A numerical simulation of summer circulation for Monterey Bay Le Ngoc Ly Department of Oceanography, Naval Postgraduate School

Size: px
Start display at page:

Download "A numerical simulation of summer circulation for Monterey Bay Le Ngoc Ly Department of Oceanography, Naval Postgraduate School"

Transcription

1 A numerical simulation of summer circulation for Monterey Bay Le Ngoc Ly Department of Oceanography, Naval Postgraduate School Phu Luong Abstract A three dimensional coastal ocean system for Monterey Bay (MOB) is developed using numerical grid generation to study the summer circulation. The system is a primitive equation coastal ocean modeling system, which consists of a coastal ocean model, numerical grid generation routines, and a grid package which allows the model to be coupled to model grids. In this coastal ocean system, a curvilinear nearly-orthogonal (CNO) grid is used to enhance the model numerical solution. The MOB model has 28 sigma vertical levels, and the CNO coastlinefollowing numerical grid has 131 x 131 grid points, which cover a domain of 150 km by 150 km. The model has horizontal resolutions of 200 m to 2 km, free surface dynamics, and realistic coastlines and bottom bathymetry. The model code is written for a multi-block grid, but a single-block CNO grid is demonstrated for the MOB simulations. The MOB model and the associated grid are used to simulate summer circulation and reproduce the MOB basic physics such as coastal currents and upwelling locations. 1 Introduction Water circulation in the Monterey Bay (MOB) region is interesting and important for many human and scientific activities. MOB is called a "natural laboratory", because of many intensive investigation by physical, chemical, biological, meteorological and geological

2 270 Hydraulic Engineering Software oceanographers. The major problem that arises in circulation modeling in this region is that the MOB region is distinguished by the Monterey Submarine Canyon (MSC), which features some of the steepest topography encountered anywhere in the world ocean. The complicated bottom topography with seamounts and the MSC makes the MOB three dimensional water circulation difficult to simulate using a primitive equation ocean model with full turbulence closure. MOB is located 100 km south of San Francisco on the U.S. West Coast. There were a number of observational studies of the MOB region *. There were recent studies of the spring-summer (March-July) circulation in MOB by Rosenfeld et al. \ This time of year is characterized by strong upwelling and equatorward alongshore-component winds which result in the strongest near-surface temperature gradients and the largest biological productivity. During these periods, a band of cold water has been observed which flows equatorward across the mouth of Monterey Bay. These equatorward water flows have typical speeds of cm s~~* ^. Observations also show that upwelling centers are located north (near Ft. Ano Nuevo) and south (near Ft. Sur) of Monterey Bay. Studies by Rosenfeld et al. *'^ and Ramp et al. * also show that there is a warm anticyclonic feature which is often found off Monterey Bay. This feature was also seen from Advanced Very High Resolution Radiometer infrared imagery and Conductive Temperature Depth data in November, 1998 ^. Ly et al. ^'^ have shown that solutions of an ocean numerical model are strongly dependent on the grid used. A poorly suited grid may lead to unsatisfactory ocean model results *. An improper choice of grid point location can lead to instability or lack of convergence. The accurate representation of multi-scale physical phenomena in numerical models has long been a main concern of modelers. In ocean modeling, one of the main concerns of modelers is the simulation of the development, evolution, and interaction of various scales of physical phenomena from the small scale of turbulent dissipation to mesoscale eddies, fronts, and larger-scale flows. In this case, with limited computer resources, an appropriate choice of the numerical grid plays a key role in determining the quality of the numerical solution of a coastal ocean model ^. Traditionally, single-block rectangular (cartesian) grids have been most commonly used in coastal ocean modeling for their simplicity. However, the traditional grids (even with very high horizontal and vertical resolution) may not be well

3 Hydraulic Engineering Software 271 suited for the MOB region, which has extremely complicated bottom topography with the MOB submarine canyon, seamounts and very steep slopes at the continental shelf break. In our coastal ocean system, a curvilinear nearly-orthogonal (CNO), coastline-following grid is used to enhance model numerical solutions by better treating the MOB shelf break region and extremely complicated MOB bottom topography. Our CNO grid is crucial for the MOB ocean model because it can reduce by 40 % the MOB model horizontal pressure gradient errors in comparison with the traditional rectangular grid model ^. These grids are designed by using grid generation techniques **. This kind of grids can also easily increase horizontal resolution in the subregion of the model domain without increasing the computational expense with a higher resolution over the entire domain. This goal could be nearly achieved by a nesting technique (interactive nesting) with more complicated processes dealing with boundary conditions, but would be computationally much more expensive. The passive nesting lacks two-way interaction between coarse and fine resolution regions 12,13 Another problem related to nesting is the interaction between multiple nested meshes, particularly the tendency for propagating dispersive waves to discontinuously change their speeds upon passing from one mesh to the next and to reflect off the boundaries of each mesh ^'^. This problem is a big concern of the nesting technique. The purpose of this paper is to report on a numerical simulation of the Monterey Bay region circulation for the summer (July) period. 2 The MOB Ocean Circulation Model and Numerical Grid The model is a three dimensional primitive equation model which describes the velocity, surface elevation, salinity, and temperature fields in the ocean. The ocean is assumed to be hydrostatic and incompressible (Boussinesq approximation). The equations are written in a system of Cartesian coordinates with x eastward, y northward, and z upward. The motions induced by small-scale processes not directly resolved by the model grid (subgrid scale) are parameterized in terms of horizontal mixing processes. The horizontal diffusive terms are for parameterization of subgrid scale processes, but in practice

4 272 Hydraulic Engineering Software these horizontal diffusive terms are usually required to damp smallscale computational noise **. The modified Princeton Ocean Model 14 is used for the MOB summer circulation simulation. The model is a three dimensional primitive equation ocean circulation model with the second order turbulence closure to provide a parameterization of the vertical mixing process. The model has the curvilinear nearly-orthogonal multi-block grid coastal ocean system, but only the curvilinear single-block grid is used in the MOB study. The MOB coastal ocean circulation system consists of a coastal ocean model, numerical grid generation routines, and a grid package which allows the model to be coupled with model grids. The curvilinear orthogonal and nearly-orthogonal coastline-following single-block grid of the multi-block code is developed for MOB. The grid is shown in Fig. 1, which shows a high grid density packed along steep slopes and the Monterey Submarine Canyon. This grid reduces by 40 % the sigma coordinate errors in comparison with the traditional rectangular single-block gird. The MOB model has 131 X 131 horizontal grid points and covers a domain of approximately 150 km x 150 km. The horizontal resolution of the MOB model varies from 200 m to 2 km in the curvilinear grid. For clarity, the horizontal nearly-orthogonal grid in Fig. 1 is plotted with only every other grid line. The model has 28 vertical sigma levels, free surface dynamics, and realistic coastlines and bathymetry. Open lateral boundary conditions at the three open boundaries (north, south, west) for the barotropic current, temperature, and salinity are radiation conditions. The temperature and salinity are prescribed by July monthly mean observational values. The boundary conditions for surface elevation at the open boundaries are zero gradient normal to the open boundary. 3 The MOB Summer Circulation Simulation The coastal system for MOB is initialized with the July monthly mean values of climatological three dimensional temperature and salinity fields from all available datasets to date. The typical monthly mean wind for July is used for the system. The model is spun up for 30 days and run for 60 days. The simulations are computed on the CRAY-YMP supercomputers with four CPU (Naval Postgraduate School) and on the C90 with sixteen CPU (Stennis Space Center,

5 Hydraulic Engineering Software 273 MS) using multitasking modes. The external (barotropic) mode time step is 1 s, and the internal (baroclinic) mode time step is 40 s, so that the Courant-Friedrichs-Levy computational stability criterion is satisfied. The 90 day simulations are presented in Figs The summer (July) upwelling-favorable (equatorward alongshore component) winds in the Monterey Bay region, move surface water away from shore so that it must be replaced by colder and higher salinity upwelled water. This can be seen in Figs Fig. 2 shows surface currents at 90 days. From the contours, we can see the surface current field has energetic motions at coastal regions with more contours. This region has strong upwelling activity in the summer (upwelling centers) and strong coastal currents. The signatures of the upwelling and coastal current activity are shown by more contours in comparison with the rest of the model domain. The surface current vectors (which are not shown here) show more clearly the summer upwelling and coastal current activities. These equatorward currents have typical speeds of cm s~* (Fig. 2). This magnitude of the coastal cold equatorward current is also observed ^. The surface current vector field also shows an anticyclonic feature located at the southwestern region of the model domain. This warn anticyclonic feature was also observed *»*. The summer period of year is characterized by strong upwelling which is reproduced by our coastal ocean system for Monterey Bay. The upwelling location can be seen from the surface temperature contours of the 90-day model run, which are shown in Fig. 3. The upwelling region has a surface temperature of less than 11 C which is located near the northeastern part of the model domain (upwelling center) along the coastline across Monterey Bay. This upwelling location and surface temperature magnitude are observed *'*>*. Very similar features of upwelling can be seen from the model surface salinity field. The model surface salinity contours of the 90-day run are shown in Fig. 4. The upwelling region is located in the coastal region with a salinity greater than 33.4 psu in comparison with the surrounding region. The location and magnitude of the surface salinity field are observed ^. 4 Summary and Conclusions A three dimensional primitive equation coastal ocean system for Monterey Bay has been developed using numerical grid generation for

6 274 Hydraulic Engineering Software studying the summer circulation. The system consists of a coastal ocean model of Monterey Bay, numerical grid generation routines, and a grid package which allows the Monterey Bay model to be coupled with these grids. The model code is written for a multi-block grid, but only a single block CNO grid is used to enhance the model numerical solution. Our CNO grid places a high grid density along steep slopes and the Monterey Submarine Canyon. This grid reduces by 40 % the sigma coordinate errors in comparison with the traditional rectangular single-block gird. The model summer simulations with the associated grid for Monterey Bay show the basic physics of typical strong summer upwelling and equatorward cold and high salinity coastal currents. The upwelling locations, surface coastal current, and temperature and salinity magnitudes agree well with observed values. The model surface current of the 90-day run also shows a warm anticyclonic feature. Acknowledgments The support of the Office of Naval Research under grants N WR3I is gratefully acknowledged. References [1] Rosenfeld, L.K, Schwing, F.B, Garfield, N. & Tracy, D.L., Bifurcated flow from an upwelling center: a cold water source for Monterey Bay. Cont. Shelf Res., 14, 931, 1994a. [2] Rosenfeld, L.K., Schramm, R.E., Paduan, J.B, Hatcher, G.A. & Anderson, T., Hydrographic data collected in Monterey Bay during 1 September 1988 to 16 December, Technical Report, 94-15, Monterey Bay Aquarium Research Institute, 1994b. [3] Rosenfeld, L.K., Anderson, T., Hatcher, G., Roughgarden J. & Shkedy, Y., Upwelling fronts and barnacle recruitment in Central California, Technical Report95-19, Monterey Bay Aquarium Research Institute, 102 pp., [4] Ramp, S.R., Rosenfeld, L.K., Tisch, T.D. & Hicks, M.R., Moored observations of the current and temperature structure over the continental slope off central California. Part I: A basic description of the variability, J. Geophys. Res., 2, pp.20-25, 1996.

7 Hydraulic Engineering Software 275 [5] Tisch, T.D., Ramp, S.R. & Collins, C.A., Observations of the geostrophic current and water mass characteristics off Point Sur, California, from May 1988 through November J. Geophys. Res., 97, pp , [6] Ly, L.N. & Luong, P., Application of grid generation technique in coastal ocean modeling for the Mediterranean. American Geot/mon AGf/; TmnsacZwma, 74, 325, [7] Luong, P. & Ly, L.N., Application of multi-block grid technique in coastal ocean modeling: the Mediterranean simulation. AGU Transactions, O42B-9, No. 45, [8] Ly, L.N. & Jiang, L., Horizontal pressure gradient errors of the Monterey Bay sigma coordinate ocean model with various grids. J. Geophys. Res., (In press), [9] Ly, L.N. & Luong, P., Application of grid generation technique to the Yellow Sea simulation. High Performance Computing and Communication (UPC-ASIA 1995,), ElectronicProceedings, CD-ROM, Taipei, Taiwan, [10] Ly, L.N. & Luong, P,, A mathematical coastal ocean circulation system with breaking waves and numerical grid generation. Applied Mathematical Modelling, 10, 633, [11] Thompson, J.F., War si, Z.U. & Mastin, C.W., Numerical Grid Generation: Foundations and Applications (Elsevier Science Publishing Co., Inc.), p. 483, [12] Spall, M.A. & Holland, W.R., A nested primitive equation model for oceanic applications. J. Physic. Oceanogr., 21, 205, [13] Laugier, M., Angot, P. & Mortier, L., Nested grid methods for an ocean model: A comparative study. Int. J. Num. Methods in Fluids, 23, 1163, [14] Blumberg, A.F. & Mellor, G.L., A description of a threedimensional coastal ocean circulation model. Three- Dimensional Coastal Ocean Models, Coastal and Estuarine Sciences 4, pp AGU, Washington, D.C, 1987.

8 276 Hydraulic Engineering Software Longitude Fig. 1 Nearly-Orthogonal Curvilinear Grid u CD TD Longitude Fig. 2 Surface Current Contours

9 Hydraulic Engineering Software ) Santa Cruz -' Longitude Fig. 3 Surface Temperature Contours <D Santa Cruz Longitude Fig. 4 Surface Salinity Contours

Xiaodong Hong 1*, James Doyle 1, Richard M. Hodur 1, and Paul J. Martin 2

Xiaodong Hong 1*, James Doyle 1, Richard M. Hodur 1, and Paul J. Martin 2 4.5 APPLICATION OF COAMPS TM OCEAN DATA ASSIMILATIONS IN THE AOSN II MONTEREY BAY Xiaodong Hong 1*, James Doyle 1, Richard M. Hodur 1, and Paul J. Martin 2 1 Naval Research Laboratory, Monterey, CA 93943

More information

P2.10 DEVELOPMENT OF A TIDAL MODEL FOR CENTRAL CALIFORNIA

P2.10 DEVELOPMENT OF A TIDAL MODEL FOR CENTRAL CALIFORNIA P2.1 DEVELOPMENT OF A TIDAL MODEL FOR CENTRAL CALIFORNIA Leslie Rosenfeld 1*, Igor Shulman 2, Michael Cook 1, Lev Shulman 1, and Jeff Paduan 1 1 Naval Postgraduate School, Monterey, California 2 Naval

More information

Ocean Model Development for COAMPS

Ocean Model Development for COAMPS Ocean Model Development for COAMPS Paul Martin Naval Research Laboratory Stennis Space Center, MS 39529 phone: (228) 688-5447 fax: (228) 688-4759 email: martin@nrlssc.navy.mil Award #: N0001498WX30328

More information

Modeling of Coastal Ocean Flow Fields

Modeling of Coastal Ocean Flow Fields Modeling of Coastal Ocean Flow Fields John S. Allen College of Oceanic and Atmospheric Sciences Oregon State University 104 Ocean Admin Building Corvallis, OR 97331-5503 phone: (541) 737-2928 fax: (541)

More information

Modeling of Coastal Ocean Flow Fields

Modeling of Coastal Ocean Flow Fields Modeling of Coastal Ocean Flow Fields John S. Allen College of Oceanic and Atmospheric Sciences Oregon State University 104 Ocean Admin Building Corvallis, OR 97331-5503 phone: (541) 737-2928 fax: (541)

More information

The Application of POM to the Operational Tidal Forecast for the Sea around Taiwan

The Application of POM to the Operational Tidal Forecast for the Sea around Taiwan The Application of POM to the Operational Tidal Forecast for the Sea around Taiwan Shan-Pei YEH 1 Hwa CHIEN Sen JAN 3 and Chia Chuen KAO 4 1 Coastal Ocean Monitoring Center, National Cheng Kung University,

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, XXXXXX, doi: /2007jc004093, 2007

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, XXXXXX, doi: /2007jc004093, 2007 Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2007jc004093, 2007 2 Nonhydrostatic simulations of the regional circulation in the 3 Monterey Bay area 4 Yu-Heng Tseng

More information

Modeling of Coastal Ocean Flow Fields

Modeling of Coastal Ocean Flow Fields Modeling of Coastal Ocean Flow Fields John S. Allen College of Oceanic and Atmospheric Sciences Oregon State University 104 Ocean Admin Building Corvallis, OR 97331-5503 phone: (541) 737-2928 fax: (541)

More information

Modeling and Observations of Surface Waves in Monterey Bay

Modeling and Observations of Surface Waves in Monterey Bay Modeling and Observations of Surface Waves in Monterey Bay Jeffrey D. Paduan Department of Oceanography, Code OC/Pd Naval Postgraduate School Monterey, CA 93943 phone: (831) 656-3350; fax: (831) 656-2712;

More information

High resolution modeling and data assimilation in the Monterey Bay area

High resolution modeling and data assimilation in the Monterey Bay area Continental Shelf Research 22 (2002) 1129 1151 High resolution modeling and data assimilation in the Monterey Bay area I. Shulman a, *, C.-R. Wu a, J.K. Lewis b, J.D. Paduan c, L.K. Rosenfeld c, J.C. Kindle

More information

TIDAL SIMULATION USING REGIONAL OCEAN MODELING SYSTEM (ROMS)

TIDAL SIMULATION USING REGIONAL OCEAN MODELING SYSTEM (ROMS) TIDAL SIMULATION USING REGIONAL OCEAN MODELING SYSTEM (ROMS) Xiaochun Wang 1,2, Yi Chao 1, Changming Dong 3, John Farrara 1,2, Zhijin Li 1,2, Koji Matsumoto 4, James C. McWilliams 3, Jeffrey D. Paduan

More information

Optimal Asset Distribution for Environmental Assessment and Forecasting Based on Observations, Adaptive Sampling, and Numerical Prediction

Optimal Asset Distribution for Environmental Assessment and Forecasting Based on Observations, Adaptive Sampling, and Numerical Prediction DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Optimal Asset Distribution for Environmental Assessment and Forecasting Based on Observations, Adaptive Sampling, and Numerical

More information

Numerical Experiment on the Fortnight Variation of the Residual Current in the Ariake Sea

Numerical Experiment on the Fortnight Variation of the Residual Current in the Ariake Sea Coastal Environmental and Ecosystem Issues of the East China Sea, Eds., A. Ishimatsu and H.-J. Lie, pp. 41 48. by TERRAPUB and Nagasaki University, 2010. Numerical Experiment on the Fortnight Variation

More information

Development of Ocean and Coastal Prediction Systems

Development of Ocean and Coastal Prediction Systems Development of Ocean and Coastal Prediction Systems Tal Ezer Program in Atmospheric and Oceanic Sciences P.O.Box CN710, Sayre Hall Princeton University Princeton, NJ 08544-0710 phone: (609) 258-1318 fax:

More information

POLCOMS Metadata for the ARCoES project Keywords: POLCOMS, WAM, residual circulation, waves, Liverpool Bay, UK shelf

POLCOMS Metadata for the ARCoES project Keywords: POLCOMS, WAM, residual circulation, waves, Liverpool Bay, UK shelf POLCOMS Metadata for the ARCoES project Keywords: POLCOMS, WAM, residual circulation, waves, Liverpool Bay, UK shelf POLCOMS is the Proudman Oceanographic Laboratory Coastal Ocean Modelling System. It

More information

Modeling the Formation and Offshore Transport of Dense Water from High-Latitude Coastal Polynyas

Modeling the Formation and Offshore Transport of Dense Water from High-Latitude Coastal Polynyas Modeling the Formation and Offshore Transport of Dense Water from High-Latitude Coastal Polynyas David C. Chapman Woods Hole Oceanographic Institution Woods Hole, MA 02543 phone: (508) 289-2792 fax: (508)

More information

Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling. 2 Model

Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling. 2 Model Modeling the Columbia River Plume on the Oregon Shelf during Summer Upwelling D. P. Fulton August 15, 2007 Abstract The effects of the Columbia River plume on circulation on the Oregon shelf are analyzed

More information

Non-linear patterns of eddy kinetic energy in the Japan/East Sea

Non-linear patterns of eddy kinetic energy in the Japan/East Sea Non-linear patterns of eddy kinetic energy in the Japan/East Sea O.O. Trusenkova, D.D. Kaplunenko, S.Yu. Ladychenko, V.B. Lobanov V.I.Il ichev Pacific Oceanological Institute, FEB RAS Vladivostok, Russia

More information

Eddy-resolving Simulation of the World Ocean Circulation by using MOM3-based OGCM Code (OFES) Optimized for the Earth Simulator

Eddy-resolving Simulation of the World Ocean Circulation by using MOM3-based OGCM Code (OFES) Optimized for the Earth Simulator Chapter 1 Atmospheric and Oceanic Simulation Eddy-resolving Simulation of the World Ocean Circulation by using MOM3-based OGCM Code (OFES) Optimized for the Earth Simulator Group Representative Hideharu

More information

A Study on Residual Flow in the Gulf of Tongking

A Study on Residual Flow in the Gulf of Tongking Journal of Oceanography, Vol. 56, pp. 59 to 68. 2000 A Study on Residual Flow in the Gulf of Tongking DINH-VAN MANH 1 and TETSUO YANAGI 2 1 Department of Civil and Environmental Engineering, Ehime University,

More information

Water Stratification under Wave Influence in the Gulf of Thailand

Water Stratification under Wave Influence in the Gulf of Thailand Water Stratification under Wave Influence in the Gulf of Thailand Pongdanai Pithayamaythakul and Pramot Sojisuporn Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

More information

An Innovative Coastal-Ocean Observing Network (ICON)

An Innovative Coastal-Ocean Observing Network (ICON) An Innovative Coastal-Ocean Observing Network (ICON) Jeffrey D. Paduan Steven R. Ramp, Leslie K. Rosenfeld, Curtis A. Collins, Ching-Sang Chiu, Newell Garfield Department of Oceanography, Code OC/Pd Naval

More information

The Taiwan-Tsushima Warm Current System: Its Path and the Transformation of the Water Mass in the East China Sea

The Taiwan-Tsushima Warm Current System: Its Path and the Transformation of the Water Mass in the East China Sea Journal of Oceanography, Vol. 55, pp. 185 to 195. 1999 The Taiwan-Tsushima Warm Current System: Its Path and the Transformation of the Water Mass in the East China Sea ATSUHIKO ISOBE Department of Earth

More information

The California current is the eastern boundary current that lies to the west of

The California current is the eastern boundary current that lies to the west of I. INTORDUCTION A. California Current System The California current is the eastern boundary current that lies to the west of North America. The California current flows from north, Washington, to south,

More information

Basin-Scale Topographic Waves in the Gulf of Riga*

Basin-Scale Topographic Waves in the Gulf of Riga* MAY 2003 RAUDSEPP ET AL. 1129 Basin-Scale Topographic Waves in the Gulf of Riga* URMAS RAUDSEPP Estonian Marine Institute, Tallinn, Estonia DMITRY BELETSKY Department of Naval Architecture and Marine Engineering,

More information

The California Current System: Comparison of Geostrophic Currents, ADCP Currents and Satellite Altimetry

The California Current System: Comparison of Geostrophic Currents, ADCP Currents and Satellite Altimetry The California Current System: Comparison of Geostrophic Currents, ADCP Currents and Satellite Altimetry LCDR David O. Neander, NOAA OC3570 Summer Cruise, August 2-5, 2001 I. INTRODUCTION The large-scale

More information

Understanding Near-Surface and In-Cloud Turbulent Fluxes in the Coastal Stratocumulus-Topped Boundary Layers

Understanding Near-Surface and In-Cloud Turbulent Fluxes in the Coastal Stratocumulus-Topped Boundary Layers Understanding Near-Surface and In-Cloud Turbulent Fluxes in the Coastal Stratocumulus-Topped Boundary Layers Qing Wang Meteorology Department, Naval Postgraduate School Monterey, CA 93943 Phone: (831)

More information

Coupled Ocean-Atmosphere Modeling of the Coastal Zone

Coupled Ocean-Atmosphere Modeling of the Coastal Zone Coupled Ocean-Atmosphere Modeling of the Coastal Zone Eric D. Skyllingstad College of Oceanic and Atmospheric Sciences, Oregon State University 14 Ocean Admin. Bldg., Corvallis, OR 97331 Phone: (541) 737-5697

More information

Toward Accurate Coastal Ocean Modeling

Toward Accurate Coastal Ocean Modeling Toward Accurate Coastal Ocean Modeling Peter C. Chu Naval Postgraduate School Monterey, CA 93943, USA Email: pcchu@nps.edu http://www.oc.nps.navy.mil/~chu International Council for Sciences, Scientific

More information

Real-Time Observations Of A Coastal Upwelling Event Using Innovative Technologies

Real-Time Observations Of A Coastal Upwelling Event Using Innovative Technologies Real-Time Observations Of A Coastal Upwelling Event Using Innovative Technologies Igor Shulman Institute of Marine Sciences The University of Southern Mississippi Bldg. 1103, Room 249 Stennis Space Center,

More information

P-Vector Inverse Method Evaluated Using the Modular Ocean Model (MOM)

P-Vector Inverse Method Evaluated Using the Modular Ocean Model (MOM) Journal of Oceanography, Vol. 54, pp. 185 to 198. 1998 P-Vector Inverse Method Evaluated Using the Modular Ocean Model (MOM) PETER C. CHU 1, CHENWU FAN 1 and WENJU CAI 2 1 Naval Postgraduate School, Monterey,

More information

Bioluminescence Intensity Modeling and Sampling Strategy Optimization*

Bioluminescence Intensity Modeling and Sampling Strategy Optimization* AUGUST 2005 S HULMAN ET AL. 1267 Bioluminescence Intensity Modeling and Sampling Strategy Optimization* I. SHULMAN, D. J. MCGILLICUDDY JR., # M. A. MOLINE, @ S. H. D. HADDOCK, & J. C. KINDLE, D. NECHAEV,**

More information

ARTICLE IN PRESS. Deep-Sea Research II

ARTICLE IN PRESS. Deep-Sea Research II Deep-Sea Research II 56 (9) 8 198 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Impact of glider data assimilation on the Monterey Bay model

More information

APPENDIX B PHYSICAL BASELINE STUDY: NORTHEAST BAFFIN BAY 1

APPENDIX B PHYSICAL BASELINE STUDY: NORTHEAST BAFFIN BAY 1 APPENDIX B PHYSICAL BASELINE STUDY: NORTHEAST BAFFIN BAY 1 1 By David B. Fissel, Mar Martínez de Saavedra Álvarez, and Randy C. Kerr, ASL Environmental Sciences Inc. (Feb. 2012) West Greenland Seismic

More information

Cold air outbreak over the Kuroshio Extension Region

Cold air outbreak over the Kuroshio Extension Region Cold air outbreak over the Kuroshio Extension Region Jensen, T. G. 1, T. Campbell 1, T. A. Smith 1, R. J. Small 2 and R. Allard 1 1 Naval Research Laboratory, 2 Jacobs Engineering NRL, Code 7320, Stennis

More information

Internal Wave Driven Mixing and Transport in the Coastal Ocean

Internal Wave Driven Mixing and Transport in the Coastal Ocean DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Internal Wave Driven Mixing and Transport in the Coastal Ocean Subhas Karan Venayagamoorthy Department of Civil and Environmental

More information

Regional circulation of the Monterey Bay region: Hydrostatic versus nonhydrostatic modeling

Regional circulation of the Monterey Bay region: Hydrostatic versus nonhydrostatic modeling JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2003jc002153, 2005 Regional circulation of the Monterey Bay region: Hydrostatic versus nonhydrostatic modeling Yu-Heng Tseng 1 Environmental Fluid

More information

Real-Time Observations of a Coastal Upwelling Event Using Innovative Technologies

Real-Time Observations of a Coastal Upwelling Event Using Innovative Technologies Real-Time Observations of a Coastal Upwelling Event Using Innovative Technologies Jeffrey D. Paduan, Steven R. Ramp, and Leslie K. Rosenfeld Department of Oceanography, Code OC/Pd, Naval Postgraduate School

More information

Tidal Constituents in the Persian Gulf, Gulf of Oman and Arabian Sea: a Numerical Study

Tidal Constituents in the Persian Gulf, Gulf of Oman and Arabian Sea: a Numerical Study Indian Journal of Geo-Marine Sciences Vol. 45(8), August 2016, pp. 1010-1016 Tidal Constituents in the Persian Gulf, Gulf of Oman and Arabian Sea: a Numerical Study P. Akbari 1 *, M. Sadrinasab 2, V. Chegini

More information

Coastal Ocean Modeling & Dynamics - ESS

Coastal Ocean Modeling & Dynamics - ESS DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coastal Ocean Modeling & Dynamics - ESS Roger M. Samelson College of Earth, Ocean, and Atmospheric Sciences Oregon State

More information

Numerical study of the spatial distribution of the M 2 internal tide in the Pacific Ocean

Numerical study of the spatial distribution of the M 2 internal tide in the Pacific Ocean JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. C10, PAGES 22,441 22,449, OCTOBER 15, 2001 Numerical study of the spatial distribution of the M 2 internal tide in the Pacific Ocean Yoshihiro Niwa and Toshiyuki

More information

Buoyancy-forced circulations in shallow marginal seas

Buoyancy-forced circulations in shallow marginal seas Journal of Marine Research, 63, 729 752, 2005 Buoyancy-forced circulations in shallow marginal seas by Michael A. Spall 1 ABSTRACT The properties of water mass transformation and the thermohaline circulation

More information

Generation and Evolution of Internal Waves in Luzon Strait

Generation and Evolution of Internal Waves in Luzon Strait DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon Strait Ren-Chieh Lien Applied Physics Laboratory University of Washington

More information

Statistical Analysis of Sea Surface Elevation in Numerical Ocean Model for the Gulf of Thailand during Typhoon Muifa

Statistical Analysis of Sea Surface Elevation in Numerical Ocean Model for the Gulf of Thailand during Typhoon Muifa Applied Mathematical Sciences, Vol. 7, 2013, no. 16, 751-764 Statistical Analysis of Sea Surface Elevation in Numerical Ocean Model for the Gulf of Thailand during Typhoon Muifa N. Aschariyaphotha, S.

More information

Mesoscale predictability under various synoptic regimes

Mesoscale predictability under various synoptic regimes Nonlinear Processes in Geophysics (2001) 8: 429 438 Nonlinear Processes in Geophysics c European Geophysical Society 2001 Mesoscale predictability under various synoptic regimes W. A. Nuss and D. K. Miller

More information

NOTES AND CORRESPONDENCE. The Spindown of Bottom-Trapped Plumes

NOTES AND CORRESPONDENCE. The Spindown of Bottom-Trapped Plumes JULY 2010 N O T E S A N D C O R R E S P O N D E N C E 1651 NOTES AND CORRESPONDENCE The Spindown of Bottom-Trapped Plumes RICARDO P. MATANO College of Oceanic and Atmospheric Sciences, Oregon State University,

More information

Advanced Analysis and Synthesis of the Eastern Boundary Current ARI Data Set

Advanced Analysis and Synthesis of the Eastern Boundary Current ARI Data Set Advanced Analysis and Synthesis of the Eastern Boundary Current ARI Data Set Steven R. Ramp Department of Oceanography, Code OC/Ra Naval Postgraduate School Monterey, CA 93943-5122 phone: (831) 656-2201

More information

Upwelling Dynamics off Monterey Bay: Heat Flux and Temperature Variability, and their Sensitivities. Melissa Rachel Steinberg Kaufman

Upwelling Dynamics off Monterey Bay: Heat Flux and Temperature Variability, and their Sensitivities. Melissa Rachel Steinberg Kaufman Multidisciplinary Simulation, Estimation, and Assimilation Systems Reports in Ocean Science and Engineering MSEAS-05 Upwelling Dynamics off Monterey Bay: Heat Flux and Temperature Variability, and their

More information

Physical Oceanography of the Northeastern Chukchi Sea: A Preliminary Synthesis

Physical Oceanography of the Northeastern Chukchi Sea: A Preliminary Synthesis Physical Oceanography of the Northeastern Chukchi Sea: A Preliminary Synthesis I. Hanna Shoal Meltback Variability (causes?) II. Hydrography: Interannual Variability III. Aspects of Hanna Shoal Hydrographic

More information

Toward Accurate Coastal Ocean Prediction

Toward Accurate Coastal Ocean Prediction Toward Accurate Coastal Ocean Prediction Peter C. Chu Naval Postgraduate School, Monterey, CA 93943, USA November 28, 2000 1 ntroduction Several major problems, namely, uncertain surface forcing function,

More information

U l;~;uj P~ L,: - #*"**

U l;~;uj P~ L,: - #*** REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Data Assimilation and Diagnostics of Inner Shelf Dynamics

Data Assimilation and Diagnostics of Inner Shelf Dynamics DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Data Assimilation and Diagnostics of Inner Shelf Dynamics Emanuele Di Lorenzo School of Earth and Atmospheric Sciences

More information

Eddies in the Southern California Bight

Eddies in the Southern California Bight HOME INTRODUCTION BIOLOGY POLLUTION CREDITS/LINKS Circulation in the Southern California Bight Scroll down this page to learn about current circulation in the Southern California Bight, or jump directly

More information

Submesoscale Routes to Lateral Mixing in the Ocean

Submesoscale Routes to Lateral Mixing in the Ocean DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Submesoscale Routes to Lateral Mixing in the Ocean Amit Tandon Physics Department, UMass Dartmouth 285 Old Westport Rd

More information

A Modeling Study of Eulerian and Lagrangian Aspects of Shelf Circulation off Duck, North Carolina

A Modeling Study of Eulerian and Lagrangian Aspects of Shelf Circulation off Duck, North Carolina 2070 JOURNAL OF PHYSICAL OCEANOGRAPHY A Modeling Study of Eulerian and Lagrangian Aspects of Shelf Circulation off Duck, North Carolina B. T. KUEBEL CERVANTES, J.S.ALLEN, AND R. M. SAMELSON College of

More information

Instability of a coastal jet in a two-layer model ; application to the Ushant front

Instability of a coastal jet in a two-layer model ; application to the Ushant front Instability of a coastal jet in a two-layer model ; application to the Ushant front Marc Pavec (1,2), Xavier Carton (1), Steven Herbette (1), Guillaume Roullet (1), Vincent Mariette (2) (1) UBO/LPO, 6

More information

HWRF Ocean: MPIPOM-TC

HWRF Ocean: MPIPOM-TC HWRF v3.7a Tutorial Nanjing, China, December 2, 2015 HWRF Ocean: MPIPOM-TC Ligia Bernardet NOAA SRL Global Systems Division, Boulder CO University of Colorado CIRS, Boulder CO Acknowledgement Richard Yablonsky

More information

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Chapter 1 Atmospheric and Oceanic Simulation Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Project Representative Tatsushi

More information

An Overview of Nested Regions Using HYCOM

An Overview of Nested Regions Using HYCOM An Overview of Nested Regions Using HYCOM Patrick Hogan Alan Wallcraft Luis Zamudio Sergio DeRada Prasad Thoppil Naval Research Laboratory Stennis Space Center, MS 10 th HYCOM Consortium Meeting COAPS,

More information

Optimal Spectral Decomposition (OSD) for GTSPP Data Analysis

Optimal Spectral Decomposition (OSD) for GTSPP Data Analysis Optimal Spectral Decomposition (OSD) for GTSPP Data Analysis Peter C Chu (1),Charles Sun (2), & Chenwu Fan (1) (1) Naval Postgraduate School, Monterey, CA 93943 pcchu@nps.edu, http://faculty.nps.edu/pcchu/

More information

General Curvilinear Ocean Model (GCOM): Enabling Thermodynamics

General Curvilinear Ocean Model (GCOM): Enabling Thermodynamics General Curvilinear Ocean Model (GCOM): Enabling Thermodynamics M. Abouali, C. Torres, R. Walls, G. Larrazabal, M. Stramska, D. Decchis, and J.E. Castillo AP0901 09 General Curvilinear Ocean Model (GCOM):

More information

Spreading of near-inertial energy in a 1/12 model of the North Atlantic Ocean

Spreading of near-inertial energy in a 1/12 model of the North Atlantic Ocean Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L10609, doi:10.1029/2007gl029895, 2007 Spreading of near-inertial energy in a 1/12 model of the North Atlantic Ocean Xiaoming Zhai, 1

More information

MAR513 Lecture 10: Pressure Errors in Terrain-Following Coordinates

MAR513 Lecture 10: Pressure Errors in Terrain-Following Coordinates MAR513 Lecture 10: Pressure Errors in Terrain-Following Coordinates The vertical coordinates: The z-coordinate The Terrain-following coordinate Advantage: Simple Disadvantage: Poorly resolve topography

More information

Dynamics of Downwelling in an Eddy-Resolving Convective Basin

Dynamics of Downwelling in an Eddy-Resolving Convective Basin OCTOBER 2010 S P A L L 2341 Dynamics of Downwelling in an Eddy-Resolving Convective Basin MICHAEL A. SPALL Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 11 March

More information

A well-mixed warm water column in the central Bohai Sea in summer: Effects of tidal and surface wave mixing

A well-mixed warm water column in the central Bohai Sea in summer: Effects of tidal and surface wave mixing Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006jc003504, 2006 A well-mixed warm water column in the central Bohai Sea in summer: Effects of tidal and surface wave

More information

Tidally Induced Cross-frontal Mean Circulation: A Numerical Study 1

Tidally Induced Cross-frontal Mean Circulation: A Numerical Study 1 1 Tidally Induced Cross-frontal Mean Circulation: A Numerical Study 1 Changming Dong Dake Chen Hsien-Wang Ou Martin Visbeck Lamont-Doherty Earth Observatory Columbia University, Palisades, NY, 10964 Submitted

More information

Cruise Report R.V. Oceania, AREX2004

Cruise Report R.V. Oceania, AREX2004 Powstaców Warszawy, PL - 81-71 Sopot, P.O. Box 68 November 16. 4 Cruise Report R.V. Oceania, AREX4 Ship: Cruise: R.V. Oceania Arex4 Dates: 8.6.4 19.7.4 Port Calls: Sopot (Poland) Longyearbyen (Spitsbergen)

More information

Typhoon induced upper ocean cooling off northeastern Taiwan

Typhoon induced upper ocean cooling off northeastern Taiwan GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14605, doi:10.1029/2008gl034368, 2008 Typhoon induced upper ocean cooling off northeastern Taiwan Yaling Tsai, 1 Ching-Sheng Chern, 1 and Joe Wang 1 Received 16

More information

Modeling the Circulation in Penobscot Bay, Maine

Modeling the Circulation in Penobscot Bay, Maine Modeling the Circulation in Penobscot Bay, Maine Huijie Xue 1, Yu Xu 1, David Brooks 2, Neal Pettigrew 1, John Wallinga 1 1. School of Marine Sciences, University of Maine, Orono, ME 4469-5741. 2. Department

More information

CAIBEX workshop Mesoscale experiments and modelling Cape Ghir

CAIBEX workshop Mesoscale experiments and modelling Cape Ghir CAIBEX workshop Mesoscale experiments and modelling Cape Ghir C. Troupin 1, P. Sangrà 2, J. Arístegui 2 1 GHER-MARE, AGO Department, University of Liège, Belgium 2 Facultad de Ciencias del Mar, Universidad

More information

Implementation of an Ocean Acoustic Laboratory at PMRF

Implementation of an Ocean Acoustic Laboratory at PMRF Implementation of an Ocean Acoustic Laboratory at PMRF Peter J. Stein Scientific Solutions, Inc. 99 Perimeter Road Nashua, NH 03063 phone: (603) 880-3784 fax: (603) 598-1803 email: pstein@scisol.com James

More information

Coastal ocean wind fields gauged against the performance of an ocean circulation model

Coastal ocean wind fields gauged against the performance of an ocean circulation model GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L14303, doi:10.1029/2003gl019261, 2004 Coastal ocean wind fields gauged against the performance of an ocean circulation model Ruoying He, 1 Yonggang Liu, 2 and Robert

More information

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST Peter Childs, Sethu Raman, and Ryan Boyles State Climate Office of North Carolina and

More information

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Miyazawa, Yasumasa (JAMSTEC) Collaboration with Princeton University AICS Data

More information

Understanding Near-Surface and In-cloud Turbulent Fluxes in the Coastal Stratocumulus-topped Boundary Layers

Understanding Near-Surface and In-cloud Turbulent Fluxes in the Coastal Stratocumulus-topped Boundary Layers Understanding Near-Surface and In-cloud Turbulent Fluxes in the Coastal Stratocumulus-topped Boundary Layers Qing Wang Meteorology Department, Naval Postgraduate School Monterey, CA 93943 Phone: (831)

More information

DOWNSCALING THE OCEAN CIRCULATION ON WESTERN SOUTH ATLANTIC: HINDCASTING, MONITORING AND FORECASTING PURPOSES

DOWNSCALING THE OCEAN CIRCULATION ON WESTERN SOUTH ATLANTIC: HINDCASTING, MONITORING AND FORECASTING PURPOSES DOWNSCALING THE OCEAN CIRCULATION ON WESTERN SOUTH ATLANTIC: HINDCASTING, MONITORING AND FORECASTING PURPOSES Ricardo de Camargo *1, Joseph Harari 2 & Carlos Augusto Sampaio França 2 1 Department of Atmospheric

More information

Coastal Ocean Circulation Experiment off Senegal (COCES)

Coastal Ocean Circulation Experiment off Senegal (COCES) DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Coastal Ocean Circulation Experiment off Senegal (COCES) Pierre-Marie Poulain Istituto Nazionale di Oceanografia e di Geofisica

More information

DEPARTMENT OF GEOSCIENCES SAN FRANCISCO STATE UNIVERSITY. Metr Fall 2012 Test #1 200 pts. Part I. Surface Chart Interpretation.

DEPARTMENT OF GEOSCIENCES SAN FRANCISCO STATE UNIVERSITY. Metr Fall 2012 Test #1 200 pts. Part I. Surface Chart Interpretation. DEPARTMENT OF GEOSCIENCES SAN FRANCISCO STATE UNIVERSITY NAME Metr 356.01 Fall 2012 Test #1 200 pts Part I. Surface Chart Interpretation. Figure 1. Surface Chart for 1500Z 7 September 2007 1 1. Pressure

More information

Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere

Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere Mike Dinniman and John Klinck Center for Coastal Physical Oceanography Old Dominion University

More information

3.6 EFFECTS OF WINDS, TIDES, AND STORM SURGES ON OCEAN SURFACE WAVES IN THE JAPAN/EAST SEA

3.6 EFFECTS OF WINDS, TIDES, AND STORM SURGES ON OCEAN SURFACE WAVES IN THE JAPAN/EAST SEA 3.6 EFFECTS OF WINDS, TIDES, AND STORM SURGES ON OCEAN SURFACE WAVES IN THE JAPAN/EAST SEA Wei Zhao 1, Shuyi S. Chen 1 *, Cheryl Ann Blain 2, Jiwei Tian 3 1 MPO/RSMAS, University of Miami, Miami, FL 33149-1098,

More information

The Physical Context for Thin Layers in the Coastal Ocean

The Physical Context for Thin Layers in the Coastal Ocean The Physical Context for Thin Layers in the Coastal Ocean David M. Fratantoni Physical Oceanography Department Woods Hole Oceanographic Institution Woods Hole, MA 02543 phone: (508) 289-2908 fax: (508)

More information

Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean

Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean Comparison between vertical shear mixing and surface wave-induced mixing in the global ocean Fangli Qiao and Chuanjiang Huang Key Laboratory of Marine Science and Numerical Modeling First Institute of

More information

Variational assimilation of glider data in Monterey Bay

Variational assimilation of glider data in Monterey Bay Journal of Marine Research, 69, 331 346, 2011 Variational assimilation of glider data in Monterey Bay by Chudong Pan 1,2, Max Yaremchuk 3, Dmitri Nechaev 1 and Hans Ngodock 3 ABSTRACT Temperature and salinity

More information

SIMULATION OF ARCTIC STORMS 7B.3. Zhenxia Long 1, Will Perrie 1, 2 and Lujun Zhang 2

SIMULATION OF ARCTIC STORMS 7B.3. Zhenxia Long 1, Will Perrie 1, 2 and Lujun Zhang 2 7B.3 SIMULATION OF ARCTIC STORMS Zhenxia Long 1, Will Perrie 1, 2 and Lujun Zhang 2 1 Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth NS, Canada 2 Department of Engineering Math,

More information

Simulations of Atmospheric Dynamics and Cloudiness in A Coastal Region

Simulations of Atmospheric Dynamics and Cloudiness in A Coastal Region LONG TERM GOALS Simulations of Atmospheric Dynamics and Cloudiness in A Coastal Region Darko R. Koracin Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512 702-677-3344 (voice); 702-677-3157

More information

Keywords: ocean observing, monitoring, Monterey Bay, marine populations, water quality

Keywords: ocean observing, monitoring, Monterey Bay, marine populations, water quality THE CENTER FOR INTEGRATED MARINE TECHNOLOGIES: LONG- TERM OCEAN OBSERVING SYSTEM IN MONTEREY BAY, IMPROVING THE UNDERSTANDING OF OCEAN AND COASTAL ECOSYSTEMS Rondi J. Robison 1, Laura Beach 2, Raphe Kudela

More information

Internal Waves in the Vicinity of the Kuroshio Path

Internal Waves in the Vicinity of the Kuroshio Path Internal Waves in the Vicinity of the Kuroshio Path Ren-Chieh Lien Applied Physics Laboratory University of Washington Seattle, Washington 98105 phone: (206) 685-1079 fax: (206) 543-6785 email: lien@apl.washington.edu

More information

Lagrangian Measurement of subsurface poleward Flow between 38 degrees N and 43 degrees N along the West Coast of the United States during Summer, 1993

Lagrangian Measurement of subsurface poleward Flow between 38 degrees N and 43 degrees N along the West Coast of the United States during Summer, 1993 Calhoun: The NPS Institutional Archive DSpace Repository Faculty and Researchers Faculty and Researchers Collection 1996-09-01 Lagrangian Measurement of subsurface poleward Flow between 38 degrees N and

More information

Overview of HYCOM activities at SHOM

Overview of HYCOM activities at SHOM Overview of HYCOM activities at SHOM Stéphanie Louazel, Stéphanie Corréard, Rémy Baraille, Annick Pichon, Cyril Lathuilière, Audrey Pasquet, Emeric Baquet LOM2015 Copenhagen 2 nd 4 th June 2015 French

More information

Oceanographic and atmospheric conditions on the continental shelf north of the Monterey Bay during August 2006

Oceanographic and atmospheric conditions on the continental shelf north of the Monterey Bay during August 2006 University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Navy Research U.S. Department of Defense 2011 Oceanographic and atmospheric conditions on the continental shelf north

More information

Marta-Almeida M, Mauro Cirano, Lessa, GC, Aguiar, AL, Amorim FN

Marta-Almeida M, Mauro Cirano, Lessa, GC, Aguiar, AL, Amorim FN EXCHANGE PROCESSES BETWEEN THE BAÍA DE TODOS OS SANTOS AND THE EASTERN BRAZILIAN SHELF: THE IMPACT OF DOWNSCALING FROM A 1/12 OCEAN FORECASTING SYSTEM TO A BAY/COASTAL REGIONAL SYSTEM Marta-Almeida M,

More information

A 1/10th Degree Global Ocean Simulation Using the Parallel Ocean Program

A 1/10th Degree Global Ocean Simulation Using the Parallel Ocean Program A 1/10th Degree Global Ocean Simulation Using the Parallel Ocean Program Mathew E Maltrud Fluid Dynamics Group MS B216 Los Alamos National Laboratory Los Alamos, NM 87545 phone: (505) 667-9097 fax: (505)

More information

Boundary Conditions, Data Assimilation and Predictability in Coastal Ocean Models

Boundary Conditions, Data Assimilation and Predictability in Coastal Ocean Models Boundary Conditions, Data Assimilation and Predictability in Coastal Ocean Models (NOPP-CODAE/ONR) R. Samelson, J. S. Allen, G. Egbert, A. Kurapov, R. Miller S. Kim, S. Springer; B.-J. Choi (GLOBEC) College

More information

Forecast of Nearshore Wave Parameters Using MIKE-21 Spectral Wave Model

Forecast of Nearshore Wave Parameters Using MIKE-21 Spectral Wave Model Forecast of Nearshore Wave Parameters Using MIKE-21 Spectral Wave Model Felix Jose 1 and Gregory W. Stone 2 1 Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803 2 Coastal Studies

More information

Internal Tides in the Bab el Mandab Strait. Ewa Jarosz and Cheryl Ann Blain Naval Research Laboratory, Stennis Space Center, MS

Internal Tides in the Bab el Mandab Strait. Ewa Jarosz and Cheryl Ann Blain Naval Research Laboratory, Stennis Space Center, MS Internal Tides in the Bab el Mandab Strait Ewa Jarosz and Cheryl Ann Blain Naval Research Laboratory, Stennis Space Center, MS Project Objectives Numerical simulation of tides and exchange flow in the

More information

Upper Ocean Circulation

Upper Ocean Circulation Upper Ocean Circulation C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 MAR555 Lecture 4: The Upper Oceanic Circulation The Oceanic Circulation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO3053 1 2 Contribution of topographically-generated submesoscale turbulence to Southern Ocean overturning 3

More information

Influence of the Seasonal Thermocline on the Intrusion of Kuroshio across the Continental Shelf Northeast of Taiwan

Influence of the Seasonal Thermocline on the Intrusion of Kuroshio across the Continental Shelf Northeast of Taiwan Journal of Oceanography Vol. 5, pp. 691 to 711. 1994 Influence of the Seasonal Thermocline on the Intrusion of Kuroshio across the Continental Shelf Northeast of Taiwan CHING-SHENG CHERN and Joe WANO Institute

More information

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models Dimitris Menemenlis California Institute of Technology, Jet Propulsion Laboratory Frontiers

More information

Satellite Characterization of Bio-Optical and Thermal Variability in the Japan/East Sea

Satellite Characterization of Bio-Optical and Thermal Variability in the Japan/East Sea Satellite Characterization of Bio-Optical and Thermal Variability in the Japan/East Sea Robert Arnone Ocean Optics Section Code 7333 Naval Research Laboratory Stennis Space Center, MS 39529 phone: (228)

More information