, 013 VALIDATION OF TSUNAMI INUNDATION MODELING FOR THE 004 SUMATRA-ANDAMAN EARTHQUAKE FOR MAKING HAZARD MAPS IN PENANG AND LANGKAWI, MALAYSIA Noor

More information

Elastic Rebound Theory

Elastic Rebound Theory Earthquakes Elastic Rebound Theory Earthquakes occur when strain exceeds the strength of the rock and the rock fractures. The arrival of earthquakes waves is recorded by a seismograph. The amplitude of

More information

Three Dimensional Simulations of Tsunami Generation and Propagation

Three Dimensional Simulations of Tsunami Generation and Propagation Chapter 1 Earth Science Three Dimensional Simulations of Tsunami Generation and Propagation Project Representative Takashi Furumura Authors Tatsuhiko Saito Takashi Furumura Earthquake Research Institute,

More information

Long-period ground motion characterization by cross wavelet transform

Long-period ground motion characterization by cross wavelet transform Long-period ground motion characterization by cross wavelet transform *Tsoggerel Tsamba 1) and Masato Motosaka 2) 1), 2) International Research Institute of Disaster Science, Tohoku University, Sendai980-8579,Japan

More information

1. Name at least one place that the mid-atlantic Ridge is exposed above sea level.

1. Name at least one place that the mid-atlantic Ridge is exposed above sea level. Interpreting Tectonic and Bathymetric Maps. The purpose of this lab is to provide experience interpreting the bathymetry of the seafloor in terms of tectonic and geologic settings and processes. Use the

More information

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source Nevada Bureau of Mines and Geology Special Publication 36 Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source by Mendoza, C. 1 and Hartzell S. 2 1 Centro de Geociencias, Universidad

More information

CSU Student Research Competition Summary Submission

CSU Student Research Competition Summary Submission Name: CSU Student Research Competition Summary Submission Shawn Morrish Title: Coseismic Uplift and Geomorphic Response to the September 5, 2012 Mw7.6 Nicoya Earthquake, Costa Rica Abstract: The Nicoya

More information

THE DEPOSITS OF TSUNAMIS WESLEY PESANTEZ, CATHERINE NIELD, COLIN WINTER

THE DEPOSITS OF TSUNAMIS WESLEY PESANTEZ, CATHERINE NIELD, COLIN WINTER THE DEPOSITS OF TSUNAMIS WESLEY PESANTEZ, CATHERINE NIELD, COLIN WINTER AN OVERVIEW OF OUR SEMINAR WHAT IS A TSUNAMI WHY STUDY TSUNAMIS PROPERTIES OF TSUNAMIS TSUNAMI HYDRODYNAMICS IDEALIZED DEPOSITS SEDIMENT

More information

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March Sendai Earthquake NE Japan March 11, 2011 Some explanatory slides Bob Stern, Dave Scholl, others updated March 14 2011 Earth has 11 large plates and many more smaller ones. Plates are 100-200 km thick

More information

Modeling of the 2011 Tohoku-oki. oki Tsunami and it s s impacts to Hawaii

Modeling of the 2011 Tohoku-oki. oki Tsunami and it s s impacts to Hawaii WAVES 11, KONA HAWAI`I Modeling of the 2011 Tohoku-oki oki Tsunami and it s s impacts to Hawaii Yoshiki Yamazaki 1, Volker Roeber 1, Kwok Fai Cheung 1 and Thorne Lay 2 1 Department of Ocean and Resources

More information

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake Kazuki Koketsu 1, Hiroe Miyake 2, Srinagesh Davuluri 3 and Soma Nath Sapkota 4 1. Corresponding

More information

Shoaling of Solitary Waves

Shoaling of Solitary Waves Shoaling of Solitary Waves by Harry Yeh & Jeffrey Knowles School of Civil & Construction Engineering Oregon State University Water Waves, ICERM, Brown U., April 2017 Motivation The 2011 Heisei Tsunami

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11492 Figure S1 Short-period Seismic Energy Release Pattern Imaged by F-net. (a) Locations of broadband seismograph stations in Japanese F-net used for the 0.5-2.0 Hz P wave back-projection

More information

Earthquakes and Earth s Interior

Earthquakes and Earth s Interior - What are Earthquakes? Earthquakes and Earth s Interior - The shaking or trembling caused by the sudden release of energy - Usually associated with faulting or breaking of rocks - Continuing adjustment

More information

News Release December 30, 2004 The Science behind the Aceh Earthquake

News Release December 30, 2004 The Science behind the Aceh Earthquake News Release December 30, 2004 The Science behind the Aceh Earthquake PASADENA, Calif. - Kerry Sieh, the Robert P. Sharp Professor of Geology at the California Institute of Technology and a member of Caltech's

More information

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes Section 19.1 - Forces Within Earth 8 th Grade Earth & Space Science - Class Notes Stress and Strain Stress - is the total force acting on crustal rocks per unit of area (cause) Strain deformation of materials

More information

A GLOBAL SURGE OF GREAT EARTHQUAKES FROM AND IMPLICATIONS FOR CASCADIA. Thorne Lay, University of California Santa Cruz

A GLOBAL SURGE OF GREAT EARTHQUAKES FROM AND IMPLICATIONS FOR CASCADIA. Thorne Lay, University of California Santa Cruz A GLOBAL SURGE OF GREAT EARTHQUAKES FROM 2004-2014 AND IMPLICATIONS FOR CASCADIA Thorne Lay, University of California Santa Cruz Last 10 yrs - 18 great earthquakes: rate 1.8/yr; rate over preceding century

More information

TSUNAMI INUNDATION MAPPING FOR OCEAN CITY, MD NGDC DEM

TSUNAMI INUNDATION MAPPING FOR OCEAN CITY, MD NGDC DEM TSUNAMI INUNDATION MAPPING FOR OCEAN CITY, MD NGDC DEM BY BABAK TEHRANIRAD, SAEIDEH BANIHASHEMI, JAMES T. KIRBY, JOHN A. CALLAHAN AND FENGYAN SHI RESEARCH REPORT NO. CACR-14-04 NOVEMBER 2014 SUPPORTED

More information

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation Toshitaka Baba Research Program for Plate Dynamics, Institute for Frontier

More information

Coupled Simulation of Ground Shaking and Tsunami for Mega-thrust Subduction Earthquakes

Coupled Simulation of Ground Shaking and Tsunami for Mega-thrust Subduction Earthquakes Coupled Simulation of Ground Shaking and Tsunami for Mega-thrust Subduction Earthquakes Katsuichiro Goda Senior Lecturer, Dept. of Civil Engineering, University of Bristol, Bristol, United Kingdom Raffaele

More information

Yo Fukutani Anawat Suppasri Fumihiko Imamura

Yo Fukutani Anawat Suppasri Fumihiko Imamura DOI 1.17/s477-14-966-4 ORIGINAL PAPER Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohoku-type earthquake fault Yo Fukutani

More information

Title. Author(s)Heki, Kosuke. CitationScience, 332(6036): Issue Date Doc URL. Type. File Information. A Tale of Two Earthquakes

Title. Author(s)Heki, Kosuke. CitationScience, 332(6036): Issue Date Doc URL. Type. File Information. A Tale of Two Earthquakes Title A Tale of Two Earthquakes Author(s)Heki, Kosuke CitationScience, 332(6036): 1390-1391 Issue Date 2011-06-17 Doc URL http://hdl.handle.net/2115/48524 Type article (author version) File Information

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena Environmental Geology Chapter 8 Earthquakes and Related Phenomena Fall 2013 Northridge 1994 Kobe 1995 Mexico City 1985 China 2008 Earthquakes Earthquake Magnitudes Earthquake Magnitudes Richter Magnitude

More information

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes

Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes Vertical to Horizontal (V/H) Ratios for Large Megathrust Subduction Zone Earthquakes N.J. Gregor Consultant, Oakland, California, USA N.A. Abrahamson University of California, Berkeley, USA K.O. Addo BC

More information

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record Goda, K. (2015). Effects of seabed surface rupture versus buried rupture on tsunami wave modeling: A case study for the 2011 Tohoku, Japan earthquake. Bulletin of the Seismological Society of America,

More information

Establishment and Operation of a Regional Tsunami Warning Centre

Establishment and Operation of a Regional Tsunami Warning Centre Establishment and Operation of a Regional Tsunami Warning Centre Dr. Charles McCreery, Director NOAA Richard H. Hagemeyer Pacific Tsunami Warning Center Ewa Beach, Hawaii USA Why A Regional Tsunami Warning

More information

REPORT TO THE PLANNING, TRANSPORTATION AND PROTECTIVE SERVICES COMMITTEE MEETING OF JUNE 26, 2013

REPORT TO THE PLANNING, TRANSPORTATION AND PROTECTIVE SERVICES COMMITTEE MEETING OF JUNE 26, 2013 PPS/PS 2013-07 REPORT TO THE PLANNING, TRANSPORTATION AND PROTECTIVE SERVICES COMMITTEE MEETING OF JUNE 26, 2013 SUBJECT UPDATES TO THE CAPITAL REGIONAL DISTRICT MODELLING OF POTENTIAL TSUNAMI INUNDATION

More information

Tsunami Simulation by Tuned Seismic Source Inversion for the Great 2011 Tohoku. Earthquake

Tsunami Simulation by Tuned Seismic Source Inversion for the Great 2011 Tohoku. Earthquake The final publication is available at Springer via http://dx.doi.org/10.1007/s00024-017-1611-1 View only version is available at this link http://rdcu.be/tvnq Tsunami Simulation by Tuned Seismic Source

More information

Passive margin earthquakes as indicators of intraplate deformation

Passive margin earthquakes as indicators of intraplate deformation Passive margin earthquakes as indicators of intraplate deformation Emily Wolin and Seth Stein Northwestern University April 23, 2010 Seismicity of the North 1920-2009 American Passive Margin 1933 Baffin

More information

Introduction to Environmental Geology, 5e Case History: Indonesian Tsunami Indonesian Tsunami (2) Introduction Historic Tsunamis

Introduction to Environmental Geology, 5e Case History: Indonesian Tsunami Indonesian Tsunami (2) Introduction Historic Tsunamis 1 2 3 4 5 6 7 8 9 Introduction to Environmental Geology, 5e Chapter 7 Tsunami Case History: Indonesian Tsunami December 26, 2004, within a few hours, close to 250,000 people were killed With no warning

More information

Magnitude 7.9 SE of KODIAK, ALASKA

Magnitude 7.9 SE of KODIAK, ALASKA A magnitude 7.9 earthquake occurred at 12:31 am local time 181 miles southeast of Kodiak at a depth of 25 km (15.5 miles). There are no immediate reports of damage or fatalities. Light shaking from this

More information

Probabilistic Tsunami Hazard Analysis. Hong Kie Thio AECOM, Los Angeles

Probabilistic Tsunami Hazard Analysis. Hong Kie Thio AECOM, Los Angeles Probabilistic Tsunami Hazard Analysis Hong Kie Thio AECOM, Los Angeles May 18, 2015 Overview Introduction Types of hazard analysis Similarities and differences to seismic hazard Methodology Elements o

More information